The Properties of Topological Manifolds of Simplicial Polynomials
The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without i...
Saved in:
Published in | Symmetry (Basel) Vol. 16; no. 1; p. 102 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-8994 2073-8994 |
DOI | 10.3390/sym16010102 |
Cover
Abstract | The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without imposing the conditions of affine topological spaces. The non-degenerate class maintains the degree preservation principle of the atoms of the polynomials of a topological simplex, which is relaxed in the degenerate class. The concept of hybrid decomposition of a simplicial polynomial in the non-degenerate class is introduced. The decompositions of simplicial polynomial for a large set of simplex vertices generate ideal components from the radical, and the components preserve the topologically isolated origin in all cases within the topological manifolds. Interestingly, the topological manifolds generated by a non-degenerate class of simplicial polynomials do not retain the homeomorphism property under polynomial extension by atom addition if the simplicial condition is violated. However, the topological manifolds generated by the degenerate class always preserve isomorphism with varying rotational orientations. The hybrid decompositions of the non-degenerate class of simplicial polynomials give rise to the formation of simplicial chains. The proposed formulations do not impose strict positivity on simplicial polynomials as a precondition. |
---|---|
AbstractList | The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without imposing the conditions of affine topological spaces. The non-degenerate class maintains the degree preservation principle of the atoms of the polynomials of a topological simplex, which is relaxed in the degenerate class. The concept of hybrid decomposition of a simplicial polynomial in the non-degenerate class is introduced. The decompositions of simplicial polynomial for a large set of simplex vertices generate ideal components from the radical, and the components preserve the topologically isolated origin in all cases within the topological manifolds. Interestingly, the topological manifolds generated by a non-degenerate class of simplicial polynomials do not retain the homeomorphism property under polynomial extension by atom addition if the simplicial condition is violated. However, the topological manifolds generated by the degenerate class always preserve isomorphism with varying rotational orientations. The hybrid decompositions of the non-degenerate class of simplicial polynomials give rise to the formation of simplicial chains. The proposed formulations do not impose strict positivity on simplicial polynomials as a precondition. |
Audience | Academic |
Author | Bagchi, Susmit |
Author_xml | – sequence: 1 givenname: Susmit orcidid: 0000-0003-2667-1446 surname: Bagchi fullname: Bagchi, Susmit |
BackLink | https://hal.science/hal-04409730$$DView record in HAL |
BookMark | eNptkVFLwzAQx4NMcM49-QUKPol0XpKuSR7LUCdMHDifQ5YlW0bb1LQT9u3NnMIQc4Q7_vn9jyN3iXq1rw1C1xhGlAq4b_cVzgHHIGeoT4DRlAuR9U7qCzRs2y3EM4ZxlkMfFYuNSebBNyZ0zrSJt8nCN770a6dVmbyo2llfrr4f3lzVlE67qM99ua99Fcv2Cp3bmMzwJw_Q--PDYjJNZ69Pz5NilmrKcJcarYnIM8Mt50LnhCugy5yt9NICYRYLHa8gKwraUhBcc240y2FJTQYsY3SAbo99N6qUTXCVCnvplZPTYiYPGmQZCEbhE0f25sg2wX_sTNvJrd-FOo4nicCciTHJ8kiNjtRalUa62vouKB1jZSqn4-daF_WCcRCECUyiAR8NOvi2DcZK7TrVOV9HoyslBnnYhDzZRPTc_fH8zv4f_QX6R4lz |
CitedBy_id | crossref_primary_10_3390_sym16050556 |
Cites_doi | 10.1007/978-3-662-04648-7 10.1098/rspa.2021.0584 10.1512/iumj.1993.42.42045 10.1007/s00200-003-0122-8 10.1016/0096-3003(86)90030-5 10.1007/s00373-015-1578-6 10.5565/PUBLMAT_54110_04 10.1007/s00009-023-02307-3 10.3390/axioms12010021 10.1093/imrn/rnaa169 10.3390/sym15091784 10.1016/j.aim.2020.107169 10.1016/j.jmaa.2013.08.044 10.2307/1968723 10.1016/0022-4049(95)00042-9 10.1007/BF01208905 10.1016/j.disc.2003.12.014 10.1016/j.jsc.2010.01.001 10.1007/s00454-005-1190-2 10.1007/978-3-642-22863-6_16 10.11650/twjm/1500407124 10.3390/sym15061254 10.1016/j.disc.2006.07.020 10.1007/BF01077143 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 1XC VOOES |
DOI | 10.3390/sym16010102 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 2073-8994 |
ExternalDocumentID | oai_HAL_hal_04409730v1 A780927912 10_3390_sym16010102 |
GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI 1XC PUEGO VOOES |
ID | FETCH-LOGICAL-c371t-ecc2964e8f889c628a03b67dcbf027f19cf1992d30cf3098c88ec760b3e407473 |
IEDL.DBID | BENPR |
ISSN | 2073-8994 |
IngestDate | Fri Sep 12 12:39:53 EDT 2025 Fri Jul 25 11:59:12 EDT 2025 Tue Jun 10 21:15:27 EDT 2025 Tue Jul 01 03:48:18 EDT 2025 Thu Apr 24 23:06:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Manifolds simplex polynomials zero-sets topology |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-ecc2964e8f889c628a03b67dcbf027f19cf1992d30cf3098c88ec760b3e407473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2667-1446 |
OpenAccessLink | https://www.proquest.com/docview/2918795246?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2918795246 |
PQPubID | 2032326 |
ParticipantIDs | hal_primary_oai_HAL_hal_04409730v1 proquest_journals_2918795246 gale_infotracacademiconefile_A780927912 crossref_citationtrail_10_3390_sym16010102 crossref_primary_10_3390_sym16010102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Symmetry (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nord (ref_10) 2016; 32 Khovanskii (ref_11) 1978; 11 (ref_12) 2002; 38 Gathen (ref_26) 2003; 14 Jeronimo (ref_2) 2010; 45 Gustafsson (ref_20) 2020; 369 Brown (ref_23) 2004; 285 Moura (ref_18) 2020; 3 ref_16 Dinh (ref_6) 2014; 410 Hone (ref_25) 2020; 33 Branquinho (ref_4) 2023; 20 Coates (ref_24) 2021; 477 Manzaroli (ref_19) 2020; 2022 Feng (ref_7) 1992; 8 Morgan (ref_13) 1986; 18 Petrowsky (ref_17) 1938; 39 Hetyei (ref_8) 2006; 35 Boros (ref_15) 2010; 54 ref_22 Rubio (ref_21) 2011; Volume 6898 ref_3 Li (ref_14) 1999; 3 Santos (ref_5) 1996; 108 ref_28 ref_27 Putinar (ref_1) 1993; 42 Bell (ref_9) 2007; 307 |
References_xml | – ident: ref_3 doi: 10.1007/978-3-662-04648-7 – volume: 477 start-page: 20210584 year: 2021 ident: ref_24 article-title: Maximally mutable Laurent polynomials publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2021.0584 – volume: 42 start-page: 969 year: 1993 ident: ref_1 article-title: Positive polynomials on compact semi-algebraic sets publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.1993.42.42045 – volume: 14 start-page: 11 year: 2003 ident: ref_26 article-title: Multivariate polynomial decomposition publication-title: AAECC doi: 10.1007/s00200-003-0122-8 – volume: 18 start-page: 87 year: 1986 ident: ref_13 article-title: A homotopy for solving polynomial systems publication-title: Appl. Math. Comp. doi: 10.1016/0096-3003(86)90030-5 – volume: 32 start-page: 745 year: 2016 ident: ref_10 article-title: Chromatic Polynomials of Simplicial Complexes publication-title: Graphs Comb. doi: 10.1007/s00373-015-1578-6 – volume: 54 start-page: 73 year: 2010 ident: ref_15 article-title: f-polynomials, h-polynomials and l2-Euler characteristics publication-title: Publ. Mat. doi: 10.5565/PUBLMAT_54110_04 – volume: 20 start-page: 118 year: 2023 ident: ref_4 article-title: Quadratic decomposition of bivariate orthogonal polynomials publication-title: Mediterr. J. Math. doi: 10.1007/s00009-023-02307-3 – ident: ref_28 doi: 10.3390/axioms12010021 – volume: 2022 start-page: 1350 year: 2020 ident: ref_19 article-title: Real algebraic curves on real del Pezzo surfaces publication-title: Intl. Math. Res. Notices doi: 10.1093/imrn/rnaa169 – ident: ref_16 doi: 10.3390/sym15091784 – volume: 369 start-page: 107169 year: 2020 ident: ref_20 article-title: Derangements, Ehrhart theory and local h-polynomials publication-title: Adv. Math. doi: 10.1016/j.aim.2020.107169 – volume: 410 start-page: 541 year: 2014 ident: ref_6 article-title: Global Lojasiewicz-type inequality for non-degenerate polynomial maps publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.08.044 – volume: 39 start-page: 189 year: 1938 ident: ref_17 article-title: On the topology of real plane algebraic curves publication-title: Ann. Math. doi: 10.2307/1968723 – volume: 108 start-page: 231 year: 1996 ident: ref_5 article-title: An effective version of Pólya’s theorem on positive definite forms publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00042-9 – volume: 33 start-page: 5961 year: 2020 ident: ref_25 article-title: Linear relations for Laurent polynomials and lattice equations publication-title: Nonlinearity Lond. Math. Soc. – volume: 8 start-page: 49 year: 1992 ident: ref_7 article-title: Asymptotic expansion formula for Bernstein polynomials defined on a simplex publication-title: Constr. Approx. doi: 10.1007/BF01208905 – volume: 285 start-page: 33 year: 2004 ident: ref_23 article-title: The k-fractal of a simplicial complex publication-title: Discret. Math. doi: 10.1016/j.disc.2003.12.014 – volume: 45 start-page: 434 year: 2010 ident: ref_2 article-title: On the minimum of a positive polynomial over the standard simplex publication-title: J. Symb. Comp. doi: 10.1016/j.jsc.2010.01.001 – volume: 3 start-page: 1417 year: 2020 ident: ref_18 article-title: Triangulations of simplices with vanishing local h-polynomial publication-title: Algebr. Comb. – volume: 35 start-page: 437 year: 2006 ident: ref_8 article-title: The Stirling polynomial of a simplicial complex publication-title: Discret. Comput. Geom. doi: 10.1007/s00454-005-1190-2 – volume: Volume 6898 start-page: 200 year: 2011 ident: ref_21 article-title: Applying ACL2 to the formalization of algebraic topology: Simplicial polynomials publication-title: Interactive Theorem Proving (ITP 2011) doi: 10.1007/978-3-642-22863-6_16 – volume: 38 start-page: 27 year: 2002 ident: ref_12 article-title: Simplicial types and polynomial algebras publication-title: Arch. Math. – volume: 3 start-page: 251 year: 1999 ident: ref_14 article-title: Solving polynomial systems by polyhedral homotopies publication-title: Taiwan. J. Math. doi: 10.11650/twjm/1500407124 – ident: ref_27 doi: 10.3390/sym15061254 – ident: ref_22 – volume: 307 start-page: 668 year: 2007 ident: ref_9 article-title: Multicomplexes and polynomials with real zeros publication-title: Discret. Math. doi: 10.1016/j.disc.2006.07.020 – volume: 11 start-page: 289 year: 1978 ident: ref_11 article-title: Newton polyhedra and toroidal varieties publication-title: Funct. Anal. Appl. doi: 10.1007/BF01077143 |
SSID | ssj0000505460 |
Score | 2.289059 |
Snippet | The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of... |
SourceID | hal proquest gale crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 102 |
SubjectTerms | Algebra Apexes Decomposition Geometry Isomorphism Manifolds (mathematics) Mathematical analysis Mathematics Polynomials Topological manifolds Topology |
Title | The Properties of Topological Manifolds of Simplicial Polynomials |
URI | https://www.proquest.com/docview/2918795246 https://hal.science/hal-04409730 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-cvvgifuJ0ShHBDyi2TdamDyJTnEPcGH7A3kqSNjiY63RT8L_3rk2niPjYNoRyd7nkLne_H8ChUDxV2ghXpooozIxxhWLaDQ0P_FBGTEfU79zthZ0nfjtoDhagV_XCUFll5RMLR53mmnLkZ0Fc8GIHPLyYvLrEGkW3qxWFhrTUCul5ATFWgyV0yQLtfunyute_n2ddiLeNh17ZqMcw3j-bfr74FJT4NrFSbU3WQdeeqT7yl5su9p72KqzYQ6PTKrW8BgvZeB3W7LKcOscWO_pkA1qodqdPCfY3Qkp1cuM8ljQIpAynK8dDk4_S4sPDsKgmRwN0-vnok_qT0RY34al9_XjVcS1LgqtZ5M9c1AFdnWbCCBHrMBDSYyqMUq0MhpzGj7WhEtOUedowLxZaiExHoadYxgk9n23B4jgfZ9vgZFwHjGcSI2bNUVFSMuPppuG4jRvuqTqcVgJKtIUQJyaLUYKhBEkz-SHNOhzOB09K5Iy_hx2RpBNaTziXlrYtAP-IkKmSViS8OIhiH0ceoDLmcxEudqd1l9A74s2O0Vd9-HVoVLpK7GqcJt-2s_P_511YDvDQUqZYGrA4e3vP9vDQMVP7UBPtm31rT_h0M_C_APix2Dk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t3QO8IMaHKIzNQkN8SNGc2Euch2kqsKljbVVBJ-0tsx1bTCrNWAuo_xx_2-4SpyCEeNtrYlnJ3fm-fHc_gF1lZGmsV5EuDUGYeR8pI2yUepnEqc6EzajfeThK-2fy4_n--Rr8anthqKyy1Ym1oi4rSznyvSSvcbETmR5efYsINYpuV1sIDR2gFcqDesRYaOw4dcufGMLND04-IL9fJsnx0eR9PwooA5EVWbyI8B_o6tEpr1Ru00RpLkyaldZ4DNl8nFtPJZql4NYLniurlLNZyo1wkqbPC9x3HTYkdbh2YOPd0Wj8aZXlIZw4mfKmMVCInO_Nl19jCoLikMhpTWEwCOtfqB7zL7NQ27rj-3AvOKms10jVJqy52QPYDGpgzl6HWdVvHkIPxYyNKaF_TZNZWeXZpIFdIOazoZ5d-mpa1i8-X9bV6yjwbFxNl9QPjbL_CM5uhV6PoTOrZu4JMCdtIqTTGKFbiYKhtfDc7nuJboOX3HThbUugwoaR5YScMS0wdCFqFn9Qswu7q8VXzaSOfy97RZQu6PziXlaHNgT8IpqEVfQyxfMky2Nc-QKZsdqL5nD3e4OCnhFOd4668Ufcha2WV0U4_fPit6w-_f_rHbjTnwwHxeBkdPoM7iboMDXpnS3oLK6_u-fo8CzMdpAqBhe3Lcg3luATAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_aFMZeRrsPlrXrxOjYB5jIlmrLD2Vka0O6tiFsLfTNk2SJFdK4bbKN_Iv9q3Zny9kYY299tYWwTz_d6U539wPYUUaWxnoV6dIQhZn3kTLCRqmXSZzqTNiM6p1PRunwTH463z1fgdu2FobSKludWCvqsrIUI-8lec2Lnci050NaxHh_8P7qOiIGKbppbek0dKBZKPfqdmOhyOPILX6iOzfbO9zHtX-VJIOD04_DKDAORFZk8TzC_6FrSKe8UrlNE6W5MGlWWuPRffNxbj2la5aCWy94rqxSzmYpN8JJ6kQvcN5VWMvQSsoOrH04GI0_LyM-xBknU94UCQqR895scRmTQxSHoE5rFoNxWP1GuZl_mYja7g3W4UE4sLJ-g7ANWHHTh7ARVMKMvQl9q98-gj5Cjo0puH9DXVpZ5dlpQ8FAQGAnenrhq0lZv_hyUWeyI_jZuJosqDYa98FjOLsTeT2BzrSauqfAnLSJkE6jt24lgkRr4bnd9RKPEF5y04V3rYAKG9qXE4vGpEA3hqRZ_CHNLuwsB181XTv-Pew1SbqgvYxzWR1KEvCLqCtW0c8Uz5Msj3HkS1yM5VzUk3vYPy7oGXF256gnf8Rd2GrXqgiaYFb8xu2z_79-AfcQ0MXx4ehoE-4neHZqIj1b0JnffHfP8ewzN9sBVAy-3jWOfwElwBcs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Properties+of+Topological+Manifolds+of+Simplicial+Polynomials&rft.jtitle=Symmetry+%28Basel%29&rft.au=Bagchi%2C+Susmit&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=16&rft.issue=1&rft.spage=102&rft_id=info:doi/10.3390%2Fsym16010102&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |