Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm

The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further cla...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 15; no. 24; p. 16896
Main Authors Zhou, Fei-Yu, Tao, Ning-Jing, Zhang, Yu-Rong, Yuan, Wei-Bin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su152416896

Cover

Abstract The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further clarified. In this study, multi-layer perceptron (MLP) and support vector machine (SVM) were used to establish the prediction model for chloride diffusion coefficient in concrete, especially for the solid waste concrete. A database of concrete pore parameters and chloride diffusion coefficients was generated by the algorithm based on the Gaussian mixture model (GMM-VSG). It is shown that both MLP and SVM could make good predictions, in which the data using the normalization preprocessing method was more suitable for the MLP model, and the data using the standardization preprocessing method was more adapted to the SVM model.
AbstractList The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further clarified. In this study, multi-layer perceptron (MLP) and support vector machine (SVM) were used to establish the prediction model for chloride diffusion coefficient in concrete, especially for the solid waste concrete. A database of concrete pore parameters and chloride diffusion coefficients was generated by the algorithm based on the Gaussian mixture model (GMM-VSG). It is shown that both MLP and SVM could make good predictions, in which the data using the normalization preprocessing method was more suitable for the MLP model, and the data using the standardization preprocessing method was more adapted to the SVM model.
Audience Academic
Author Zhang, Yu-Rong
Tao, Ning-Jing
Yuan, Wei-Bin
Zhou, Fei-Yu
Author_xml – sequence: 1
  givenname: Fei-Yu
  surname: Zhou
  fullname: Zhou, Fei-Yu
– sequence: 2
  givenname: Ning-Jing
  surname: Tao
  fullname: Tao, Ning-Jing
– sequence: 3
  givenname: Yu-Rong
  surname: Zhang
  fullname: Zhang, Yu-Rong
– sequence: 4
  givenname: Wei-Bin
  surname: Yuan
  fullname: Yuan, Wei-Bin
BookMark eNqFkU1PGzEQhq2KSqXAqX_AUk8IAvY6642PIeVLSgUqba8r7-w4MXLs1PYK-Pc4CgdASB0fZjx63tGrma9kxwePhHzj7EQIxU7TwOtqzOVEyU9kt2INH3FWs51X9RdykNI9KyEEV1zuknAbsbeQbfA0GDpbuhBtj_SHNWZIm-4soDEWLPpM7ebrIWJGeqYT9rQAPzUsrUc6Rx299QuqfU__2pgH7eidXq0d0qlblLl5udonn412CQ9e8h75c3H-e3Y1mt9cXs-m8xGIhueR4caIToDqWC8BBJMdKA4oGi27WnJV1bIGwTtolDHKNF0le0QNnerEpDZijxxv5w5-rZ8etHPtOtqVjk8tZ-1mX-2rfRX8-xZfx_BvwJTb-zBEXxy2lWJjJcaTSVWoky210A5b603IUUN5Pa4slGsYW_rTpin8WAhWBIdvBIXJ-JgXekipvb779ZY92rIQQ0oRzX8M83c02Kw3ZyyWrPtQ8wx4qKjE
CitedBy_id crossref_primary_10_1016_j_cscm_2024_e03270
crossref_primary_10_1016_j_jobe_2024_110627
Cites_doi 10.1016/j.cemconcomp.2009.09.005
10.1016/j.knosys.2010.12.010
10.1016/j.cemconres.2020.106164
10.1016/j.egyr.2022.10.358
10.1016/S0950-0618(00)00058-1
10.1016/j.commatsci.2022.111475
10.1016/j.jenvman.2023.118961
10.1016/j.chroma.2022.462823
10.1016/j.conbuildmat.2019.117266
10.1016/j.conbuildmat.2021.126217
10.1007/s11431-011-4733-1
10.1016/j.applthermaleng.2016.10.042
10.1145/3035918.3054782
10.1007/BF00994018
10.1016/j.conbuildmat.2022.127103
10.1080/19648189.2022.2028191
10.1038/scientificamerican0393-66
10.1016/j.jenvman.2022.114869
10.1016/j.mtcomm.2022.104461
10.1080/19648189.2019.1665108
10.1016/j.conbuildmat.2010.07.032
10.9790/0661-16518894
10.1037/h0042519
10.1007/s13369-012-0182-9
10.1016/j.conbuildmat.2005.02.005
10.1016/j.conbuildmat.2020.121082
10.1016/j.dss.2023.113996
10.1016/j.mtcomm.2022.104137
10.1016/j.petsci.2021.09.034
10.1016/j.patcog.2020.107649
10.1016/j.istruc.2022.08.023
10.4028/www.scientific.net/AMR.368-373.2425
10.1016/S0008-8846(02)00712-3
10.1016/j.commatsci.2021.110721
10.1016/j.conbuildmat.2022.129232
10.1016/j.apenergy.2017.04.007
10.1016/j.scitotenv.2019.135339
10.1155/2021/8883142
10.1016/j.resconrec.2020.105381
10.1016/j.conbuildmat.2023.133237
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/su152416896
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su152416896
A779344330
10_3390_su152416896
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c371t-f1ff3b3c9b0d6cc306bc91ce37a6b56192565c31bc79ff9f7b26deeacb9b385f3
IEDL.DBID UNPAY
ISSN 2071-1050
IngestDate Tue Aug 19 23:21:46 EDT 2025
Mon Jun 30 14:54:14 EDT 2025
Mon Oct 20 17:20:42 EDT 2025
Thu Oct 16 16:17:11 EDT 2025
Thu Oct 16 04:33:33 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-f1ff3b3c9b0d6cc306bc91ce37a6b56192565c31bc79ff9f7b26deeacb9b385f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2071-1050/15/24/16896/pdf?version=1702655385
PQID 2904934882
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su152416896
proquest_journals_2904934882
gale_infotracacademiconefile_A779344330
gale_incontextgauss_ISR_A779344330
crossref_primary_10_3390_su152416896
crossref_citationtrail_10_3390_su152416896
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Vu (ref_50) 2022; 311
Liu (ref_49) 2010; 3
Nguyen (ref_51) 2021; 167
Sang (ref_29) 2021; 18
Garre (ref_52) 2020; 7
Shen (ref_40) 2022; 211
Lin (ref_1) 2011; 368–373
Liu (ref_17) 2021; 268
Wernert (ref_14) 2022; 1665
Zhang (ref_32) 2022; 320
Wang (ref_22) 1997; 8
Gao (ref_38) 2022; 41
Jin (ref_10) 2022; 17
Gao (ref_37) 2021; 40
Dunker (ref_5) 1993; 266
Santos (ref_47) 2021; 10
ref_24
Evangelista (ref_4) 2010; 32
Basheer (ref_3) 2001; 15
ref_21
Wakjira (ref_44) 2022; 33
Shazali (ref_12) 2012; 37
Wakjira (ref_43) 2022; 44
Moon (ref_8) 2006; 20
Gao (ref_15) 2021; 199
Mumc (ref_46) 2023; 9
Tran (ref_18) 2022; 328
Cai (ref_16) 2020; 136
Hong (ref_6) 2006; 10
Akande (ref_25) 2014; 16
Zhang (ref_33) 2019; 28
Jin (ref_20) 2022; 32
Zhang (ref_39) 2022; 26
Chen (ref_2) 2012; 55
ref_31
Niu (ref_23) 2017; 111
Lin (ref_30) 2023; 172
Zhang (ref_45) 2023; 49
Zhang (ref_36) 2021; 2021
Rosenblatt (ref_41) 1958; 65
Cortes (ref_42) 1995; 20
Luo (ref_9) 2003; 33
Qi (ref_11) 2023; 405
Golafshani (ref_53) 2020; 232
Zhang (ref_34) 2022; 26
Gong (ref_27) 2017; 197
Liu (ref_19) 2022; 356
Zhang (ref_35) 2020; 117
Yang (ref_26) 2011; 24
Dong (ref_28) 2023; 346
Zhang (ref_7) 2011; 25
ref_48
Weiss (ref_13) 2020; 704
References_xml – volume: 32
  start-page: 9
  year: 2010
  ident: ref_4
  article-title: Durability performance of concrete made with fine recycled concrete aggregates
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.09.005
– volume: 24
  start-page: 740
  year: 2011
  ident: ref_26
  article-title: A novel virtual sample generation method based on Gaussian distribution
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2010.12.010
– volume: 136
  start-page: 106164
  year: 2020
  ident: ref_16
  article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106164
– volume: 9
  start-page: 66
  year: 2023
  ident: ref_46
  article-title: The effect of the marble dust to the efficiency of photovoltaic panels efficiency by SVM
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.358
– volume: 15
  start-page: 93
  year: 2001
  ident: ref_3
  article-title: Assessment of the durability of concrete from its permeation properties: A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/S0950-0618(00)00058-1
– volume: 40
  start-page: 214
  year: 2021
  ident: ref_37
  article-title: Permeability dependency of fly ash concrete in natural tidal environment
  publication-title: J. Hydroelectr. Eng.
– volume: 211
  start-page: 111475
  year: 2022
  ident: ref_40
  article-title: A virtual sample generation algorithm supporting machine learning with a small-sample dataset: A case study for rubber materials
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2022.111475
– volume: 41
  start-page: 50
  year: 2022
  ident: ref_38
  article-title: Stable time and mechanism of concrete permeability in natural tidal environment
  publication-title: J. Hydroelectr. Eng.
– volume: 346
  start-page: 118961
  year: 2023
  ident: ref_28
  article-title: Virtual sample generation empowers machine learning-based effluent prediction in constructed wetlands
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.118961
– volume: 1665
  start-page: 462823
  year: 2022
  ident: ref_14
  article-title: Impact of surface diffusion on transport through porous materials
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2022.462823
– volume: 232
  start-page: 117266
  year: 2020
  ident: ref_53
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 320
  start-page: 126217
  year: 2022
  ident: ref_32
  article-title: Effects of additives on water permeability and chloride diffusivity of concrete under marine tidal environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126217
– volume: 3
  start-page: 122
  year: 2010
  ident: ref_49
  article-title: BP neural network input layer data normalization study
  publication-title: Mech. Eng. Autom.
– volume: 55
  start-page: 970
  year: 2012
  ident: ref_2
  article-title: Chloride ion ingress distribution within an alternate wetting-drying marine environment area
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-011-4733-1
– volume: 111
  start-page: 1353
  year: 2017
  ident: ref_23
  article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.042
– ident: ref_31
– ident: ref_48
– ident: ref_21
  doi: 10.1145/3035918.3054782
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_42
  article-title: Support-Vector Networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 328
  start-page: 127103
  year: 2022
  ident: ref_18
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127103
– volume: 26
  start-page: 8477
  year: 2022
  ident: ref_34
  article-title: Time dependent correlation of permeability of fly ash concrete under natural tidal environment
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2022.2028191
– volume: 266
  start-page: 66
  year: 1993
  ident: ref_5
  article-title: Why America’s bridges are crumbling
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0393-66
– volume: 311
  start-page: 114869
  year: 2022
  ident: ref_50
  article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114869
– volume: 33
  start-page: 104461
  year: 2022
  ident: ref_44
  article-title: FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104461
– volume: 26
  start-page: 501
  year: 2022
  ident: ref_39
  article-title: Time-varying relationship between pore structures and chloride diffusivity of concrete under the simulated tidal environment
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2019.1665108
– volume: 7
  start-page: 100147
  year: 2020
  ident: ref_52
  article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty
  publication-title: Oper. Res. Perspect.
– volume: 25
  start-page: 608
  year: 2011
  ident: ref_7
  article-title: Pore structure and chloride permeability of concrete containing nano-particles for pavement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.07.032
– ident: ref_24
– volume: 16
  start-page: 88
  year: 2014
  ident: ref_25
  article-title: Performance comparison of SVM and ANN in predicting compressive strength of concrete
  publication-title: IOSR J. Comput. Eng.
  doi: 10.9790/0661-16518894
– volume: 28
  start-page: 9
  year: 2019
  ident: ref_33
  article-title: Time dependent microstructure evolution of fly ash concrete in the natural tidal environment
  publication-title: J. Nat. Disasters
– volume: 65
  start-page: 386
  year: 1958
  ident: ref_41
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 37
  start-page: 469
  year: 2012
  ident: ref_12
  article-title: Transport modeling of chlorides with binding in concrete
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-012-0182-9
– volume: 20
  start-page: 725
  year: 2006
  ident: ref_8
  article-title: Relationship between average pore diameter and chloride diffusivity in various concretes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.02.005
– volume: 268
  start-page: 121082
  year: 2021
  ident: ref_17
  article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121082
– volume: 172
  start-page: 113996
  year: 2023
  ident: ref_30
  article-title: Improved learning performance for small datasets in high dimensions by new dual-net model for non-linear interpolation virtual sample generation
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2023.113996
– volume: 32
  start-page: 104137
  year: 2022
  ident: ref_20
  article-title: Prediction of the chloride diffusivity of recycled aggregate concrete using artificial neural network
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104137
– volume: 18
  start-page: 1662
  year: 2021
  ident: ref_29
  article-title: Machine learning seismic reservoir prediction method based on virtual sample generation
  publication-title: Pet. Sci.
  doi: 10.1016/j.petsci.2021.09.034
– volume: 17
  start-page: e01168
  year: 2022
  ident: ref_10
  article-title: Developing a model for chloride transport through concrete considering the key factors
  publication-title: Case Stud. Constr. Mater.
– volume: 10
  start-page: 107649
  year: 2021
  ident: ref_47
  article-title: Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107649
– volume: 117
  start-page: 27
  year: 2020
  ident: ref_35
  article-title: Similarity of chloride diffusivity of concrete exposed to different environments
  publication-title: ACI Mater. J.
– volume: 44
  start-page: 947
  year: 2022
  ident: ref_43
  article-title: Explainable machine learning based efficient prediction tool for lateral cyclic response of post-tensioned base rocking steel bridge piers
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.08.023
– volume: 368–373
  start-page: 2425
  year: 2011
  ident: ref_1
  article-title: Experimental study on frost resistance durability and service life prediction of normal cement concrete
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.368-373.2425
– volume: 49
  start-page: 205
  year: 2023
  ident: ref_45
  article-title: Prediction of chloride concentration in fly ash concrete based on deep learning
  publication-title: J. Beijing Univ. Technol.
– volume: 33
  start-page: 1
  year: 2003
  ident: ref_9
  article-title: Study of chloride binding and diffusion in GGBS concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00712-3
– volume: 199
  start-page: 110721
  year: 2021
  ident: ref_15
  article-title: Molecular dynamics study of melting, diffusion, and sintering of cementite chromia core–shell particles
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110721
– volume: 10
  start-page: 10
  year: 2006
  ident: ref_6
  article-title: Development and difficulty of forecast for corrosion and durability of concrete
  publication-title: Concrete
– volume: 356
  start-page: 129232
  year: 2022
  ident: ref_19
  article-title: Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.129232
– volume: 197
  start-page: 405
  year: 2017
  ident: ref_27
  article-title: A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.04.007
– volume: 704
  start-page: 135339
  year: 2020
  ident: ref_13
  article-title: A microdestructive method using dye-coated-probe to visualize capillary, diffusion and evaporation zones in porous materials
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135339
– volume: 8
  start-page: 41
  year: 1997
  ident: ref_22
  article-title: A neural network initialization method based on machine learning
  publication-title: Comput. Res. Dev.
– volume: 2021
  start-page: 8883142
  year: 2021
  ident: ref_36
  article-title: Exploring the emerging evolution trends of probabilistic service life prediction of reinforced concrete structures in the chloride environment by scientometric analysis
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2021/8883142
– volume: 167
  start-page: 105381
  year: 2021
  ident: ref_51
  article-title: Development of machine learning–based models to forecast solid waste generation in residential areas: A case study from Vietnam
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.105381
– volume: 405
  start-page: 133237
  year: 2023
  ident: ref_11
  article-title: Numerical simulation on diffusion reaction behavior of concrete under sulfate chloride coupled attack
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.133237
SSID ssj0000331916
Score 2.3395412
Snippet The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 16896
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Chloride
Concrete
Corrosion
Energy consumption
Machine learning
Neural networks
Neurons
Porous materials
Reinforced concrete
Support vector machines
Variables
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEB9q-lB9EK2WRltZpCIIh3e39_kgJU1TqtBQWit9O_YzDcS7mLsg_vfOXPbSVKSPB3O7y87sfOzO_AbgKMtlFFspPBX4AgMUHnl5pmMvNjrTUmcpb3ssXYyT85vo2218uwXjrhaG0io7ndgqal0puiP_HOboy3IUt_B4_sujrlH0utq10BCutYL-0kKMPYHtkJCxerB9MhpfXq1vXXyOcwfJqlCPY7yP_EYLhl5JRrD9G6bpXwX9DHaW5Vz8-S1msw0LdPYCnjvXkQ1WvH4JW6bchZ2usrjehb3RfdUaErpjW7-C6nJB7zHEA1ZZNryjtDtt2OnU2iVdl7FhZVosCfyTTemzRG-yMewEjZxmSHDRJl0a5vBYJ0yUmv2YLqj8hF0Lwhhmg9kEx23ufr6Gm7PR9-G55zoteIqnQePZwFouucqlrxOlMIyQKg-U4alIZEwxFvp9igdSpbm1uU1lmGiDOlvmkmex5XvQK6vS7AOzJlG4sQYDSxGpTOQyFmGQ-Eql3IRc9eFTt8mFcjDk1A1jVmA4QhwpNjjSh6M18XyFvvF_svfErYLwLEpKmJmIZV0XX6-vikGKCiiKOPf78NER2QonVMLVH-CyCQLrAeVBx_XCnei6uJe_PnxYS8Jjq3rz-DBv4Sm1rl-lxhxAr1kszSE6OI1856T2L__b_A8
  priority: 102
  providerName: ProQuest
Title Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm
URI https://www.proquest.com/docview/2904934882
https://www.mdpi.com/2071-1050/15/24/16896/pdf?version=1702655385
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9mHwwMdgWmFUFhpCQsqaxHE-nlBXOgbSqmqjaDxFtmN3FSWpmgQEfz3n1BnbhBASj5EutpM7390vufsZ4CBORMC04I70XI4AhQZOEmfMYSqLM5HFEW3OWDqdhCez4MMFa6sJS1tWiVB80ThpH-Mf-gnmDjw28IOBF8ZJOFhl-s03-zHJixBDMNy0bAu6IcN0vAPd2WQ6_GwOlWtv3_TlUYT3qF4MWEEz0I1IdNsf34PtOl_xH9_5cnkt4Bw_ANEudVNn8uWwrsSh_HmLxfG_nuUh3LfpKBlu7OcR3FH5Dmy33crlDuyOf3fCoaB1BeVjKKZr84_H6JUUmowuTSlfpsjbhda1mYmMCtXwU-CdZGEuc8xQK0WOMHBmBAVOm0JORSzH65zwPCOfFmvT0kLOueEtJsPlHMetLr8-gdnx-OPoxLGnNziSRl7laE9rKqhMhJuFUiI0ETLxpKIRDwUzuA1zSUk9IaNE60RHwg8zhXFAJALfgaa70MmLXO0B0SqUqD2FYJUHMuaJYNz3QlfKiCqfyh68bjWZSkttbk7YWKYIcYza02tq78HBlfBqw-jxZ7EXxiRSw5GRmyKcOa_LMn1_fpYOI3RqQUCp24NXVkgXOKHktqcBl21otW5I7remlVovUaZ-gviMogv1e_Dyytz-tqqn_yj3DO76mI01VYfBPnSqda2eY_ZUiT50j8aT6Vkftt5deH27W34BKOMWtw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hA4IChUBAqsUCskJAvb69ceKpSmqRraRFUfqDd3n2mkYIc4UdU_x29jNlmnAaHeeow0Wds745lv1jPfAOxkTESxEdyTgc8xQaGRxzIVe7FWmRIqS-l8xlKvnxxdRt-v4qs1-F33wtiyytonzh21KqU9I_8aMsSyFM0t_Db-5dmpUfbraj1Cg7vRCmpvTjHmGjuO9d0tpnDVXvcA9b0bhoedi_aR56YMeJKmwdQzgTFUUMmErxIpEUILyQKpacoTEdv8AjGPpIGQKTOGmVSEidLorwQTNIsNxXWfwEZEI4bJ38Z-p396tjzl8Sk-a5AsGgMpZT7aF0ZMREGZHROwEgr_DQjPoDErxvzulo9GKxHv8AU8d1CVtBa29RLWdLEJjbqTudqErc59lxwKOjdRvYLydGK__1idk9KQ9o0t81OaHAyNmdnjOdIu9Zy7Av9JhvZngeh1qsk-BlVFUKA3L_LUxPG_DggvFPkxnNh2F3LOLacxaY0GuO705udruHyUPd-C9aIs9BsgRicSN1ZjIssjmXEmYh4GiS9lSnVIZRO-1JucS0d7bqdvjHJMf6xG8hWNNGFnKTxesH38X-yT1VZu-TMKW6Az4LOqyrvnZ3krRYcXRZT6TfjshEyJF5Tc9TvgbVvKrb8kt2ut586DVPm9vTdhd2kJD93V24eX-QiNo4veSX7S7R-_g6chgrVFWc42rE8nM_0ewdVUfHAWTOD6sV-aP3grOzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJKIPRlFiEXVjICYmF-5u7_OBmNKPUJGmATG8HftZmpS72mtD-Bf9q5y97pVqDG88XjK3t7czOx-7M78B2EtSHoSaM0d4LsMAhQZOmsjQCZVMJJdJTKseS6f96Pgi-HYZXq7B77oWxqRV1jqxUtSyEOaM_MBP0ZelKG7-gbZpEYN29-vkl2M6SJmb1rqdBrNtFuRhBTdmizxO1N0thnPlYa-NvN_3_W7nR-vYsR0HHEFjb-ZoT2vKqUi5KyMh0J3mIvWEojGLeGhiDfR_BPW4iFOtUx1zP5IKdRdPOU1CTXHcJ7BhLr9QSWwcdfqDs-WJj0vxv71oUSRIaeqirKH1RI8oMS0DVsziv8bhOWzO8wm7u2Xj8Yr1676EF9ZtJc2FnL2CNZVvwWZd1VxuwXbnvmIOCa3KKF9DMZiauyDDf1Jo0ro2KX9SkfZI67k5qiOtQlU4FvgmGZnHHD3ZmSJHaGAlQYLTKuFTEYsFOyQsl-TnaGpKX8g5M_jGpDke4riz65s3cPEoa74N63mRq7dAtIoELqzCoJYFImEpD5nvRa4QMVU-FQ34Ui9yJiwEuunEMc4wFDIcyVY40oC9JfFkgfzxf7JPhluZwdLIjVQO2bwss975WdaMUfkFAaVuAz5bIl3gBwWztQ84bQO_9Rflbs31zGqTMruX_QbsLyXhoVntPDzMR3iKmyf73uufvINnPvptiwydXVifTefqPfpZM_7BCjCBq8feM38AybI_Xw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0-lB98KNaelplkYogpJdks0n2Sc6zpQotxXqiT2E_r4dnclwSRf96Z3Ob2hYRwcfAZHeTmZ2ZXzLzW4C9nMuEWSkCFYUCAQpNAp5rFjCjcy11ntHujKXjk_Romrz7xPpqwtqXVSIUn3dOOsb4h36ChaOIjeJkFKU5T0dLbV998x-TogwxBMNNy27CRsowHR_AxvTkdPzZHSrX377uy6MI71G9GLCSbqArkei6P74Nm225FD--i8XiUsA5vAuyX-q6zuTLftvIffXzGovjfz3LPbjj01EyXtvPfbhhyi3Y7LuV6y3YPvjdCYeC3hXUD6A6Xbl_PE6vpLJkcu5K-bQhb-bWtm4mMqlMx0-Bd5K5uywxQ20MeY2BUxMUOO4KOQ3xHK8zIkpNPs5XrqWFnAnHW0zGixmO25x_fQjTw4MPk6PAn94QKJpFTWAja6mkistQp0ohNJGKR8rQTKSSOdyGuaSikVQZt5bbTMapNhgHJJf4DizdhkFZlWYHiDWpQu0ZBKsiUbngkok4SkOlMmpiqobwstdkoTy1uTthY1EgxHFqLy6pfQh7F8LLNaPHn8WeOZMoHEdG6YpwZqKt6-Lt2ftinKFTSxJKwyG88EK2wgmV8D0NuGxHq3VFcrc3rcJ7ibqIOeIzii40HsLzC3P726oe_aPcY7gVYza2rrvZhUGzas0TzJ4a-dTvj18AShQr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Chloride+Diffusion+Coefficient+in+Concrete+Based+on+Machine+Learning+and+Virtual+Sample+Algorithm&rft.jtitle=Sustainability&rft.au=Zhou%2C+Fei-Yu&rft.au=Tao%2C+Ning-Jing&rft.au=Zhang%2C+Yu-Rong&rft.au=Yuan%2C+Wei-Bin&rft.date=2023-12-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=24&rft.spage=16896&rft_id=info:doi/10.3390%2Fsu152416896&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su152416896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon