Pyramid‐Textured Antireflective Silicon Surface In Graphene Oxide/Single‐Wall Carbon Nanotube–Silicon Heterojunction Solar Cells

Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result,...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental materials (Hoboken, N.J.) Vol. 1; no. 4; pp. 232 - 240
Main Authors Yu, LePing, Batmunkh, Munkhbayar, Dadkhah, Mahnaz, Shearer, Cameron J., Shapter, Joseph G.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text
ISSN2575-0356
2575-0356
DOI10.1002/eem2.12020

Cover

Abstract Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area. Adding a pyramidal structure to the Si under the carbon nanotube (CNT) layer in a CNT‐Si solar cell has been shown to dramatically improve the device performance. This work also explores in detail the conformational deposition of the film and its consequence to performance.
AbstractList Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area. Adding a pyramidal structure to the Si under the carbon nanotube (CNT) layer in a CNT‐Si solar cell has been shown to dramatically improve the device performance. This work also explores in detail the conformational deposition of the film and its consequence to performance.
Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area.
Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area.
Author Shapter, Joseph G.
Batmunkh, Munkhbayar
Dadkhah, Mahnaz
Yu, LePing
Shearer, Cameron J.
Author_xml – sequence: 1
  givenname: LePing
  surname: Yu
  fullname: Yu, LePing
  organization: Flinders University
– sequence: 2
  givenname: Munkhbayar
  surname: Batmunkh
  fullname: Batmunkh, Munkhbayar
  organization: University of Queensland
– sequence: 3
  givenname: Mahnaz
  surname: Dadkhah
  fullname: Dadkhah, Mahnaz
  organization: Flinders University
– sequence: 4
  givenname: Cameron J.
  surname: Shearer
  fullname: Shearer, Cameron J.
  organization: The University of Adelaide
– sequence: 5
  givenname: Joseph G.
  orcidid: 0000-0002-4000-2751
  surname: Shapter
  fullname: Shapter, Joseph G.
  email: j.shapter@uq.edu.au
  organization: University of Queensland
BookMark eNp9kMtKAzEUhoMoWKsbn2DAnVB7krm1SynVCtUKVVwOuZxoSpqpmRm1O1euBd_QJzG1CiLiKofw_d_h_Dtk05UOCdmncEQBWBdxzo4oAwYbpMXSPO1AnGabP-ZtsldVMwgw0Dih_RZ5uVx6Pjfq_fn1Cp_qxqOKjl1tPGqLsjYPGE2NNbJ00bTxmkuMzlx06vniDh1GkyejsDs17tZiUNxwa6MB9yLgF9yVdSPC99u3YYQ1-nLWuCBeCUvLfTRAa6tdsqW5rXDv622T65Ph1WDUGU9OzwbH446McwYdoSVoJrXQkCkNuVYiy1iqRE-lfVRK90GmiIJqLZIkpzFPWC6p4tDr5akUcZscrL0LX943WNXFrGy8CysLlvagD3kMEKjDNSV9WVWhimLhzZz7ZUGhWFVdrKouPqsOMPyCpan56sDac2P_jtB15NFYXP4jL4bDc7bOfAAiNpgI
CitedBy_id crossref_primary_10_1149_1945_7111_ac3a28
crossref_primary_10_1002_celc_202100385
crossref_primary_10_1002_admi_202100977
crossref_primary_10_1016_j_mser_2022_100711
crossref_primary_10_1021_acsaem_9b01050
crossref_primary_10_3390_app10010287
crossref_primary_10_1016_j_apsusc_2020_145275
crossref_primary_10_1002_adfm_202000484
crossref_primary_10_1002_aenm_201903261
crossref_primary_10_1002_solr_201900147
crossref_primary_10_1021_acsaem_2c00047
crossref_primary_10_1103_PhysRevA_110_023522
crossref_primary_10_1002_aenm_202002880
Cites_doi 10.1063/1.122345
10.1016/S0927-0248(00)00414-1
10.1016/j.solmat.2013.01.037
10.1016/j.surfcoat.2012.01.025
10.1109/JPHOTOV.2016.2601947
10.1364/AO.56.005013
10.1039/C6TA07100G
10.1038/srep00884
10.1002/solr.201600026
10.1016/j.nanoen.2016.12.042
10.1021/nn1006368
10.1016/j.carbon.2017.02.042
10.1002/cnma.201400005
10.1109/PVSC.1993.347043
10.1016/j.nanoen.2017.02.003
10.1063/1.4937224
10.1039/c3sm27455a
10.3762/bjnano.7.141
10.1021/acsenergylett.7b00015
10.1002/polb.23410
10.1002/adma.201200055
10.1016/j.carbon.2016.01.099
10.1016/j.renene.2015.01.058
10.1039/C7TA08445E
10.1109/JPHOTOV.2014.2352151
10.1063/1.1352557
10.1016/j.nanoen.2016.11.051
10.1155/2013/716012
10.1063/1.339189
10.1038/s41598-017-02874-y
10.1039/C5RA09739H
10.1002/aelm.201600516
10.1063/1.3573829
10.2351/1.4849715
10.1149/1.2086277
10.1038/srep22967
10.1002/pip.892
10.1016/j.apsusc.2017.02.193
10.1039/C7TA01782K
10.1038/nenergy.2017.32
10.1021/acs.chemrev.6b00179
10.1021/nn100343f
10.1016/j.solener.2015.06.014
10.1038/srep04792
10.1016/j.jallcom.2017.05.001
10.1021/am3028734
10.1088/0957-4484/27/18/185401
10.1002/adma.201601925
10.1109/16.791985
10.1002/pip.2186
10.1016/j.solmat.2017.06.024
10.1016/j.solener.2015.03.019
10.1002/aenm.201600095
10.1016/j.carbon.2016.12.050
10.1002/cssc.201500169
10.1021/nl048435y
10.1109/JPHOTOV.2016.2528408
10.3390/nano6030052
10.1039/C3TA14625A
10.1103/PhysRevB.61.R2468
10.1016/0927-0248(92)90126-A
10.1002/pssb.201100106
ContentType Journal Article
Copyright 2018 Zhengzhou University
Copyright_xml – notice: 2018 Zhengzhou University
DBID AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
DOI 10.1002/eem2.12020
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2575-0356
EndPage 240
ExternalDocumentID 10_1002_eem2_12020
EEM212020
Genre article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP150101354; DP160101301
GroupedDBID 0R~
1OC
24P
ACCMX
ACXQS
ALMA_UNASSIGNED_HOLDINGS
AVUZU
EBS
EJD
OK1
WIN
AAYXX
CITATION
7SR
7ST
8FD
C1K
JG9
SOI
ID FETCH-LOGICAL-c3720-bfc0f2cfbf06df07fdb6625db8d59eddf90c5eeb1ffb44713a427c1da08875cb3
IEDL.DBID 24P
ISSN 2575-0356
IngestDate Mon Jun 30 12:04:51 EDT 2025
Thu Apr 24 22:57:44 EDT 2025
Tue Jul 01 01:03:04 EDT 2025
Wed Jan 22 16:59:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3720-bfc0f2cfbf06df07fdb6625db8d59eddf90c5eeb1ffb44713a427c1da08875cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4000-2751
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12020
PQID 2580907300
PQPubID 5251211
PageCount 9
ParticipantIDs proquest_journals_2580907300
crossref_primary_10_1002_eem2_12020
crossref_citationtrail_10_1002_eem2_12020
wiley_primary_10_1002_eem2_12020_EEM212020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Energy & environmental materials (Hoboken, N.J.)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 78
2017; 7
2017; 715
2017; 1
2017; 2
2017; 3
2013; 21
1999; 46
2004; 4
2016; 101
2014; 26
2011; 98
2015; 107
2001; 89
2013; 5
2017; 114
2017; 116
2013; 9
2011; 248
2017; 407
2017; 31
2014; 4
2014; 2
1990; 137
2013; 2013
2017; 33
2017; 32
2000; 61
2013; 113
2016; 116
2013; 231
2014; 52
2012; 24
2010; 4
2009; 17
2015; 1
2001; 70
2015; 5
2012
2017; 173
1993
2017; 29
2015; 8
2016; 6
2016; 7
2012; 2
1987; 62
2015; 115
2017; 56
2016
2015
1992; 26
2015; 118
1998; 73
2016; 27
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 1
  start-page: 1600026
  year: 2017
  publication-title: Solar RRL
– volume: 6
  start-page: 1456
  year: 2016
  publication-title: IEEE J. Photovolt
– volume: 17
  start-page: 183
  year: 2009
  publication-title: Prog. Photovoltaics
– volume: 89
  start-page: 4113
  year: 2001
  publication-title: J. Appl. Phys.
– start-page: 252
  year: 1993
  end-page: 255
– volume: 137
  start-page: 3612
  year: 1990
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 2513
  year: 2004
  publication-title: Nano Lett.
– volume: 8
  start-page: 2940
  year: 2015
  publication-title: Chemsuschem
– volume: 6
  start-page: 22967
  year: 2016
  publication-title: Sci. Rep.
– volume: 98
  start-page: 133115
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 248
  start-page: 2668
  year: 2011
  publication-title: Phys. Status Solidi B
– volume: 31
  start-page: 359
  year: 2017
  publication-title: Nano Energy
– start-page: 2952
  year: 2016
  end-page: 2954
– volume: 9
  start-page: 3220
  year: 2013
  publication-title: Soft Matter
– volume: 52
  start-page: 17
  year: 2014
  publication-title: J. Polym. Sci. Part B Polym. Phys.
– volume: 46
  start-page: 1978
  year: 1999
  publication-title: Electron Devices
– volume: 118
  start-page: 592
  year: 2015
  publication-title: Sol. Energy
– volume: 73
  start-page: 1991
  year: 1998
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 225
  year: 2017
  publication-title: Nano Energy
– volume: 4
  start-page: 4792
  year: 2014
  publication-title: Sci. Rep.
– volume: 113
  start-page: 37
  year: 2013
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 115
  start-page: 770
  year: 2015
  publication-title: Sol. Energy
– volume: 78
  start-page: 590
  year: 2015
  publication-title: Renew. Energ.
– volume: 6
  start-page: 52
  year: 2016
  publication-title: Nanomaterials
– volume: 1
  start-page: 115
  year: 2015
  publication-title: ChemNanoMat
– volume: 5
  start-page: 69629
  year: 2015
  publication-title: RSC Adv.
– volume: 2
  start-page: 17032
  year: 2017
  publication-title: Nat. Energy
– volume: 6
  start-page: 1600095
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 107
  start-page: 233506
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: R2468
  year: 2000
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 24247
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 2022
  year: 2013
  publication-title: Mater. Interfaces
– volume: 21
  start-page: 960
  year: 2013
  publication-title: Prog. Photovoltaics
– volume: 3
  start-page: 1600516
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 407
  start-page: 398
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 4806
  year: 2010
  publication-title: ACS Nano
– volume: 7
  start-page: 2658
  year: 2017
  publication-title: Sci. Rep.
– volume: 173
  start-page: 37
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 1710
  year: 2012
  end-page: 1715
– year: 2015
– volume: 26
  start-page: 012010
  year: 2014
  publication-title: J. Laser Appl.
– volume: 116
  start-page: 13413
  year: 2016
  publication-title: Chem. Rev.
– volume: 116
  start-page: 744
  year: 2017
  publication-title: Carbon
– volume: 5
  start-page: 8624
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 688
  year: 2016
  publication-title: IEEE J. Photovolt
– volume: 27
  start-page: 185401
  year: 2016
  publication-title: Nanotechnology
– volume: 2
  start-page: 556
  year: 2017
  publication-title: Acs Energy Lett.
– volume: 715
  start-page: 291
  year: 2017
  publication-title: J. Alloy. Compd.
– volume: 231
  start-page: 447
  year: 2013
  publication-title: Surf. Coat. Technol.
– volume: 70
  start-page: 103
  year: 2001
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2013
  start-page: 716012
  year: 2013
  publication-title: J. Nanomater.
– volume: 2
  start-page: 4140
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 71
  year: 1992
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 2548
  year: 2016
  end-page: 2553
– volume: 62
  start-page: 243
  year: 1987
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 1433
  year: 2014
  publication-title: IEEE J. Photovolt
– volume: 4
  start-page: 2713
  year: 2010
  publication-title: ACS Nano
– volume: 7
  start-page: 1486
  year: 2016
  publication-title: Beilstein J. Nanotech.
– volume: 101
  start-page: 226
  year: 2016
  publication-title: Carbon
– volume: 24
  start-page: 2874
  year: 2012
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1606321
  year: 2017
  publication-title: Adv. Mater.
– volume: 33
  start-page: 436
  year: 2017
  publication-title: Nano Energy
– volume: 56
  start-page: 5013
  year: 2017
  publication-title: Appl. Opt.
– volume: 114
  start-page: 402
  year: 2017
  publication-title: Carbon
– volume: 2
  start-page: 884
  year: 2012
  publication-title: Sci. Rep.
– start-page: 3351
  year: 2016
  end-page: 3355
– volume: 5
  start-page: 285
  year: 2017
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_13_1
  doi: 10.1063/1.122345
– ident: e_1_2_7_54_1
  doi: 10.1016/S0927-0248(00)00414-1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.solmat.2013.01.037
– ident: e_1_2_7_2_1
  doi: 10.1016/j.surfcoat.2012.01.025
– ident: e_1_2_7_58_1
  doi: 10.1109/JPHOTOV.2016.2601947
– ident: e_1_2_7_10_1
  doi: 10.1364/AO.56.005013
– ident: e_1_2_7_34_1
  doi: 10.1039/C6TA07100G
– ident: e_1_2_7_46_1
  doi: 10.1038/srep00884
– ident: e_1_2_7_38_1
  doi: 10.1002/solr.201600026
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2016.12.042
– ident: e_1_2_7_48_1
  doi: 10.1021/nn1006368
– ident: e_1_2_7_3_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbon.2017.02.042
– ident: e_1_2_7_56_1
– ident: e_1_2_7_39_1
  doi: 10.1002/cnma.201400005
– ident: e_1_2_7_17_1
  doi: 10.1109/PVSC.1993.347043
– ident: e_1_2_7_23_1
  doi: 10.1016/j.nanoen.2017.02.003
– ident: e_1_2_7_4_1
  doi: 10.1063/1.4937224
– ident: e_1_2_7_62_1
  doi: 10.1039/c3sm27455a
– ident: e_1_2_7_25_1
  doi: 10.3762/bjnano.7.141
– ident: e_1_2_7_67_1
  doi: 10.1021/acsenergylett.7b00015
– ident: e_1_2_7_5_1
– ident: e_1_2_7_63_1
  doi: 10.1002/polb.23410
– ident: e_1_2_7_64_1
  doi: 10.1002/adma.201200055
– ident: e_1_2_7_28_1
  doi: 10.1016/j.carbon.2016.01.099
– ident: e_1_2_7_20_1
  doi: 10.1016/j.renene.2015.01.058
– ident: e_1_2_7_47_1
  doi: 10.1039/C7TA08445E
– ident: e_1_2_7_7_1
  doi: 10.1109/JPHOTOV.2014.2352151
– ident: e_1_2_7_19_1
  doi: 10.1063/1.1352557
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2016.11.051
– ident: e_1_2_7_57_1
  doi: 10.1155/2013/716012
– ident: e_1_2_7_14_1
  doi: 10.1063/1.339189
– ident: e_1_2_7_11_1
  doi: 10.1038/s41598-017-02874-y
– ident: e_1_2_7_55_1
  doi: 10.1039/C5RA09739H
– ident: e_1_2_7_29_1
  doi: 10.1002/aelm.201600516
– ident: e_1_2_7_44_1
  doi: 10.1063/1.3573829
– ident: e_1_2_7_52_1
  doi: 10.2351/1.4849715
– ident: e_1_2_7_53_1
  doi: 10.1149/1.2086277
– ident: e_1_2_7_61_1
  doi: 10.1038/srep22967
– ident: e_1_2_7_1_1
  doi: 10.1002/pip.892
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apsusc.2017.02.193
– ident: e_1_2_7_36_1
  doi: 10.1039/C7TA01782K
– ident: e_1_2_7_9_1
  doi: 10.1038/nenergy.2017.32
– ident: e_1_2_7_60_1
  doi: 10.1021/acs.chemrev.6b00179
– ident: e_1_2_7_50_1
  doi: 10.1021/nn100343f
– ident: e_1_2_7_40_1
  doi: 10.1016/j.solener.2015.06.014
– ident: e_1_2_7_43_1
  doi: 10.1038/srep04792
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jallcom.2017.05.001
– ident: e_1_2_7_65_1
  doi: 10.1021/am3028734
– ident: e_1_2_7_27_1
  doi: 10.1088/0957-4484/27/18/185401
– ident: e_1_2_7_66_1
  doi: 10.1002/adma.201601925
– ident: e_1_2_7_16_1
  doi: 10.1109/16.791985
– ident: e_1_2_7_68_1
  doi: 10.1002/pip.2186
– ident: e_1_2_7_8_1
  doi: 10.1016/j.solmat.2017.06.024
– ident: e_1_2_7_12_1
  doi: 10.1016/j.solener.2015.03.019
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.201600095
– ident: e_1_2_7_42_1
  doi: 10.1016/j.carbon.2016.12.050
– ident: e_1_2_7_37_1
  doi: 10.1002/cssc.201500169
– ident: e_1_2_7_51_1
  doi: 10.1021/nl048435y
– ident: e_1_2_7_41_1
  doi: 10.1109/JPHOTOV.2016.2528408
– ident: e_1_2_7_26_1
  doi: 10.3390/nano6030052
– ident: e_1_2_7_45_1
  doi: 10.1039/C3TA14625A
– ident: e_1_2_7_49_1
  doi: 10.1103/PhysRevB.61.R2468
– ident: e_1_2_7_18_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_21_1
  doi: 10.1016/0927-0248(92)90126-A
– ident: e_1_2_7_59_1
  doi: 10.1002/pssb.201100106
– ident: e_1_2_7_15_1
SSID ssj0002013419
Score 2.1481402
Snippet Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms antireflection treatment
Carbon
Carbon nanotubes
Control equipment
Electromagnetic absorption
Etching
Graphene
Heterojunctions
Photoelectric effect
Photovoltaic cells
Photovoltaics
Pyramids
Reaction time
Reflectance
Silicon
Solar cells
Title Pyramid‐Textured Antireflective Silicon Surface In Graphene Oxide/Single‐Wall Carbon Nanotube–Silicon Heterojunction Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12020
https://www.proquest.com/docview/2580907300
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_EiiorVWhb0ohC73TyagJdSWqugFtpK8RL2CZU0lbQBvXnyLPgP_SXOJn0oiOAthMkedma-b2bZfIPQCWXQrjHtW36gPcthft3iHhGWdFkDytMAGDq7IHvrdYfO9cgdFdDF8l-YXB9ideBmMiPDa5PgjM9qa9FQpSb0vA69OzTsJajqbRPf1OmtTliA2oxYmZkuBzWJRWzXW-mT0tr685-MtC4zvxerGdt0ttDmokzEzdyv26ig4h301ntJ2GQsP1_fB4CpaaIkbsZzAC0d5biF--MIXBvjfppoJhS-ivGlkaQGRMN3z2Opan3gqkjBEuYIHbdYwsEcMHY6Tzm8_liu0DX3ZKaPQHvGdbhvWmDcUlE020XDTnvQ6lqLOQqWMDNoLK4F0VRoroknNWloyT1oeyT3pRsoKXVAhKsAtLXmDpCVzRzaEHXJDAK5gtt7qBhPY7WPsKoTxTixFSQ-WApfc7vBFdGMa6BCVkany70MxUJk3My6iMJcHpmGZt_DbN_L6Hhl-5RLa_xqVVm6JFyk1yykrk-CTGq_jM4yN_2xQthu39Ds6eA_xodoAyLIz6-uVFBxnqTqCAqQOa9mcVZFpeb98GH4BUDa3GI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSwJREH6EHuoSRUWW1YO6FGw-d9119yiiaakFakiX5f0EY11jXaFunToH_Yf9Jc3bXbUggm6yDHN48-b7ZobxewidmRTaNapcw_WUY1SoWzaYQ7ghbFqF8tQDhk4WZHtOa1i5HtmjbDdH_xcm1YdYDtx0ZiR4rRNcD6RLK9VQKSfmZRmad-jY8zZQKVzwfO1--DBcDlmA3bRemX5gDsoSg1i2s5QoNUsrBz9JaVVpfq9XE8JpbqHNrFLEtTS022hNhjvo7e4lopOx-Hx9HwCsziMpcC2MAbdUkEIX7o8DiG6I-_NIUS5xO8RXWpUaQA3fPo-FLPWBrgIJLvQUHddpxMAcYHYazxl8_lh4aOlVmekjMJ-OHu7rLhjXZRDMdtGw2RjUW0b2lILB9TM0BlOcKJMrpogjFKkqwRzofARzhe1JIZRHuC0Bt5ViFeAri1bMKi8LqkHI5szaQ7lwGsp9hGWZSMqIJSH3wZK7illVJomiTAEb0gI6X5ylzzOdcf3cReCnCsmmr8_dT869gE6Xtk-pusavVsVFSPwsw2a-abvES9T2C-giCdMfHvxGo2smvw7-Y3yC1luDbsfvtHs3h2gDbpObbrIUUS6O5vII6pGYHWe37gt6Qd_h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbyIomK16oJeFGK3eTUBL6W21rdQK-Il7GugElOJLejNk2fBf-gvcTZJWwURvIVlmMPOzvfNLJtvCNmxObZrHAIrCMG3XB5ULeEzaSmP17A8DZGhsweyF367657cerdT5GD0L0yuDzG-cDOZkeG1SfBHBZWJaKjWD_Z-FXt3bNhnkMddbL1m6jfdu-74jgXJzciVmflyWJVYzPH8sUKpXZk4-MlJk0Lze7ma8U1rgcwXhSKt55FdJFM6WSJvVy8pf-ipz9f3a0TVYaoVrScDhC2Ic-SinV6MwU1oZ5gCl5oeJ_TIiFIjptHL557SlQ6yVazRhblEpw2eCjRHlO0PhgKXP0Ye2ualTP8eic8Ej3ZME0wbOo6flkm31bxutK1ikoIlzRQaS4BkYEsQwHwFrAZK-Nj4KBEoL9RKQcikpxG2AYSLdOVw167JquIGgzwpnBUynfQTvUqorjLNBXM0pj5aygCEUxOaAReAZMhLZHe0l5EsZMbNtIs4ygWS7cjse5Tte4lsj20fc3GNX63Ko5BERYI9RbYXsDAT2y-RvSxMf3iIms1zO_ta-4_xFpm9OmxFZ8cXp-tkDg9TkL9jKZPpQTrUG1iNDMRmcei-ADjJ3wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyramid%E2%80%90Textured+Antireflective+Silicon+Surface+In+Graphene+Oxide%2FSingle%E2%80%90Wall+Carbon+Nanotube%E2%80%93Silicon+Heterojunction+Solar+Cells&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Yu%2C+LePing&rft.au=Batmunkh%2C+Munkhbayar&rft.au=Dadkhah%2C+Mahnaz&rft.au=Shearer%2C+Cameron+J.&rft.date=2018-12-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=1&rft.issue=4&rft.spage=232&rft.epage=240&rft_id=info:doi/10.1002%2Feem2.12020&rft.externalDBID=10.1002%252Feem2.12020&rft.externalDocID=EEM212020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon