Refining Planetary Boundary Layer Height Retrievals From Micropulse‐Lidar at Multiple ARM Sites Around the World

Knowledge of the planetary boundary layer height (PBLH) is crucial for various applications in atmospheric and environmental sciences. Lidar measurements are frequently used to monitor the evolution of the PBLH, providing more frequent observations than traditional radiosonde‐based methods. However,...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Atmospheres Vol. 129; no. 13
Main Authors Roldán‐Henao, Natalia, Su, Tianning, Li, Zhanqing
Format Journal Article
LanguageEnglish
Published 16.07.2024
Subjects
Online AccessGet full text
ISSN2169-897X
2169-8996
2169-8996
DOI10.1029/2023JD040207

Cover

Abstract Knowledge of the planetary boundary layer height (PBLH) is crucial for various applications in atmospheric and environmental sciences. Lidar measurements are frequently used to monitor the evolution of the PBLH, providing more frequent observations than traditional radiosonde‐based methods. However, lidar‐derived PBLH estimates have substantial uncertainties, contingent upon the retrieval algorithm used. In addressing this, we applied the Different Thermo‐Dynamic Stabilities (DTDS) algorithm to establish a PBLH data set at five separate Department of Energy's Atmospheric Radiation Measurement sites across the globe. Both the PBLH methodology and the products are subject to rigorous assessments in terms of their uncertainties and constraints, juxtaposing them with other products. The DTDS‐derived product consistently aligns with radiosonde PBLH estimates, with correlation coefficients exceeding 0.77 across all sites. This study delves into a detailed examination of the strengths and limitations of PBLH data sets with respect to both radiosonde‐derived and other lidar‐based estimates of the PBLH by exploring their respective errors and uncertainties. It is found that varying techniques and definitions can lead to diverse PBLH retrievals due to the inherent intricacy and variability of the boundary layer. Our DTDS‐derived PBLH data set outperforms existing products derived from ceilometer data, offering a more precise representation of the PBLH. This extensive data set paves the way for advanced studies and an improved understanding of boundary‐layer dynamics, with valuable applications in weather forecasting, climate modeling, and environmental studies. Plain Language Summary The planetary boundary layer (PBL) is the lowest region of the atmosphere directly influenced by Earth's surface. This layer is vital as it connects the atmosphere to surface processes. Given its importance, accurately determining its height (PBLH) is crucial for weather, climate, and air quality studies. However, current PBLH estimates either have infrequent time intervals, as seen with radiosondes, or face notable uncertainties, like those derived from remote sensing techniques. This research evaluates a new lidar‐based PBLH method at five Department of Energy's Atmospheric Radiation Measurement sites across the globe. The PBLH data set from the new methodology aligns well with radiosonde, with notably smaller biases compared to the existing products. Additionally, this study investigates potential errors in our PBLH data, revealing that varying techniques and definitions can produce different PBLH values, highlighting the complex and dynamic nature of the PBL. Key Points This study evaluates the performance of the new Different Thermo‐Dynamic Stabilities (DTDS) algorithm at five Department of Energy's Atmospheric Radiation Measurement sites DTDS‐derived boundary layer data set outperforms existing lidar‐derived products at all five sites, offering a more precise representation This study provides an extensive boundary layer height data set that paves the way for future investigations in various applications
AbstractList Knowledge of the planetary boundary layer height (PBLH) is crucial for various applications in atmospheric and environmental sciences. Lidar measurements are frequently used to monitor the evolution of the PBLH, providing more frequent observations than traditional radiosonde‐based methods. However, lidar‐derived PBLH estimates have substantial uncertainties, contingent upon the retrieval algorithm used. In addressing this, we applied the Different Thermo‐Dynamic Stabilities (DTDS) algorithm to establish a PBLH data set at five separate Department of Energy's Atmospheric Radiation Measurement sites across the globe. Both the PBLH methodology and the products are subject to rigorous assessments in terms of their uncertainties and constraints, juxtaposing them with other products. The DTDS‐derived product consistently aligns with radiosonde PBLH estimates, with correlation coefficients exceeding 0.77 across all sites. This study delves into a detailed examination of the strengths and limitations of PBLH data sets with respect to both radiosonde‐derived and other lidar‐based estimates of the PBLH by exploring their respective errors and uncertainties. It is found that varying techniques and definitions can lead to diverse PBLH retrievals due to the inherent intricacy and variability of the boundary layer. Our DTDS‐derived PBLH data set outperforms existing products derived from ceilometer data, offering a more precise representation of the PBLH. This extensive data set paves the way for advanced studies and an improved understanding of boundary‐layer dynamics, with valuable applications in weather forecasting, climate modeling, and environmental studies. Plain Language Summary The planetary boundary layer (PBL) is the lowest region of the atmosphere directly influenced by Earth's surface. This layer is vital as it connects the atmosphere to surface processes. Given its importance, accurately determining its height (PBLH) is crucial for weather, climate, and air quality studies. However, current PBLH estimates either have infrequent time intervals, as seen with radiosondes, or face notable uncertainties, like those derived from remote sensing techniques. This research evaluates a new lidar‐based PBLH method at five Department of Energy's Atmospheric Radiation Measurement sites across the globe. The PBLH data set from the new methodology aligns well with radiosonde, with notably smaller biases compared to the existing products. Additionally, this study investigates potential errors in our PBLH data, revealing that varying techniques and definitions can produce different PBLH values, highlighting the complex and dynamic nature of the PBL. Key Points This study evaluates the performance of the new Different Thermo‐Dynamic Stabilities (DTDS) algorithm at five Department of Energy's Atmospheric Radiation Measurement sites DTDS‐derived boundary layer data set outperforms existing lidar‐derived products at all five sites, offering a more precise representation This study provides an extensive boundary layer height data set that paves the way for future investigations in various applications
Author Su, Tianning
Roldán‐Henao, Natalia
Li, Zhanqing
Author_xml – sequence: 1
  givenname: Natalia
  orcidid: 0000-0002-3833-2719
  surname: Roldán‐Henao
  fullname: Roldán‐Henao, Natalia
  organization: University of Maryland
– sequence: 2
  givenname: Tianning
  surname: Su
  fullname: Su, Tianning
  email: tianning@umd.edu
  organization: University of Maryland
– sequence: 3
  givenname: Zhanqing
  orcidid: 0000-0001-6737-382X
  surname: Li
  fullname: Li, Zhanqing
  email: zhanqing@umd.edu
  organization: University of Maryland
BookMark eNptkE1OwzAQRi1UJErpjgP4AgH_xXGWpYWWKhUogGAXOY7TunKTykmosuMInJGTkKjAitnMt3jzSfPOwaAoCw3AJUZXGJHwmiBClzPEEEHBCRgSzENPhCEf_OXg7QyMq2qLuhGIMp8NgYt1bgpTrOGjlYWupWvhTdkUWR8i2WoHF9qsNzWMde2Mfpe2gneu3MGVUa7cN7bSXx-fkekOoKzhqrG12VsNJ_EKPplaV3Di-j5YbzR8LZ3NLsBp3rXo8c8egZe72-fpwose5vfTSeQpGhDsqVBjjAXPUIoIS_MsUFkQKCIky6nvkzz1NeMsTbnIcZhrJpCinCou_FAxX9AR8I69TbGX7UFam-yd2XWPJRglvbOkd7bNjs46nh75g7G6_Zf99Zss5_HMDznF9BuYWHDn
CitedBy_id crossref_primary_10_5194_gmd_17_6319_2024
crossref_primary_10_3390_rs16173252
ContentType Journal Article
Copyright 2024. The Author(s).
Copyright_xml – notice: 2024. The Author(s).
DBID 24P
ADTOC
UNPAY
DOI 10.1029/2023JD040207
DatabaseName Wiley Online Library Open Access
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Journals Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2169-8996
EndPage n/a
ExternalDocumentID 10.1029/2023jd040207
JGRD59631
Genre researchArticle
GrantInformation_xml – fundername: U.S. National Science Foundation
  funderid: AGS2126098
– fundername: U.S. Department of Energy
  funderid: DE‐SC0022919
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
5VS
702
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
DPXWK
DRFUL
DRSTM
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
31~
8FG
AASGY
ABJCF
ADTOC
AEUYN
AFKRA
AIQQE
ARAPS
AZQEC
BGLVJ
CCPQU
EJD
FEDTE
GODZA
HVGLF
K6-
L6V
LK5
M7R
M7S
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJQFR
UNPAY
ID FETCH-LOGICAL-c3721-c9e11186d0b024bfd7cd77c28a4f3552fb5e464bb68f19fe480c363c6859c4583
IEDL.DBID UNPAY
ISSN 2169-897X
2169-8996
IngestDate Sun Oct 26 04:10:57 EDT 2025
Sun Jul 06 04:44:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3721-c9e11186d0b024bfd7cd77c28a4f3552fb5e464bb68f19fe480c363c6859c4583
ORCID 0000-0002-3833-2719
0000-0001-6737-382X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1029/2023jd040207
PageCount 17
ParticipantIDs unpaywall_primary_10_1029_2023jd040207
wiley_primary_10_1029_2023JD040207_JGRD59631
PublicationCentury 2000
PublicationDate 16 July 2024
PublicationDateYYYYMMDD 2024-07-16
PublicationDate_xml – month: 07
  year: 2024
  text: 16 July 2024
  day: 16
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Atmospheres
PublicationYear 2024
References 2022; 276
2007; 124
2021; 21
1997; 83
2009; 43
2002; 19
2017; 4
2019; 11
2021; 126
2023; 16
2018; 206
1986; 36
2019; 59
2024; 51
2006; 6
2019; 227
2024
2022; 22
2016; 16
2019; 100
1993; 6
2021; 14
2010; 23
2017; 74
2003; 108
2010; 49
2020; 1
2000; 39
2000; 17
2015; 115
2022
2013; 79
2000; 34
2020
1993; 98
2010; 115
2000; 97
2020; 237
2004; 5571
1984
2022; 15
1996; 81
1999; 90
2018; 31
2003; 20
1988
References_xml – volume: 126
  issue: 5
  year: 2021
  article-title: Interpreting the diurnal cycle of clouds and precipitation in the ARM GoAmazon observations: Shallow to deep convection transition
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 31
  start-page: 1451
  issue: 4
  year: 2018
  end-page: 1465
  article-title: On the summertime planetary boundary layer with different thermodynamic stability in China: A radiosonde perspective
  publication-title: Journal of Climate
– start-page: 107
  year: 1984
  end-page: 158
– volume: 16
  start-page: 433
  issue: 2
  year: 2023
  end-page: 479
  article-title: Atmospheric boundary layer height from ground‐based remote sensing: A review of capabilities and limitations
  publication-title: Atmospheric Measurement Techniques
– volume: 98
  start-page: 8851
  issue: D5
  year: 1993
  end-page: 8858
  article-title: Recent changes in the North American arctic boundary layer in winter
  publication-title: Journal of Geophysical Research
– volume: 108
  issue: D13
  year: 2003
  article-title: Micropulse lidar observations of tropospheric aerosols over northeastern South Africa during the ARREX and SAFARI 2000 dry season experiments
  publication-title: Journal of Geophysical Research
– volume: 17
  start-page: 1455
  issue: 11
  year: 2000
  end-page: 1468
  article-title: An objective method for deriving atmospheric structure from airborne lidar observations
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 34
  start-page: 1001
  issue: 7
  year: 2000
  end-page: 1027
  article-title: Review and intercomparison of operational methods for the determination of the mixing height
  publication-title: Atmospheric Environment
– volume: 1
  start-page: 23
  year: 2020
  end-page: 42
  article-title: Towards the profiling of the atmospheric boundary layer at European scale—Introducing the COST action PROBE
  publication-title: Bulletin of Atmospheric Science and Technology
– volume: 51
  issue: 8
  year: 2024
  article-title: Observation and reanalysis derived relationships between cloud and land surface fluxes across cumulus and stratiform coupling over the Southern Great Plains
  publication-title: Geophysical Research Letters
– volume: 97
  start-page: 47
  issue: 1
  year: 2000
  end-page: 71
  article-title: Spatial and temporal variability of mixed‐layer depth and entrainment zone thickness
  publication-title: Boundary‐Layer Meteorology
– volume: 6
  start-page: 1825
  issue: 10
  year: 1993
  end-page: 1842
  article-title: Local versus nonlocal boundary‐layer diffusion in a global climate model
  publication-title: Journal of Climate
– volume: 19
  start-page: 431
  issue: 4
  year: 2002
  end-page: 442
  article-title: Full‐time, eye‐safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 43
  start-page: 5268
  issue: 33
  year: 2009
  end-page: 5350
  article-title: Atmospheric composition change—Global and regional air quality
  publication-title: Atmospheric Environment
– year: 2024
– volume: 83
  start-page: 247
  issue: 2
  year: 1997
  end-page: 284
  article-title: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer
  publication-title: Boundary‐Layer Meteorology
– volume: 23
  start-page: 5790
  issue: 21
  year: 2010
  end-page: 5809
  article-title: Observed diurnal cycle climatology of planetary boundary layer height
  publication-title: Journal of Climate
– volume: 90
  start-page: 375
  issue: 3
  year: 1999
  end-page: 396
  article-title: Stratified atmospheric boundary layers
  publication-title: Boundary‐Layer Meteorology
– volume: 39
  start-page: 1233
  issue: 8
  year: 2000
  end-page: 1247
  article-title: Boundary layer height and entrainment zone thickness measured by lidars and wind‐profiling radars
  publication-title: Journal of Applied Meteorology
– volume: 21
  start-page: 17079
  issue: 22
  year: 2021
  end-page: 17097
  article-title: Investigation of near‐global daytime boundary layer height using high‐resolution radiosondes: First results and comparison with ERA5, MERRA‐2, JRA‐55, and NCEP‐2 reanalyses
  publication-title: Atmospheric Chemistry and Physics
– volume: 11
  issue: 13
  year: 2019
  article-title: A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data
  publication-title: Remote Sensing
– volume: 124
  start-page: 117
  issue: 1
  year: 2007
  end-page: 128
  article-title: Retrieval of mixing height and dust concentration with lidar ceilometer
  publication-title: Boundary‐Layer Meteorology
– volume: 5571
  start-page: 364
  year: 2004
  end-page: 374
  article-title: New optical concept for commercial lidar ceilometers scanning the boundary layer
  publication-title: Remote Sensing of Clouds and the Atmosphere IX
– volume: 74
  start-page: 3891
  issue: 12
  year: 2017
  end-page: 3900
  article-title: Exact expression for the lifting condensation level
  publication-title: Journal of the Atmospheric Sciences
– volume: 36
  start-page: 201
  issue: 1–2
  year: 1986
  end-page: 209
  article-title: Scaling the atmospheric boundary layer
  publication-title: Boundary‐Layer Meteorology
– volume: 15
  start-page: 4735
  issue: 16
  year: 2022
  end-page: 4749
  article-title: Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data
  publication-title: Atmospheric Measurement Techniques
– volume: 81
  start-page: 245
  issue: 3–4
  year: 1996
  end-page: 269
  article-title: Evaluation and model impacts of alternative boundary‐layer height formulations
  publication-title: Boundary‐Layer Meteorology
– volume: 4
  start-page: 810
  issue: 6
  year: 2017
  end-page: 833
  article-title: Aerosol and boundary‐layer interactions and impact on air quality
  publication-title: National Science Review
– volume: 227
  start-page: 1
  year: 2019
  end-page: 13
  article-title: Seasonal and diurnal variability of planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results
  publication-title: Atmospheric Research
– volume: 115
  issue: D16
  year: 2010
  article-title: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis
  publication-title: Journal of Geophysical Research
– volume: 79
  start-page: 518
  year: 2013
  end-page: 528
  article-title: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer
  publication-title: Atmospheric Environment
– volume: 59
  year: 2019
  article-title: 100 years of progress in boundary layer meteorology
  publication-title: Meteorological Monographs
– volume: 6
  start-page: 1485
  issue: 6
  year: 2006
  end-page: 1493
  article-title: Mixing height determination by ceilometer
  publication-title: Atmospheric Chemistry and Physics
– volume: 16
  start-page: 13309
  issue: 20
  year: 2016
  end-page: 13319
  article-title: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data
  publication-title: Atmospheric Chemistry and Physics
– year: 1988
– year: 2022
– volume: 16
  start-page: 9951
  issue: 15
  year: 2016
  end-page: 9963
  article-title: Planetary boundary layer height from CALIOP compared to radiosonde over China
  publication-title: Atmospheric Chemistry and Physics
– volume: 20
  start-page: 1092
  issue: 8
  year: 2003
  end-page: 1105
  article-title: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles
  publication-title: Journal of Atmospheric and Oceanic Technology
– year: 2020
– volume: 22
  start-page: 1453
  issue: 2
  year: 2022
  end-page: 1466
  article-title: Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
  publication-title: Atmospheric Chemistry and Physics
– volume: 206
  start-page: 117
  year: 2018
  end-page: 124
  article-title: Two‐wavelength lidar inversion algorithm for determining planetary boundary layer height
  publication-title: Journal of Quantitative Spectroscopy and Radiative Transfer
– volume: 276
  year: 2022
  article-title: A high‐resolution planetary boundary layer height seasonal climatology from GNSS radio occultations
  publication-title: Remote Sensing of Environment
– volume: 237
  year: 2020
  article-title: A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions
  publication-title: Remote Sensing of Environment
– volume: 14
  start-page: 5977
  issue: 9
  year: 2021
  end-page: 5986
  article-title: Evaluation of retrieval methods for planetary boundary layer height based on radiosonde data
  publication-title: Atmospheric Measurement Techniques
– volume: 49
  start-page: 1831
  issue: 9
  year: 2010
  end-page: 1844
  article-title: Evaluation of three planetary boundary layer schemes in the WRF model
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 115
  start-page: 553
  year: 2015
  end-page: 568
  article-title: Influence of the choice of gas‐phase mechanism on predictions of key gaseous pollutants during the AQMEII phase‐2 intercomparison
  publication-title: Atmospheric Environment
– volume: 100
  start-page: 605
  issue: 4
  year: 2019
  end-page: 619
  article-title: How can existing ground‐based profiling instruments improve European weather forecasts?
  publication-title: Bulletin of the American Meteorological Society
SSID ssj0000803454
Score 2.2918198
Snippet Knowledge of the planetary boundary layer height (PBLH) is crucial for various applications in atmospheric and environmental sciences. Lidar measurements are...
SourceID unpaywall
wiley
SourceType Open Access Repository
Publisher
SubjectTerms atmospheric radiation measurement
boundary‐layer heights
lidar
radiosonde
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PS8MwFA86D-pB_IvzHznIThbbJk2T49ycY6wi1cFuI20TmMxudBvizY_gZ_ST-JLWoeDFW0rTR_OSvPzeS_J-CF2GwiMZI64jlUmqLaDEtcsdSZS55xhkpMz2ec-6A9obBsMq4GbuwpT5IVYBNzMzrL02E1wm8yrZgMmRaXi_e23X-D_hOtrwAMqYEe7Th1WMBdAQoZYIzfeYcLgIh9XZdxBx_VPANtpc5jP59ionk98w1a4znV20UwFE3Cx7dA-tqXwf1SPAttPChsBxA7cmYwCa9ukAFbHSluUBGwIitYAW4RtLlgSFvgRIjbs2_oljy54FQ2uOO8X0BUfjkr9rrj7fP_pj-ADLBY6qI4a4GUf4ERDpHH7GyMOAFbE9fHOIBp3bp1bXqZgUnJSAi-ekQoFN4yxzE1iTE52FaRaGqc8l1QA4fJ0EijKaJIxrT2hFuZsSRlLGA5GandUjVMunuTpGWBANPmAqdKA5VSJMgsyHhRZwl_FtpKyjxkqTo1mZMWNkd7p9MTIqf85KldfRlVXzn5W--2XUu4vbARgJ7-R_1U_RFrygJgrrsTNUWxRLdQ7wYZFc2DHyBSlkvFM
  priority: 102
  providerName: Wiley-Blackwell
Title Refining Planetary Boundary Layer Height Retrievals From Micropulse‐Lidar at Multiple ARM Sites Around the World
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JD040207
https://doi.org/10.1029/2023jd040207
UnpaywallVersion publishedVersion
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BOQCHBXZZbZeHfECcNiiJE8c-lkepKopQdyt1T5Xj2FLZblulqRCc-An8Rn4JYyc8hQS3sWRbo4wVf_PwfAB7iQhoxqjvSW2baguUuPG5J6m27xzjjJbdPs9Zqxe1-3F_AfYe38K8yt-Hwvrm9DLzrZeTLMISixFx12Cpd37R-Gt54wImPC6S_rMsWFXf_nb5KizPx1N5fSVHo9dQ1N0lzTU4edSiLCH5dzAv0gN186ZB40dqrsOXCkySRmn9DVjQ469Q7yAOnuQuXE72ydFoiKDUjb5B3tXGMUIQS1akC5lfk0NHrITCmUT4TVouVkq6jmkLj-GMNPPJf9IZllxfM31_e3c2xAVEFqRTlSOSRrdDfiN6naEydj-CuJK4Qp1N6DVP_hy1vIp1wVMU3UFPCY3_P84yP8X7OzVZorIkUSGXkUFwEpo01hGL0pRxEwijI-4ryqhiPBbKZmG_Q208GesfQAQ16C8qYWLDIy2SNM5CvJQRo1k_SMo67D9ZZDAtu2sMXFY8FIOXn7QOv5y53p3UPi4nDdqn3WM8HzT4-dl9t2AFh5GN1QZsG2pFPtc7CDKKdBcWw-hitzppD1Jfyf4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHAoHxCrK6gPqiYgkdhz7yFZKaRAqrdRb5CS2VFTSqosQNz6Bb-RLGDuhAokLN0dyRsnYHr8Zj-chdBoKj2SMuI5Upqi2gBbXLnckUeaeY5CRotrnA2v2aKsf9EueU3MXpqgPsQi4mZVh7bVZ4CYgXVYbMEUyDfF369o1DlC4jFYo85jxvnz6uAiyABwi1DKh-R4TDhdhv0x-BxHnPwWsoeo8H8u3Vzkc_sapdqNpbKD1EiHii2JIN9GSyrdQLQJwO5rYGDiu46vhAJCmfdpGk47SluYBGwYiNYNfwpeWLQkabQmYGjdtABR3LH0WzK0pbkxGLzgaFAReU_X5_tEewAtYznBU5hjii06EnwCSTuFjjDwMYBHb7Jsd1GvcdK-aTkml4KQEfDwnFQqMGmeZm8CmnOgsTLMwTH0uqQbE4eskUJTRJGFce0Iryt2UMJIyHojUHK3uoko-ytUewoJocAJToQPNqRJhEmQ-7LQAvIxzI2UN1ReajMdFyYzYHnX7IjYqf84KldfQmVXzn52-xyVu3XauA7AS3v7_up-garMbteP23cP9AVqFTtSEZD12iCqzyVwdAZaYJcd2vnwBamq_vw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSCwHxCrK6gPqiYgkdhz7WFpKKW1VFSr1FjmJLRWVtuoixI1P4Bv5EsZOqEDiws2RHCsZL_NmbL-H0GUoPJIy4jpSGVJtASWuXe5Iosw9xyAlGdtnm9V7tNEP-rnOqbkLk_FDLBNuZmbY9dpMcDVJdc42YEgyjfB3o-qaAChcRWs0AGdoqJ1pZ5lkAThEqFVC8z0mHC7Cfn74HZq4_tnAFtpYjCby7VUOh79xqnU0tR20nSNEXM66dBetqNEeKrYA3I6nNgeOS7gyHADStE_7aNpV2so8YKNApObwS_jGqiVBoSkBU-O6TYDirpXPgrE1w7Xp-AW3BpmA10x9vn80B_AClnPcys8Y4nK3hR8Bks7gY0x7GMAitqdvDlCvdvtUqTu5lIKTEIjxnEQoWNQ4S90YnHKs0zBJwzDxuaQaEIev40BRRuOYce0JrSh3E8JIwnggErO1eogKo_FIHSEsiIYgMBE60JwqEcZB6oOnBeBlghspi6i0tGQ0ySgzIrvV7YvImPw5zUxeRFfWzH9W-u6XqHHXrQawSnjH_6t-gdY71VrUvG8_nKBNqENNRtZjp6gwny7UGUCJeXxuh8sXdBm_Tg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTuMwEB6x5cByYFl2VxQW5APiRFASJ4597NKWqqIIFSp1T5Xj2FKX0qI0FYITj8Az7pMwdsKvVmJvY8m2Rhkr_ubH8wHsJSKgGaO-J7Vtqi1Q4sbnnqTavnOMM1p2-zxlnUHUHcbDJdh7egvzJn8fCuub0z-Zb72c5BMssxgRdw2WB6dnjd-WNy5gwuMiGb7IglX17e-Xr8LKYnotb2_kZPIWirq7pP0FWk9alCUkl4eLIj1Ud-8aNH6k5jqsVWCSNErrf4UlPd2Aeg9x8Cx34XKyT44mYwSlbvQN8r42jhGCWLIiXcj8lvxyxEoonEiE36TjYqWk75i28BjOSTufXZHeuOT6muu_9w8nY1xAZEF6VTkiafR75BzR6xyVsfsRxJXEFep8h0G7dXHU8SrWBU9RdAc9JTT-_zjL_BTv79RkicqSRIVcRgbBSWjSWEcsSlPGTSCMjrivKKOK8Vgom4X9AbXpbKo3gQhq0F9UwsSGR1okaZyFeCkjRrN-kJR12H-2yOi67K4xclnxUIxef9I6HDhz_XNSt1lOGnWP-008HzTY-t99t-EzDiMbqw3YT6gV-ULvIMgo0t3qjD0CnITJJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Refining+Planetary+Boundary+Layer+Height+Retrievals+From+Micropulse%E2%80%90Lidar+at+Multiple+ARM+Sites+Around+the+World&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Rold%C3%A1n%E2%80%90Henao%2C+Natalia&rft.au=Su%2C+Tianning&rft.au=Li%2C+Zhanqing&rft.date=2024-07-16&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=129&rft.issue=13&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023JD040207&rft.externalDBID=10.1029%252F2023JD040207&rft.externalDocID=JGRD59631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon