Pyramid‐Textured Antireflective Silicon Surface In Graphene Oxide/Single‐Wall Carbon Nanotube–Silicon Heterojunction Solar Cells
Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result,...
Saved in:
Published in | Energy & environmental materials (Hoboken, N.J.) Vol. 1; no. 4; pp. 232 - 240 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2575-0356 2575-0356 |
DOI | 10.1002/eem2.12020 |
Cover
Abstract | Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area.
Adding a pyramidal structure to the Si under the carbon nanotube (CNT) layer in a CNT‐Si solar cell has been shown to dramatically improve the device performance. This work also explores in detail the conformational deposition of the film and its consequence to performance. |
---|---|
AbstractList | Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area.
Adding a pyramidal structure to the Si under the carbon nanotube (CNT) layer in a CNT‐Si solar cell has been shown to dramatically improve the device performance. This work also explores in detail the conformational deposition of the film and its consequence to performance. Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area. Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are created on Si surfaces with alkaline solution etching. The extent of pyramid coverage depends directly on the reaction time and as a result, the surface reflectance decreases with reaction time. A floating transfer method is used to fabricate heterojunction solar cells based on graphene oxide‐carbon nanotube and Si heterojunctions. The best device performance (photo current conversion efficiency of 13.01 ± 0.32%, which is much higher than the efficiency of the control devices (10.18 ± 0.33%)) was observed using with cells fabricated with the highest coverage (99.9%) of pyramids on the Si surfaces, which is determined to be a combined effect of reduced surface reflectance and increased effective heterojunction area per unit active area. |
Author | Shapter, Joseph G. Batmunkh, Munkhbayar Dadkhah, Mahnaz Yu, LePing Shearer, Cameron J. |
Author_xml | – sequence: 1 givenname: LePing surname: Yu fullname: Yu, LePing organization: Flinders University – sequence: 2 givenname: Munkhbayar surname: Batmunkh fullname: Batmunkh, Munkhbayar organization: University of Queensland – sequence: 3 givenname: Mahnaz surname: Dadkhah fullname: Dadkhah, Mahnaz organization: Flinders University – sequence: 4 givenname: Cameron J. surname: Shearer fullname: Shearer, Cameron J. organization: The University of Adelaide – sequence: 5 givenname: Joseph G. orcidid: 0000-0002-4000-2751 surname: Shapter fullname: Shapter, Joseph G. email: j.shapter@uq.edu.au organization: University of Queensland |
BookMark | eNp9kMtKAzEUhoMoWKsbn2DAnVB7krm1SynVCtUKVVwOuZxoSpqpmRm1O1euBd_QJzG1CiLiKofw_d_h_Dtk05UOCdmncEQBWBdxzo4oAwYbpMXSPO1AnGabP-ZtsldVMwgw0Dih_RZ5uVx6Pjfq_fn1Cp_qxqOKjl1tPGqLsjYPGE2NNbJ00bTxmkuMzlx06vniDh1GkyejsDs17tZiUNxwa6MB9yLgF9yVdSPC99u3YYQ1-nLWuCBeCUvLfTRAa6tdsqW5rXDv622T65Ph1WDUGU9OzwbH446McwYdoSVoJrXQkCkNuVYiy1iqRE-lfVRK90GmiIJqLZIkpzFPWC6p4tDr5akUcZscrL0LX943WNXFrGy8CysLlvagD3kMEKjDNSV9WVWhimLhzZz7ZUGhWFVdrKouPqsOMPyCpan56sDac2P_jtB15NFYXP4jL4bDc7bOfAAiNpgI |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac3a28 crossref_primary_10_1002_celc_202100385 crossref_primary_10_1002_admi_202100977 crossref_primary_10_1016_j_mser_2022_100711 crossref_primary_10_1021_acsaem_9b01050 crossref_primary_10_3390_app10010287 crossref_primary_10_1016_j_apsusc_2020_145275 crossref_primary_10_1002_adfm_202000484 crossref_primary_10_1002_aenm_201903261 crossref_primary_10_1002_solr_201900147 crossref_primary_10_1021_acsaem_2c00047 crossref_primary_10_1103_PhysRevA_110_023522 crossref_primary_10_1002_aenm_202002880 |
Cites_doi | 10.1063/1.122345 10.1016/S0927-0248(00)00414-1 10.1016/j.solmat.2013.01.037 10.1016/j.surfcoat.2012.01.025 10.1109/JPHOTOV.2016.2601947 10.1364/AO.56.005013 10.1039/C6TA07100G 10.1038/srep00884 10.1002/solr.201600026 10.1016/j.nanoen.2016.12.042 10.1021/nn1006368 10.1016/j.carbon.2017.02.042 10.1002/cnma.201400005 10.1109/PVSC.1993.347043 10.1016/j.nanoen.2017.02.003 10.1063/1.4937224 10.1039/c3sm27455a 10.3762/bjnano.7.141 10.1021/acsenergylett.7b00015 10.1002/polb.23410 10.1002/adma.201200055 10.1016/j.carbon.2016.01.099 10.1016/j.renene.2015.01.058 10.1039/C7TA08445E 10.1109/JPHOTOV.2014.2352151 10.1063/1.1352557 10.1016/j.nanoen.2016.11.051 10.1155/2013/716012 10.1063/1.339189 10.1038/s41598-017-02874-y 10.1039/C5RA09739H 10.1002/aelm.201600516 10.1063/1.3573829 10.2351/1.4849715 10.1149/1.2086277 10.1038/srep22967 10.1002/pip.892 10.1016/j.apsusc.2017.02.193 10.1039/C7TA01782K 10.1038/nenergy.2017.32 10.1021/acs.chemrev.6b00179 10.1021/nn100343f 10.1016/j.solener.2015.06.014 10.1038/srep04792 10.1016/j.jallcom.2017.05.001 10.1021/am3028734 10.1088/0957-4484/27/18/185401 10.1002/adma.201601925 10.1109/16.791985 10.1002/pip.2186 10.1016/j.solmat.2017.06.024 10.1016/j.solener.2015.03.019 10.1002/aenm.201600095 10.1016/j.carbon.2016.12.050 10.1002/cssc.201500169 10.1021/nl048435y 10.1109/JPHOTOV.2016.2528408 10.3390/nano6030052 10.1039/C3TA14625A 10.1103/PhysRevB.61.R2468 10.1016/0927-0248(92)90126-A 10.1002/pssb.201100106 |
ContentType | Journal Article |
Copyright | 2018 Zhengzhou University |
Copyright_xml | – notice: 2018 Zhengzhou University |
DBID | AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
DOI | 10.1002/eem2.12020 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2575-0356 |
EndPage | 240 |
ExternalDocumentID | 10_1002_eem2_12020 EEM212020 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP150101354; DP160101301 |
GroupedDBID | 0R~ 1OC 24P ACCMX ACXQS ALMA_UNASSIGNED_HOLDINGS AVUZU EBS EJD OK1 WIN AAYXX CITATION 7SR 7ST 8FD C1K JG9 SOI |
ID | FETCH-LOGICAL-c3720-bfc0f2cfbf06df07fdb6625db8d59eddf90c5eeb1ffb44713a427c1da08875cb3 |
IEDL.DBID | 24P |
ISSN | 2575-0356 |
IngestDate | Mon Jun 30 12:04:51 EDT 2025 Thu Apr 24 22:57:44 EDT 2025 Tue Jul 01 01:03:04 EDT 2025 Wed Jan 22 16:59:10 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3720-bfc0f2cfbf06df07fdb6625db8d59eddf90c5eeb1ffb44713a427c1da08875cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4000-2751 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eem2.12020 |
PQID | 2580907300 |
PQPubID | 5251211 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2580907300 crossref_primary_10_1002_eem2_12020 crossref_citationtrail_10_1002_eem2_12020 wiley_primary_10_1002_eem2_12020_EEM212020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Energy & environmental materials (Hoboken, N.J.) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 78 2017; 7 2017; 715 2017; 1 2017; 2 2017; 3 2013; 21 1999; 46 2004; 4 2016; 101 2014; 26 2011; 98 2015; 107 2001; 89 2013; 5 2017; 114 2017; 116 2013; 9 2011; 248 2017; 407 2017; 31 2014; 4 2014; 2 1990; 137 2013; 2013 2017; 33 2017; 32 2000; 61 2013; 113 2016; 116 2013; 231 2014; 52 2012; 24 2010; 4 2009; 17 2015; 1 2001; 70 2015; 5 2012 2017; 173 1993 2017; 29 2015; 8 2016; 6 2016; 7 2012; 2 1987; 62 2015; 115 2017; 56 2016 2015 1992; 26 2015; 118 1998; 73 2016; 27 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 1 start-page: 1600026 year: 2017 publication-title: Solar RRL – volume: 6 start-page: 1456 year: 2016 publication-title: IEEE J. Photovolt – volume: 17 start-page: 183 year: 2009 publication-title: Prog. Photovoltaics – volume: 89 start-page: 4113 year: 2001 publication-title: J. Appl. Phys. – start-page: 252 year: 1993 end-page: 255 – volume: 137 start-page: 3612 year: 1990 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 2513 year: 2004 publication-title: Nano Lett. – volume: 8 start-page: 2940 year: 2015 publication-title: Chemsuschem – volume: 6 start-page: 22967 year: 2016 publication-title: Sci. Rep. – volume: 98 start-page: 133115 year: 2011 publication-title: Appl. Phys. Lett. – volume: 248 start-page: 2668 year: 2011 publication-title: Phys. Status Solidi B – volume: 31 start-page: 359 year: 2017 publication-title: Nano Energy – start-page: 2952 year: 2016 end-page: 2954 – volume: 9 start-page: 3220 year: 2013 publication-title: Soft Matter – volume: 52 start-page: 17 year: 2014 publication-title: J. Polym. Sci. Part B Polym. Phys. – volume: 46 start-page: 1978 year: 1999 publication-title: Electron Devices – volume: 118 start-page: 592 year: 2015 publication-title: Sol. Energy – volume: 73 start-page: 1991 year: 1998 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 225 year: 2017 publication-title: Nano Energy – volume: 4 start-page: 4792 year: 2014 publication-title: Sci. Rep. – volume: 113 start-page: 37 year: 2013 publication-title: Sol. Energy Mater. Sol. Cells – volume: 115 start-page: 770 year: 2015 publication-title: Sol. Energy – volume: 78 start-page: 590 year: 2015 publication-title: Renew. Energ. – volume: 6 start-page: 52 year: 2016 publication-title: Nanomaterials – volume: 1 start-page: 115 year: 2015 publication-title: ChemNanoMat – volume: 5 start-page: 69629 year: 2015 publication-title: RSC Adv. – volume: 2 start-page: 17032 year: 2017 publication-title: Nat. Energy – volume: 6 start-page: 1600095 year: 2016 publication-title: Adv. Energy Mater. – volume: 107 start-page: 233506 year: 2015 publication-title: Appl. Phys. Lett. – volume: 61 start-page: R2468 year: 2000 publication-title: Phys. Rev. B – volume: 5 start-page: 24247 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 2022 year: 2013 publication-title: Mater. Interfaces – volume: 21 start-page: 960 year: 2013 publication-title: Prog. Photovoltaics – volume: 3 start-page: 1600516 year: 2017 publication-title: Adv. Electron. Mater. – volume: 407 start-page: 398 year: 2017 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 4806 year: 2010 publication-title: ACS Nano – volume: 7 start-page: 2658 year: 2017 publication-title: Sci. Rep. – volume: 173 start-page: 37 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 1710 year: 2012 end-page: 1715 – year: 2015 – volume: 26 start-page: 012010 year: 2014 publication-title: J. Laser Appl. – volume: 116 start-page: 13413 year: 2016 publication-title: Chem. Rev. – volume: 116 start-page: 744 year: 2017 publication-title: Carbon – volume: 5 start-page: 8624 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 688 year: 2016 publication-title: IEEE J. Photovolt – volume: 27 start-page: 185401 year: 2016 publication-title: Nanotechnology – volume: 2 start-page: 556 year: 2017 publication-title: Acs Energy Lett. – volume: 715 start-page: 291 year: 2017 publication-title: J. Alloy. Compd. – volume: 231 start-page: 447 year: 2013 publication-title: Surf. Coat. Technol. – volume: 70 start-page: 103 year: 2001 publication-title: Sol. Energy Mater. Sol. Cells – volume: 2013 start-page: 716012 year: 2013 publication-title: J. Nanomater. – volume: 2 start-page: 4140 year: 2014 publication-title: J. Mater. Chem. A – volume: 26 start-page: 71 year: 1992 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 2548 year: 2016 end-page: 2553 – volume: 62 start-page: 243 year: 1987 publication-title: J. Appl. Phys. – volume: 4 start-page: 1433 year: 2014 publication-title: IEEE J. Photovolt – volume: 4 start-page: 2713 year: 2010 publication-title: ACS Nano – volume: 7 start-page: 1486 year: 2016 publication-title: Beilstein J. Nanotech. – volume: 101 start-page: 226 year: 2016 publication-title: Carbon – volume: 24 start-page: 2874 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1606321 year: 2017 publication-title: Adv. Mater. – volume: 33 start-page: 436 year: 2017 publication-title: Nano Energy – volume: 56 start-page: 5013 year: 2017 publication-title: Appl. Opt. – volume: 114 start-page: 402 year: 2017 publication-title: Carbon – volume: 2 start-page: 884 year: 2012 publication-title: Sci. Rep. – start-page: 3351 year: 2016 end-page: 3355 – volume: 5 start-page: 285 year: 2017 publication-title: J. Mater. Chem. A – ident: e_1_2_7_13_1 doi: 10.1063/1.122345 – ident: e_1_2_7_54_1 doi: 10.1016/S0927-0248(00)00414-1 – ident: e_1_2_7_22_1 doi: 10.1016/j.solmat.2013.01.037 – ident: e_1_2_7_2_1 doi: 10.1016/j.surfcoat.2012.01.025 – ident: e_1_2_7_58_1 doi: 10.1109/JPHOTOV.2016.2601947 – ident: e_1_2_7_10_1 doi: 10.1364/AO.56.005013 – ident: e_1_2_7_34_1 doi: 10.1039/C6TA07100G – ident: e_1_2_7_46_1 doi: 10.1038/srep00884 – ident: e_1_2_7_38_1 doi: 10.1002/solr.201600026 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2016.12.042 – ident: e_1_2_7_48_1 doi: 10.1021/nn1006368 – ident: e_1_2_7_3_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.carbon.2017.02.042 – ident: e_1_2_7_56_1 – ident: e_1_2_7_39_1 doi: 10.1002/cnma.201400005 – ident: e_1_2_7_17_1 doi: 10.1109/PVSC.1993.347043 – ident: e_1_2_7_23_1 doi: 10.1016/j.nanoen.2017.02.003 – ident: e_1_2_7_4_1 doi: 10.1063/1.4937224 – ident: e_1_2_7_62_1 doi: 10.1039/c3sm27455a – ident: e_1_2_7_25_1 doi: 10.3762/bjnano.7.141 – ident: e_1_2_7_67_1 doi: 10.1021/acsenergylett.7b00015 – ident: e_1_2_7_5_1 – ident: e_1_2_7_63_1 doi: 10.1002/polb.23410 – ident: e_1_2_7_64_1 doi: 10.1002/adma.201200055 – ident: e_1_2_7_28_1 doi: 10.1016/j.carbon.2016.01.099 – ident: e_1_2_7_20_1 doi: 10.1016/j.renene.2015.01.058 – ident: e_1_2_7_47_1 doi: 10.1039/C7TA08445E – ident: e_1_2_7_7_1 doi: 10.1109/JPHOTOV.2014.2352151 – ident: e_1_2_7_19_1 doi: 10.1063/1.1352557 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2016.11.051 – ident: e_1_2_7_57_1 doi: 10.1155/2013/716012 – ident: e_1_2_7_14_1 doi: 10.1063/1.339189 – ident: e_1_2_7_11_1 doi: 10.1038/s41598-017-02874-y – ident: e_1_2_7_55_1 doi: 10.1039/C5RA09739H – ident: e_1_2_7_29_1 doi: 10.1002/aelm.201600516 – ident: e_1_2_7_44_1 doi: 10.1063/1.3573829 – ident: e_1_2_7_52_1 doi: 10.2351/1.4849715 – ident: e_1_2_7_53_1 doi: 10.1149/1.2086277 – ident: e_1_2_7_61_1 doi: 10.1038/srep22967 – ident: e_1_2_7_1_1 doi: 10.1002/pip.892 – ident: e_1_2_7_32_1 doi: 10.1016/j.apsusc.2017.02.193 – ident: e_1_2_7_36_1 doi: 10.1039/C7TA01782K – ident: e_1_2_7_9_1 doi: 10.1038/nenergy.2017.32 – ident: e_1_2_7_60_1 doi: 10.1021/acs.chemrev.6b00179 – ident: e_1_2_7_50_1 doi: 10.1021/nn100343f – ident: e_1_2_7_40_1 doi: 10.1016/j.solener.2015.06.014 – ident: e_1_2_7_43_1 doi: 10.1038/srep04792 – ident: e_1_2_7_30_1 doi: 10.1016/j.jallcom.2017.05.001 – ident: e_1_2_7_65_1 doi: 10.1021/am3028734 – ident: e_1_2_7_27_1 doi: 10.1088/0957-4484/27/18/185401 – ident: e_1_2_7_66_1 doi: 10.1002/adma.201601925 – ident: e_1_2_7_16_1 doi: 10.1109/16.791985 – ident: e_1_2_7_68_1 doi: 10.1002/pip.2186 – ident: e_1_2_7_8_1 doi: 10.1016/j.solmat.2017.06.024 – ident: e_1_2_7_12_1 doi: 10.1016/j.solener.2015.03.019 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.201600095 – ident: e_1_2_7_42_1 doi: 10.1016/j.carbon.2016.12.050 – ident: e_1_2_7_37_1 doi: 10.1002/cssc.201500169 – ident: e_1_2_7_51_1 doi: 10.1021/nl048435y – ident: e_1_2_7_41_1 doi: 10.1109/JPHOTOV.2016.2528408 – ident: e_1_2_7_26_1 doi: 10.3390/nano6030052 – ident: e_1_2_7_45_1 doi: 10.1039/C3TA14625A – ident: e_1_2_7_49_1 doi: 10.1103/PhysRevB.61.R2468 – ident: e_1_2_7_18_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_21_1 doi: 10.1016/0927-0248(92)90126-A – ident: e_1_2_7_59_1 doi: 10.1002/pssb.201100106 – ident: e_1_2_7_15_1 |
SSID | ssj0002013419 |
Score | 2.1481402 |
Snippet | Antireflection layers are commonly used in photovoltaics to increase light absorption and therefore increase maximum photocurrent. Here, pyramid structures are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 232 |
SubjectTerms | antireflection treatment Carbon Carbon nanotubes Control equipment Electromagnetic absorption Etching Graphene Heterojunctions Photoelectric effect Photovoltaic cells Photovoltaics Pyramids Reaction time Reflectance Silicon Solar cells |
Title | Pyramid‐Textured Antireflective Silicon Surface In Graphene Oxide/Single‐Wall Carbon Nanotube–Silicon Heterojunction Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12020 https://www.proquest.com/docview/2580907300 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5Ke_EiiorVWhb0ohC73TyagJdSWqugFtpK8RL2CZU0lbQBvXnyLPgP_SXOJn0oiOAthMkedma-b2bZfIPQCWXQrjHtW36gPcthft3iHhGWdFkDytMAGDq7IHvrdYfO9cgdFdDF8l-YXB9ideBmMiPDa5PgjM9qa9FQpSb0vA69OzTsJajqbRPf1OmtTliA2oxYmZkuBzWJRWzXW-mT0tr685-MtC4zvxerGdt0ttDmokzEzdyv26ig4h301ntJ2GQsP1_fB4CpaaIkbsZzAC0d5biF--MIXBvjfppoJhS-ivGlkaQGRMN3z2Opan3gqkjBEuYIHbdYwsEcMHY6Tzm8_liu0DX3ZKaPQHvGdbhvWmDcUlE020XDTnvQ6lqLOQqWMDNoLK4F0VRoroknNWloyT1oeyT3pRsoKXVAhKsAtLXmDpCVzRzaEHXJDAK5gtt7qBhPY7WPsKoTxTixFSQ-WApfc7vBFdGMa6BCVkany70MxUJk3My6iMJcHpmGZt_DbN_L6Hhl-5RLa_xqVVm6JFyk1yykrk-CTGq_jM4yN_2xQthu39Ds6eA_xodoAyLIz6-uVFBxnqTqCAqQOa9mcVZFpeb98GH4BUDa3GI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSwJREH6EHuoSRUWW1YO6FGw-d9119yiiaakFakiX5f0EY11jXaFunToH_Yf9Jc3bXbUggm6yDHN48-b7ZobxewidmRTaNapcw_WUY1SoWzaYQ7ghbFqF8tQDhk4WZHtOa1i5HtmjbDdH_xcm1YdYDtx0ZiR4rRNcD6RLK9VQKSfmZRmad-jY8zZQKVzwfO1--DBcDlmA3bRemX5gDsoSg1i2s5QoNUsrBz9JaVVpfq9XE8JpbqHNrFLEtTS022hNhjvo7e4lopOx-Hx9HwCsziMpcC2MAbdUkEIX7o8DiG6I-_NIUS5xO8RXWpUaQA3fPo-FLPWBrgIJLvQUHddpxMAcYHYazxl8_lh4aOlVmekjMJ-OHu7rLhjXZRDMdtGw2RjUW0b2lILB9TM0BlOcKJMrpogjFKkqwRzofARzhe1JIZRHuC0Bt5ViFeAri1bMKi8LqkHI5szaQ7lwGsp9hGWZSMqIJSH3wZK7illVJomiTAEb0gI6X5ylzzOdcf3cReCnCsmmr8_dT869gE6Xtk-pusavVsVFSPwsw2a-abvES9T2C-giCdMfHvxGo2smvw7-Y3yC1luDbsfvtHs3h2gDbpObbrIUUS6O5vII6pGYHWe37gt6Qd_h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQbyIomK16oJeFGK3eTUBL6W21rdQK-Il7GugElOJLejNk2fBf-gvcTZJWwURvIVlmMPOzvfNLJtvCNmxObZrHAIrCMG3XB5ULeEzaSmP17A8DZGhsweyF367657cerdT5GD0L0yuDzG-cDOZkeG1SfBHBZWJaKjWD_Z-FXt3bNhnkMddbL1m6jfdu-74jgXJzciVmflyWJVYzPH8sUKpXZk4-MlJk0Lze7ma8U1rgcwXhSKt55FdJFM6WSJvVy8pf-ipz9f3a0TVYaoVrScDhC2Ic-SinV6MwU1oZ5gCl5oeJ_TIiFIjptHL557SlQ6yVazRhblEpw2eCjRHlO0PhgKXP0Ye2ualTP8eic8Ej3ZME0wbOo6flkm31bxutK1ikoIlzRQaS4BkYEsQwHwFrAZK-Nj4KBEoL9RKQcikpxG2AYSLdOVw167JquIGgzwpnBUynfQTvUqorjLNBXM0pj5aygCEUxOaAReAZMhLZHe0l5EsZMbNtIs4ygWS7cjse5Tte4lsj20fc3GNX63Ko5BERYI9RbYXsDAT2y-RvSxMf3iIms1zO_ta-4_xFpm9OmxFZ8cXp-tkDg9TkL9jKZPpQTrUG1iNDMRmcei-ADjJ3wo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyramid%E2%80%90Textured+Antireflective+Silicon+Surface+In+Graphene+Oxide%2FSingle%E2%80%90Wall+Carbon+Nanotube%E2%80%93Silicon+Heterojunction+Solar+Cells&rft.jtitle=Energy+%26+environmental+materials+%28Hoboken%2C+N.J.%29&rft.au=Yu%2C+LePing&rft.au=Batmunkh%2C+Munkhbayar&rft.au=Dadkhah%2C+Mahnaz&rft.au=Shearer%2C+Cameron+J.&rft.date=2018-12-01&rft.issn=2575-0356&rft.eissn=2575-0356&rft.volume=1&rft.issue=4&rft.spage=232&rft.epage=240&rft_id=info:doi/10.1002%2Feem2.12020&rft.externalDBID=10.1002%252Feem2.12020&rft.externalDocID=EEM212020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-0356&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-0356&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-0356&client=summon |