Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm
The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further cla...
Saved in:
| Published in | Sustainability Vol. 15; no. 24; p. 16896 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2071-1050 2071-1050 |
| DOI | 10.3390/su152416896 |
Cover
| Abstract | The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further clarified. In this study, multi-layer perceptron (MLP) and support vector machine (SVM) were used to establish the prediction model for chloride diffusion coefficient in concrete, especially for the solid waste concrete. A database of concrete pore parameters and chloride diffusion coefficients was generated by the algorithm based on the Gaussian mixture model (GMM-VSG). It is shown that both MLP and SVM could make good predictions, in which the data using the normalization preprocessing method was more suitable for the MLP model, and the data using the standardization preprocessing method was more adapted to the SVM model. |
|---|---|
| AbstractList | The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict chloride diffusion by machine learning (ML), but the relationship between microstructure and macroparameter of concrete need to be further clarified. In this study, multi-layer perceptron (MLP) and support vector machine (SVM) were used to establish the prediction model for chloride diffusion coefficient in concrete, especially for the solid waste concrete. A database of concrete pore parameters and chloride diffusion coefficients was generated by the algorithm based on the Gaussian mixture model (GMM-VSG). It is shown that both MLP and SVM could make good predictions, in which the data using the normalization preprocessing method was more suitable for the MLP model, and the data using the standardization preprocessing method was more adapted to the SVM model. |
| Audience | Academic |
| Author | Zhang, Yu-Rong Tao, Ning-Jing Yuan, Wei-Bin Zhou, Fei-Yu |
| Author_xml | – sequence: 1 givenname: Fei-Yu surname: Zhou fullname: Zhou, Fei-Yu – sequence: 2 givenname: Ning-Jing surname: Tao fullname: Tao, Ning-Jing – sequence: 3 givenname: Yu-Rong surname: Zhang fullname: Zhang, Yu-Rong – sequence: 4 givenname: Wei-Bin surname: Yuan fullname: Yuan, Wei-Bin |
| BookMark | eNqFkU1PGzEQhq2KSqXAqX_AUk8IAvY6642PIeVLSgUqba8r7-w4MXLs1PYK-Pc4CgdASB0fZjx63tGrma9kxwePhHzj7EQIxU7TwOtqzOVEyU9kt2INH3FWs51X9RdykNI9KyEEV1zuknAbsbeQbfA0GDpbuhBtj_SHNWZIm-4soDEWLPpM7ebrIWJGeqYT9rQAPzUsrUc6Rx299QuqfU__2pgH7eidXq0d0qlblLl5udonn412CQ9e8h75c3H-e3Y1mt9cXs-m8xGIhueR4caIToDqWC8BBJMdKA4oGi27WnJV1bIGwTtolDHKNF0le0QNnerEpDZijxxv5w5-rZ8etHPtOtqVjk8tZ-1mX-2rfRX8-xZfx_BvwJTb-zBEXxy2lWJjJcaTSVWoky210A5b603IUUN5Pa4slGsYW_rTpin8WAhWBIdvBIXJ-JgXekipvb779ZY92rIQQ0oRzX8M83c02Kw3ZyyWrPtQ8wx4qKjE |
| CitedBy_id | crossref_primary_10_1016_j_cscm_2024_e03270 crossref_primary_10_1016_j_jobe_2024_110627 |
| Cites_doi | 10.1016/j.cemconcomp.2009.09.005 10.1016/j.knosys.2010.12.010 10.1016/j.cemconres.2020.106164 10.1016/j.egyr.2022.10.358 10.1016/S0950-0618(00)00058-1 10.1016/j.commatsci.2022.111475 10.1016/j.jenvman.2023.118961 10.1016/j.chroma.2022.462823 10.1016/j.conbuildmat.2019.117266 10.1016/j.conbuildmat.2021.126217 10.1007/s11431-011-4733-1 10.1016/j.applthermaleng.2016.10.042 10.1145/3035918.3054782 10.1007/BF00994018 10.1016/j.conbuildmat.2022.127103 10.1080/19648189.2022.2028191 10.1038/scientificamerican0393-66 10.1016/j.jenvman.2022.114869 10.1016/j.mtcomm.2022.104461 10.1080/19648189.2019.1665108 10.1016/j.conbuildmat.2010.07.032 10.9790/0661-16518894 10.1037/h0042519 10.1007/s13369-012-0182-9 10.1016/j.conbuildmat.2005.02.005 10.1016/j.conbuildmat.2020.121082 10.1016/j.dss.2023.113996 10.1016/j.mtcomm.2022.104137 10.1016/j.petsci.2021.09.034 10.1016/j.patcog.2020.107649 10.1016/j.istruc.2022.08.023 10.4028/www.scientific.net/AMR.368-373.2425 10.1016/S0008-8846(02)00712-3 10.1016/j.commatsci.2021.110721 10.1016/j.conbuildmat.2022.129232 10.1016/j.apenergy.2017.04.007 10.1016/j.scitotenv.2019.135339 10.1155/2021/8883142 10.1016/j.resconrec.2020.105381 10.1016/j.conbuildmat.2023.133237 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/su152416896 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | 10.3390/su152416896 A779344330 10_3390_su152416896 |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c371t-f1ff3b3c9b0d6cc306bc91ce37a6b56192565c31bc79ff9f7b26deeacb9b385f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2071-1050 |
| IngestDate | Tue Aug 19 23:21:46 EDT 2025 Mon Jun 30 14:54:14 EDT 2025 Mon Oct 20 17:20:42 EDT 2025 Thu Oct 16 16:17:11 EDT 2025 Thu Oct 16 04:33:33 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-f1ff3b3c9b0d6cc306bc91ce37a6b56192565c31bc79ff9f7b26deeacb9b385f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2071-1050/15/24/16896/pdf?version=1702655385 |
| PQID | 2904934882 |
| PQPubID | 2032327 |
| ParticipantIDs | unpaywall_primary_10_3390_su152416896 proquest_journals_2904934882 gale_infotracacademiconefile_A779344330 gale_incontextgauss_ISR_A779344330 crossref_primary_10_3390_su152416896 crossref_citationtrail_10_3390_su152416896 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Vu (ref_50) 2022; 311 Liu (ref_49) 2010; 3 Nguyen (ref_51) 2021; 167 Sang (ref_29) 2021; 18 Garre (ref_52) 2020; 7 Shen (ref_40) 2022; 211 Lin (ref_1) 2011; 368–373 Liu (ref_17) 2021; 268 Wernert (ref_14) 2022; 1665 Zhang (ref_32) 2022; 320 Wang (ref_22) 1997; 8 Gao (ref_38) 2022; 41 Jin (ref_10) 2022; 17 Gao (ref_37) 2021; 40 Dunker (ref_5) 1993; 266 Santos (ref_47) 2021; 10 ref_24 Evangelista (ref_4) 2010; 32 Basheer (ref_3) 2001; 15 ref_21 Wakjira (ref_44) 2022; 33 Shazali (ref_12) 2012; 37 Wakjira (ref_43) 2022; 44 Moon (ref_8) 2006; 20 Gao (ref_15) 2021; 199 Mumc (ref_46) 2023; 9 Tran (ref_18) 2022; 328 Cai (ref_16) 2020; 136 Hong (ref_6) 2006; 10 Akande (ref_25) 2014; 16 Zhang (ref_33) 2019; 28 Jin (ref_20) 2022; 32 Zhang (ref_39) 2022; 26 Chen (ref_2) 2012; 55 ref_31 Niu (ref_23) 2017; 111 Lin (ref_30) 2023; 172 Zhang (ref_45) 2023; 49 Zhang (ref_36) 2021; 2021 Rosenblatt (ref_41) 1958; 65 Cortes (ref_42) 1995; 20 Luo (ref_9) 2003; 33 Qi (ref_11) 2023; 405 Golafshani (ref_53) 2020; 232 Zhang (ref_34) 2022; 26 Gong (ref_27) 2017; 197 Liu (ref_19) 2022; 356 Zhang (ref_35) 2020; 117 Yang (ref_26) 2011; 24 Dong (ref_28) 2023; 346 Zhang (ref_7) 2011; 25 ref_48 Weiss (ref_13) 2020; 704 |
| References_xml | – volume: 32 start-page: 9 year: 2010 ident: ref_4 article-title: Durability performance of concrete made with fine recycled concrete aggregates publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.09.005 – volume: 24 start-page: 740 year: 2011 ident: ref_26 article-title: A novel virtual sample generation method based on Gaussian distribution publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2010.12.010 – volume: 136 start-page: 106164 year: 2020 ident: ref_16 article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106164 – volume: 9 start-page: 66 year: 2023 ident: ref_46 article-title: The effect of the marble dust to the efficiency of photovoltaic panels efficiency by SVM publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.10.358 – volume: 15 start-page: 93 year: 2001 ident: ref_3 article-title: Assessment of the durability of concrete from its permeation properties: A review publication-title: Constr. Build. Mater. doi: 10.1016/S0950-0618(00)00058-1 – volume: 40 start-page: 214 year: 2021 ident: ref_37 article-title: Permeability dependency of fly ash concrete in natural tidal environment publication-title: J. Hydroelectr. Eng. – volume: 211 start-page: 111475 year: 2022 ident: ref_40 article-title: A virtual sample generation algorithm supporting machine learning with a small-sample dataset: A case study for rubber materials publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2022.111475 – volume: 41 start-page: 50 year: 2022 ident: ref_38 article-title: Stable time and mechanism of concrete permeability in natural tidal environment publication-title: J. Hydroelectr. Eng. – volume: 346 start-page: 118961 year: 2023 ident: ref_28 article-title: Virtual sample generation empowers machine learning-based effluent prediction in constructed wetlands publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.118961 – volume: 1665 start-page: 462823 year: 2022 ident: ref_14 article-title: Impact of surface diffusion on transport through porous materials publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2022.462823 – volume: 232 start-page: 117266 year: 2020 ident: ref_53 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 320 start-page: 126217 year: 2022 ident: ref_32 article-title: Effects of additives on water permeability and chloride diffusivity of concrete under marine tidal environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126217 – volume: 3 start-page: 122 year: 2010 ident: ref_49 article-title: BP neural network input layer data normalization study publication-title: Mech. Eng. Autom. – volume: 55 start-page: 970 year: 2012 ident: ref_2 article-title: Chloride ion ingress distribution within an alternate wetting-drying marine environment area publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-011-4733-1 – volume: 111 start-page: 1353 year: 2017 ident: ref_23 article-title: Investigation of ANN and SVM based on limited samples for performance and emissions prediction of a CRDI-assisted marine diesel engine publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.042 – ident: ref_31 – ident: ref_48 – ident: ref_21 doi: 10.1145/3035918.3054782 – volume: 20 start-page: 273 year: 1995 ident: ref_42 article-title: Support-Vector Networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 328 start-page: 127103 year: 2022 ident: ref_18 article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127103 – volume: 26 start-page: 8477 year: 2022 ident: ref_34 article-title: Time dependent correlation of permeability of fly ash concrete under natural tidal environment publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2022.2028191 – volume: 266 start-page: 66 year: 1993 ident: ref_5 article-title: Why America’s bridges are crumbling publication-title: Sci. Am. doi: 10.1038/scientificamerican0393-66 – volume: 311 start-page: 114869 year: 2022 ident: ref_50 article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.114869 – volume: 33 start-page: 104461 year: 2022 ident: ref_44 article-title: FAI: Fast, accurate, and intelligent approach and prediction tool for flexural capacity of FRP-RC beams based on super-learner machine learning model publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104461 – volume: 26 start-page: 501 year: 2022 ident: ref_39 article-title: Time-varying relationship between pore structures and chloride diffusivity of concrete under the simulated tidal environment publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2019.1665108 – volume: 7 start-page: 100147 year: 2020 ident: ref_52 article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty publication-title: Oper. Res. Perspect. – volume: 25 start-page: 608 year: 2011 ident: ref_7 article-title: Pore structure and chloride permeability of concrete containing nano-particles for pavement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.07.032 – ident: ref_24 – volume: 16 start-page: 88 year: 2014 ident: ref_25 article-title: Performance comparison of SVM and ANN in predicting compressive strength of concrete publication-title: IOSR J. Comput. Eng. doi: 10.9790/0661-16518894 – volume: 28 start-page: 9 year: 2019 ident: ref_33 article-title: Time dependent microstructure evolution of fly ash concrete in the natural tidal environment publication-title: J. Nat. Disasters – volume: 65 start-page: 386 year: 1958 ident: ref_41 article-title: The perceptron: A probabilistic model for information storage and organization in the brain publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 37 start-page: 469 year: 2012 ident: ref_12 article-title: Transport modeling of chlorides with binding in concrete publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-012-0182-9 – volume: 20 start-page: 725 year: 2006 ident: ref_8 article-title: Relationship between average pore diameter and chloride diffusivity in various concretes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2005.02.005 – volume: 268 start-page: 121082 year: 2021 ident: ref_17 article-title: Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121082 – volume: 172 start-page: 113996 year: 2023 ident: ref_30 article-title: Improved learning performance for small datasets in high dimensions by new dual-net model for non-linear interpolation virtual sample generation publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2023.113996 – volume: 32 start-page: 104137 year: 2022 ident: ref_20 article-title: Prediction of the chloride diffusivity of recycled aggregate concrete using artificial neural network publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104137 – volume: 18 start-page: 1662 year: 2021 ident: ref_29 article-title: Machine learning seismic reservoir prediction method based on virtual sample generation publication-title: Pet. Sci. doi: 10.1016/j.petsci.2021.09.034 – volume: 17 start-page: e01168 year: 2022 ident: ref_10 article-title: Developing a model for chloride transport through concrete considering the key factors publication-title: Case Stud. Constr. Mater. – volume: 10 start-page: 107649 year: 2021 ident: ref_47 article-title: Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107649 – volume: 117 start-page: 27 year: 2020 ident: ref_35 article-title: Similarity of chloride diffusivity of concrete exposed to different environments publication-title: ACI Mater. J. – volume: 44 start-page: 947 year: 2022 ident: ref_43 article-title: Explainable machine learning based efficient prediction tool for lateral cyclic response of post-tensioned base rocking steel bridge piers publication-title: Structures doi: 10.1016/j.istruc.2022.08.023 – volume: 368–373 start-page: 2425 year: 2011 ident: ref_1 article-title: Experimental study on frost resistance durability and service life prediction of normal cement concrete publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.368-373.2425 – volume: 49 start-page: 205 year: 2023 ident: ref_45 article-title: Prediction of chloride concentration in fly ash concrete based on deep learning publication-title: J. Beijing Univ. Technol. – volume: 33 start-page: 1 year: 2003 ident: ref_9 article-title: Study of chloride binding and diffusion in GGBS concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00712-3 – volume: 199 start-page: 110721 year: 2021 ident: ref_15 article-title: Molecular dynamics study of melting, diffusion, and sintering of cementite chromia core–shell particles publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110721 – volume: 10 start-page: 10 year: 2006 ident: ref_6 article-title: Development and difficulty of forecast for corrosion and durability of concrete publication-title: Concrete – volume: 356 start-page: 129232 year: 2022 ident: ref_19 article-title: Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.129232 – volume: 197 start-page: 405 year: 2017 ident: ref_27 article-title: A Monte Carlo and PSO based virtual sample generation method for enhancing the energy prediction and energy optimization on small data problem: An empirical study of petrochemical industries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.04.007 – volume: 704 start-page: 135339 year: 2020 ident: ref_13 article-title: A microdestructive method using dye-coated-probe to visualize capillary, diffusion and evaporation zones in porous materials publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135339 – volume: 8 start-page: 41 year: 1997 ident: ref_22 article-title: A neural network initialization method based on machine learning publication-title: Comput. Res. Dev. – volume: 2021 start-page: 8883142 year: 2021 ident: ref_36 article-title: Exploring the emerging evolution trends of probabilistic service life prediction of reinforced concrete structures in the chloride environment by scientometric analysis publication-title: Adv. Civ. Eng. doi: 10.1155/2021/8883142 – volume: 167 start-page: 105381 year: 2021 ident: ref_51 article-title: Development of machine learning–based models to forecast solid waste generation in residential areas: A case study from Vietnam publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.105381 – volume: 405 start-page: 133237 year: 2023 ident: ref_11 article-title: Numerical simulation on diffusion reaction behavior of concrete under sulfate chloride coupled attack publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.133237 |
| SSID | ssj0000331916 |
| Score | 2.3395412 |
| Snippet | The durability degradation of reinforced concrete was mainly caused by chloride ingress. Former studies have used component parameters of concrete to predict... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 16896 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Chloride Concrete Corrosion Energy consumption Machine learning Neural networks Neurons Porous materials Reinforced concrete Support vector machines Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEB9q-lB9EK2WRltZpCIIh3e39_kgJU1TqtBQWit9O_YzDcS7mLsg_vfOXPbSVKSPB3O7y87sfOzO_AbgKMtlFFspPBX4AgMUHnl5pmMvNjrTUmcpb3ssXYyT85vo2218uwXjrhaG0io7ndgqal0puiP_HOboy3IUt_B4_sujrlH0utq10BCutYL-0kKMPYHtkJCxerB9MhpfXq1vXXyOcwfJqlCPY7yP_EYLhl5JRrD9G6bpXwX9DHaW5Vz8-S1msw0LdPYCnjvXkQ1WvH4JW6bchZ2usrjehb3RfdUaErpjW7-C6nJB7zHEA1ZZNryjtDtt2OnU2iVdl7FhZVosCfyTTemzRG-yMewEjZxmSHDRJl0a5vBYJ0yUmv2YLqj8hF0Lwhhmg9kEx23ufr6Gm7PR9-G55zoteIqnQePZwFouucqlrxOlMIyQKg-U4alIZEwxFvp9igdSpbm1uU1lmGiDOlvmkmex5XvQK6vS7AOzJlG4sQYDSxGpTOQyFmGQ-Eql3IRc9eFTt8mFcjDk1A1jVmA4QhwpNjjSh6M18XyFvvF_svfErYLwLEpKmJmIZV0XX6-vikGKCiiKOPf78NER2QonVMLVH-CyCQLrAeVBx_XCnei6uJe_PnxYS8Jjq3rz-DBv4Sm1rl-lxhxAr1kszSE6OI1856T2L__b_A8 priority: 102 providerName: ProQuest |
| Title | Prediction of Chloride Diffusion Coefficient in Concrete Based on Machine Learning and Virtual Sample Algorithm |
| URI | https://www.proquest.com/docview/2904934882 https://www.mdpi.com/2071-1050/15/24/16896/pdf?version=1702655385 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-x9mHwwMdgWmFUFhpCQsqaxHE-nlBXOgbSqmqjaDxFtmN3FSWpmgQEfz3n1BnbhBASj5EutpM7390vufsZ4CBORMC04I70XI4AhQZOEmfMYSqLM5HFEW3OWDqdhCez4MMFa6sJS1tWiVB80ThpH-Mf-gnmDjw28IOBF8ZJOFhl-s03-zHJixBDMNy0bAu6IcN0vAPd2WQ6_GwOlWtv3_TlUYT3qF4MWEEz0I1IdNsf34PtOl_xH9_5cnkt4Bw_ANEudVNn8uWwrsSh_HmLxfG_nuUh3LfpKBlu7OcR3FH5Dmy33crlDuyOf3fCoaB1BeVjKKZr84_H6JUUmowuTSlfpsjbhda1mYmMCtXwU-CdZGEuc8xQK0WOMHBmBAVOm0JORSzH65zwPCOfFmvT0kLOueEtJsPlHMetLr8-gdnx-OPoxLGnNziSRl7laE9rKqhMhJuFUiI0ETLxpKIRDwUzuA1zSUk9IaNE60RHwg8zhXFAJALfgaa70MmLXO0B0SqUqD2FYJUHMuaJYNz3QlfKiCqfyh68bjWZSkttbk7YWKYIcYza02tq78HBlfBqw-jxZ7EXxiRSw5GRmyKcOa_LMn1_fpYOI3RqQUCp24NXVkgXOKHktqcBl21otW5I7remlVovUaZ-gviMogv1e_Dyytz-tqqn_yj3DO76mI01VYfBPnSqda2eY_ZUiT50j8aT6Vkftt5deH27W34BKOMWtw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hA4IChUBAqsUCskJAvb69ceKpSmqRraRFUfqDd3n2mkYIc4UdU_x29jNlmnAaHeeow0Wds745lv1jPfAOxkTESxEdyTgc8xQaGRxzIVe7FWmRIqS-l8xlKvnxxdRt-v4qs1-F33wtiyytonzh21KqU9I_8aMsSyFM0t_Db-5dmpUfbraj1Cg7vRCmpvTjHmGjuO9d0tpnDVXvcA9b0bhoedi_aR56YMeJKmwdQzgTFUUMmErxIpEUILyQKpacoTEdv8AjGPpIGQKTOGmVSEidLorwQTNIsNxXWfwEZEI4bJ38Z-p396tjzl8Sk-a5AsGgMpZT7aF0ZMREGZHROwEgr_DQjPoDErxvzulo9GKxHv8AU8d1CVtBa29RLWdLEJjbqTudqErc59lxwKOjdRvYLydGK__1idk9KQ9o0t81OaHAyNmdnjOdIu9Zy7Av9JhvZngeh1qsk-BlVFUKA3L_LUxPG_DggvFPkxnNh2F3LOLacxaY0GuO705udruHyUPd-C9aIs9BsgRicSN1ZjIssjmXEmYh4GiS9lSnVIZRO-1JucS0d7bqdvjHJMf6xG8hWNNGFnKTxesH38X-yT1VZu-TMKW6Az4LOqyrvnZ3krRYcXRZT6TfjshEyJF5Tc9TvgbVvKrb8kt2ut586DVPm9vTdhd2kJD93V24eX-QiNo4veSX7S7R-_g6chgrVFWc42rE8nM_0ewdVUfHAWTOD6sV-aP3grOzA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ8gJKIPRlFiEXVjICYmF-5u7_OBmNKPUJGmATG8HftZmpS72mtD-Bf9q5y97pVqDG88XjK3t7czOx-7M78B2EtSHoSaM0d4LsMAhQZOmsjQCZVMJJdJTKseS6f96Pgi-HYZXq7B77oWxqRV1jqxUtSyEOaM_MBP0ZelKG7-gbZpEYN29-vkl2M6SJmb1rqdBrNtFuRhBTdmizxO1N0thnPlYa-NvN_3_W7nR-vYsR0HHEFjb-ZoT2vKqUi5KyMh0J3mIvWEojGLeGhiDfR_BPW4iFOtUx1zP5IKdRdPOU1CTXHcJ7BhLr9QSWwcdfqDs-WJj0vxv71oUSRIaeqirKH1RI8oMS0DVsziv8bhOWzO8wm7u2Xj8Yr1676EF9ZtJc2FnL2CNZVvwWZd1VxuwXbnvmIOCa3KKF9DMZiauyDDf1Jo0ro2KX9SkfZI67k5qiOtQlU4FvgmGZnHHD3ZmSJHaGAlQYLTKuFTEYsFOyQsl-TnaGpKX8g5M_jGpDke4riz65s3cPEoa74N63mRq7dAtIoELqzCoJYFImEpD5nvRa4QMVU-FQ34Ui9yJiwEuunEMc4wFDIcyVY40oC9JfFkgfzxf7JPhluZwdLIjVQO2bwss975WdaMUfkFAaVuAz5bIl3gBwWztQ84bQO_9Rflbs31zGqTMruX_QbsLyXhoVntPDzMR3iKmyf73uufvINnPvptiwydXVifTefqPfpZM_7BCjCBq8feM38AybI_Xw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0-lB98KNaelplkYogpJdks0n2Sc6zpQotxXqiT2E_r4dnclwSRf96Z3Ob2hYRwcfAZHeTmZ2ZXzLzW4C9nMuEWSkCFYUCAQpNAp5rFjCjcy11ntHujKXjk_Romrz7xPpqwtqXVSIUn3dOOsb4h36ChaOIjeJkFKU5T0dLbV998x-TogwxBMNNy27CRsowHR_AxvTkdPzZHSrX377uy6MI71G9GLCSbqArkei6P74Nm225FD--i8XiUsA5vAuyX-q6zuTLftvIffXzGovjfz3LPbjj01EyXtvPfbhhyi3Y7LuV6y3YPvjdCYeC3hXUD6A6Xbl_PE6vpLJkcu5K-bQhb-bWtm4mMqlMx0-Bd5K5uywxQ20MeY2BUxMUOO4KOQ3xHK8zIkpNPs5XrqWFnAnHW0zGixmO25x_fQjTw4MPk6PAn94QKJpFTWAja6mkistQp0ohNJGKR8rQTKSSOdyGuaSikVQZt5bbTMapNhgHJJf4DizdhkFZlWYHiDWpQu0ZBKsiUbngkok4SkOlMmpiqobwstdkoTy1uTthY1EgxHFqLy6pfQh7F8LLNaPHn8WeOZMoHEdG6YpwZqKt6-Lt2ftinKFTSxJKwyG88EK2wgmV8D0NuGxHq3VFcrc3rcJ7ibqIOeIzii40HsLzC3P726oe_aPcY7gVYza2rrvZhUGzas0TzJ4a-dTvj18AShQr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Chloride+Diffusion+Coefficient+in+Concrete+Based+on+Machine+Learning+and+Virtual+Sample+Algorithm&rft.jtitle=Sustainability&rft.au=Zhou%2C+Fei-Yu&rft.au=Tao%2C+Ning-Jing&rft.au=Zhang%2C+Yu-Rong&rft.au=Yuan%2C+Wei-Bin&rft.date=2023-12-01&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=24&rft.spage=16896&rft_id=info:doi/10.3390%2Fsu152416896&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su152416896 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |