The Properties of Topological Manifolds of Simplicial Polynomials

The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without i...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 16; no. 1; p. 102
Main Author Bagchi, Susmit
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
MDPI
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym16010102

Cover

Abstract The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without imposing the conditions of affine topological spaces. The non-degenerate class maintains the degree preservation principle of the atoms of the polynomials of a topological simplex, which is relaxed in the degenerate class. The concept of hybrid decomposition of a simplicial polynomial in the non-degenerate class is introduced. The decompositions of simplicial polynomial for a large set of simplex vertices generate ideal components from the radical, and the components preserve the topologically isolated origin in all cases within the topological manifolds. Interestingly, the topological manifolds generated by a non-degenerate class of simplicial polynomials do not retain the homeomorphism property under polynomial extension by atom addition if the simplicial condition is violated. However, the topological manifolds generated by the degenerate class always preserve isomorphism with varying rotational orientations. The hybrid decompositions of the non-degenerate class of simplicial polynomials give rise to the formation of simplicial chains. The proposed formulations do not impose strict positivity on simplicial polynomials as a precondition.
AbstractList The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of simplicial polynomials and the properties of resulting topological manifolds in two classes, non-degenerate forms and degenerate forms, without imposing the conditions of affine topological spaces. The non-degenerate class maintains the degree preservation principle of the atoms of the polynomials of a topological simplex, which is relaxed in the degenerate class. The concept of hybrid decomposition of a simplicial polynomial in the non-degenerate class is introduced. The decompositions of simplicial polynomial for a large set of simplex vertices generate ideal components from the radical, and the components preserve the topologically isolated origin in all cases within the topological manifolds. Interestingly, the topological manifolds generated by a non-degenerate class of simplicial polynomials do not retain the homeomorphism property under polynomial extension by atom addition if the simplicial condition is violated. However, the topological manifolds generated by the degenerate class always preserve isomorphism with varying rotational orientations. The hybrid decompositions of the non-degenerate class of simplicial polynomials give rise to the formation of simplicial chains. The proposed formulations do not impose strict positivity on simplicial polynomials as a precondition.
Audience Academic
Author Bagchi, Susmit
Author_xml – sequence: 1
  givenname: Susmit
  orcidid: 0000-0003-2667-1446
  surname: Bagchi
  fullname: Bagchi, Susmit
BackLink https://hal.science/hal-04409730$$DView record in HAL
BookMark eNptkVFLwzAQx4NMcM49-QUKPol0XpKuSR7LUCdMHDifQ5YlW0bb1LQT9u3NnMIQc4Q7_vn9jyN3iXq1rw1C1xhGlAq4b_cVzgHHIGeoT4DRlAuR9U7qCzRs2y3EM4ZxlkMfFYuNSebBNyZ0zrSJt8nCN770a6dVmbyo2llfrr4f3lzVlE67qM99ua99Fcv2Cp3bmMzwJw_Q--PDYjJNZ69Pz5NilmrKcJcarYnIM8Mt50LnhCugy5yt9NICYRYLHa8gKwraUhBcc240y2FJTQYsY3SAbo99N6qUTXCVCnvplZPTYiYPGmQZCEbhE0f25sg2wX_sTNvJrd-FOo4nicCciTHJ8kiNjtRalUa62vouKB1jZSqn4-daF_WCcRCECUyiAR8NOvi2DcZK7TrVOV9HoyslBnnYhDzZRPTc_fH8zv4f_QX6R4lz
CitedBy_id crossref_primary_10_3390_sym16050556
Cites_doi 10.1007/978-3-662-04648-7
10.1098/rspa.2021.0584
10.1512/iumj.1993.42.42045
10.1007/s00200-003-0122-8
10.1016/0096-3003(86)90030-5
10.1007/s00373-015-1578-6
10.5565/PUBLMAT_54110_04
10.1007/s00009-023-02307-3
10.3390/axioms12010021
10.1093/imrn/rnaa169
10.3390/sym15091784
10.1016/j.aim.2020.107169
10.1016/j.jmaa.2013.08.044
10.2307/1968723
10.1016/0022-4049(95)00042-9
10.1007/BF01208905
10.1016/j.disc.2003.12.014
10.1016/j.jsc.2010.01.001
10.1007/s00454-005-1190-2
10.1007/978-3-642-22863-6_16
10.11650/twjm/1500407124
10.3390/sym15061254
10.1016/j.disc.2006.07.020
10.1007/BF01077143
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
1XC
VOOES
DOI 10.3390/sym16010102
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2073-8994
ExternalDocumentID oai_HAL_hal_04409730v1
A780927912
10_3390_sym16010102
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
PUEGO
VOOES
ID FETCH-LOGICAL-c371t-ecc2964e8f889c628a03b67dcbf027f19cf1992d30cf3098c88ec760b3e407473
IEDL.DBID BENPR
ISSN 2073-8994
IngestDate Fri Sep 12 12:39:53 EDT 2025
Fri Jul 25 11:59:12 EDT 2025
Tue Jun 10 21:15:27 EDT 2025
Tue Jul 01 03:48:18 EDT 2025
Thu Apr 24 23:06:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Manifolds
simplex
polynomials
zero-sets
topology
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-ecc2964e8f889c628a03b67dcbf027f19cf1992d30cf3098c88ec760b3e407473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2667-1446
OpenAccessLink https://www.proquest.com/docview/2918795246?pq-origsite=%requestingapplication%&accountid=15518
PQID 2918795246
PQPubID 2032326
ParticipantIDs hal_primary_oai_HAL_hal_04409730v1
proquest_journals_2918795246
gale_infotracacademiconefile_A780927912
crossref_citationtrail_10_3390_sym16010102
crossref_primary_10_3390_sym16010102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nord (ref_10) 2016; 32
Khovanskii (ref_11) 1978; 11
(ref_12) 2002; 38
Gathen (ref_26) 2003; 14
Jeronimo (ref_2) 2010; 45
Gustafsson (ref_20) 2020; 369
Brown (ref_23) 2004; 285
Moura (ref_18) 2020; 3
ref_16
Dinh (ref_6) 2014; 410
Hone (ref_25) 2020; 33
Branquinho (ref_4) 2023; 20
Coates (ref_24) 2021; 477
Manzaroli (ref_19) 2020; 2022
Feng (ref_7) 1992; 8
Morgan (ref_13) 1986; 18
Petrowsky (ref_17) 1938; 39
Hetyei (ref_8) 2006; 35
Boros (ref_15) 2010; 54
ref_22
Rubio (ref_21) 2011; Volume 6898
ref_3
Li (ref_14) 1999; 3
Santos (ref_5) 1996; 108
ref_28
ref_27
Putinar (ref_1) 1993; 42
Bell (ref_9) 2007; 307
References_xml – ident: ref_3
  doi: 10.1007/978-3-662-04648-7
– volume: 477
  start-page: 20210584
  year: 2021
  ident: ref_24
  article-title: Maximally mutable Laurent polynomials
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0584
– volume: 42
  start-page: 969
  year: 1993
  ident: ref_1
  article-title: Positive polynomials on compact semi-algebraic sets
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– volume: 14
  start-page: 11
  year: 2003
  ident: ref_26
  article-title: Multivariate polynomial decomposition
  publication-title: AAECC
  doi: 10.1007/s00200-003-0122-8
– volume: 18
  start-page: 87
  year: 1986
  ident: ref_13
  article-title: A homotopy for solving polynomial systems
  publication-title: Appl. Math. Comp.
  doi: 10.1016/0096-3003(86)90030-5
– volume: 32
  start-page: 745
  year: 2016
  ident: ref_10
  article-title: Chromatic Polynomials of Simplicial Complexes
  publication-title: Graphs Comb.
  doi: 10.1007/s00373-015-1578-6
– volume: 54
  start-page: 73
  year: 2010
  ident: ref_15
  article-title: f-polynomials, h-polynomials and l2-Euler characteristics
  publication-title: Publ. Mat.
  doi: 10.5565/PUBLMAT_54110_04
– volume: 20
  start-page: 118
  year: 2023
  ident: ref_4
  article-title: Quadratic decomposition of bivariate orthogonal polynomials
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-023-02307-3
– ident: ref_28
  doi: 10.3390/axioms12010021
– volume: 2022
  start-page: 1350
  year: 2020
  ident: ref_19
  article-title: Real algebraic curves on real del Pezzo surfaces
  publication-title: Intl. Math. Res. Notices
  doi: 10.1093/imrn/rnaa169
– ident: ref_16
  doi: 10.3390/sym15091784
– volume: 369
  start-page: 107169
  year: 2020
  ident: ref_20
  article-title: Derangements, Ehrhart theory and local h-polynomials
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2020.107169
– volume: 410
  start-page: 541
  year: 2014
  ident: ref_6
  article-title: Global Lojasiewicz-type inequality for non-degenerate polynomial maps
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.08.044
– volume: 39
  start-page: 189
  year: 1938
  ident: ref_17
  article-title: On the topology of real plane algebraic curves
  publication-title: Ann. Math.
  doi: 10.2307/1968723
– volume: 108
  start-page: 231
  year: 1996
  ident: ref_5
  article-title: An effective version of Pólya’s theorem on positive definite forms
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00042-9
– volume: 33
  start-page: 5961
  year: 2020
  ident: ref_25
  article-title: Linear relations for Laurent polynomials and lattice equations
  publication-title: Nonlinearity Lond. Math. Soc.
– volume: 8
  start-page: 49
  year: 1992
  ident: ref_7
  article-title: Asymptotic expansion formula for Bernstein polynomials defined on a simplex
  publication-title: Constr. Approx.
  doi: 10.1007/BF01208905
– volume: 285
  start-page: 33
  year: 2004
  ident: ref_23
  article-title: The k-fractal of a simplicial complex
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2003.12.014
– volume: 45
  start-page: 434
  year: 2010
  ident: ref_2
  article-title: On the minimum of a positive polynomial over the standard simplex
  publication-title: J. Symb. Comp.
  doi: 10.1016/j.jsc.2010.01.001
– volume: 3
  start-page: 1417
  year: 2020
  ident: ref_18
  article-title: Triangulations of simplices with vanishing local h-polynomial
  publication-title: Algebr. Comb.
– volume: 35
  start-page: 437
  year: 2006
  ident: ref_8
  article-title: The Stirling polynomial of a simplicial complex
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/s00454-005-1190-2
– volume: Volume 6898
  start-page: 200
  year: 2011
  ident: ref_21
  article-title: Applying ACL2 to the formalization of algebraic topology: Simplicial polynomials
  publication-title: Interactive Theorem Proving (ITP 2011)
  doi: 10.1007/978-3-642-22863-6_16
– volume: 38
  start-page: 27
  year: 2002
  ident: ref_12
  article-title: Simplicial types and polynomial algebras
  publication-title: Arch. Math.
– volume: 3
  start-page: 251
  year: 1999
  ident: ref_14
  article-title: Solving polynomial systems by polyhedral homotopies
  publication-title: Taiwan. J. Math.
  doi: 10.11650/twjm/1500407124
– ident: ref_27
  doi: 10.3390/sym15061254
– ident: ref_22
– volume: 307
  start-page: 668
  year: 2007
  ident: ref_9
  article-title: Multicomplexes and polynomials with real zeros
  publication-title: Discret. Math.
  doi: 10.1016/j.disc.2006.07.020
– volume: 11
  start-page: 289
  year: 1978
  ident: ref_11
  article-title: Newton polyhedra and toroidal varieties
  publication-title: Funct. Anal. Appl.
  doi: 10.1007/BF01077143
SSID ssj0000505460
Score 2.289059
Snippet The formulations of polynomials over a topological simplex combine the elements of topology and algebraic geometry. This paper proposes the formulation of...
SourceID hal
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 102
SubjectTerms Algebra
Apexes
Decomposition
Geometry
Isomorphism
Manifolds (mathematics)
Mathematical analysis
Mathematics
Polynomials
Topological manifolds
Topology
Title The Properties of Topological Manifolds of Simplicial Polynomials
URI https://www.proquest.com/docview/2918795246
https://hal.science/hal-04409730
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-cvvgifuJ0ShHBDyi2TdamDyJTnEPcGH7A3kqSNjiY63RT8L_3rk2niPjYNoRyd7nkLne_H8ChUDxV2ghXpooozIxxhWLaDQ0P_FBGTEfU79zthZ0nfjtoDhagV_XCUFll5RMLR53mmnLkZ0Fc8GIHPLyYvLrEGkW3qxWFhrTUCul5ATFWgyV0yQLtfunyute_n2ddiLeNh17ZqMcw3j-bfr74FJT4NrFSbU3WQdeeqT7yl5su9p72KqzYQ6PTKrW8BgvZeB3W7LKcOscWO_pkA1qodqdPCfY3Qkp1cuM8ljQIpAynK8dDk4_S4sPDsKgmRwN0-vnok_qT0RY34al9_XjVcS1LgqtZ5M9c1AFdnWbCCBHrMBDSYyqMUq0MhpzGj7WhEtOUedowLxZaiExHoadYxgk9n23B4jgfZ9vgZFwHjGcSI2bNUVFSMuPppuG4jRvuqTqcVgJKtIUQJyaLUYKhBEkz-SHNOhzOB09K5Iy_hx2RpBNaTziXlrYtAP-IkKmSViS8OIhiH0ceoDLmcxEudqd1l9A74s2O0Vd9-HVoVLpK7GqcJt-2s_P_511YDvDQUqZYGrA4e3vP9vDQMVP7UBPtm31rT_h0M_C_APix2Dk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t3QO8IMaHKIzNQkN8SNGc2Euch2kqsKljbVVBJ-0tsx1bTCrNWAuo_xx_2-4SpyCEeNtrYlnJ3fm-fHc_gF1lZGmsV5EuDUGYeR8pI2yUepnEqc6EzajfeThK-2fy4_n--Rr8anthqKyy1Ym1oi4rSznyvSSvcbETmR5efYsINYpuV1sIDR2gFcqDesRYaOw4dcufGMLND04-IL9fJsnx0eR9PwooA5EVWbyI8B_o6tEpr1Ru00RpLkyaldZ4DNl8nFtPJZql4NYLniurlLNZyo1wkqbPC9x3HTYkdbh2YOPd0Wj8aZXlIZw4mfKmMVCInO_Nl19jCoLikMhpTWEwCOtfqB7zL7NQ27rj-3AvOKms10jVJqy52QPYDGpgzl6HWdVvHkIPxYyNKaF_TZNZWeXZpIFdIOazoZ5d-mpa1i8-X9bV6yjwbFxNl9QPjbL_CM5uhV6PoTOrZu4JMCdtIqTTGKFbiYKhtfDc7nuJboOX3HThbUugwoaR5YScMS0wdCFqFn9Qswu7q8VXzaSOfy97RZQu6PziXlaHNgT8IpqEVfQyxfMky2Nc-QKZsdqL5nD3e4OCnhFOd4668Ufcha2WV0U4_fPit6w-_f_rHbjTnwwHxeBkdPoM7iboMDXpnS3oLK6_u-fo8CzMdpAqBhe3Lcg3luATAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_aFMZeRrsPlrXrxOjYB5jIlmrLD2Vka0O6tiFsLfTNk2SJFdK4bbKN_Iv9q3Zny9kYY299tYWwTz_d6U539wPYUUaWxnoV6dIQhZn3kTLCRqmXSZzqTNiM6p1PRunwTH463z1fgdu2FobSKludWCvqsrIUI-8lec2Lnci050NaxHh_8P7qOiIGKbppbek0dKBZKPfqdmOhyOPILX6iOzfbO9zHtX-VJIOD04_DKDAORFZk8TzC_6FrSKe8UrlNE6W5MGlWWuPRffNxbj2la5aCWy94rqxSzmYpN8JJ6kQvcN5VWMvQSsoOrH04GI0_LyM-xBknU94UCQqR895scRmTQxSHoE5rFoNxWP1GuZl_mYja7g3W4UE4sLJ-g7ANWHHTh7ARVMKMvQl9q98-gj5Cjo0puH9DXVpZ5dlpQ8FAQGAnenrhq0lZv_hyUWeyI_jZuJosqDYa98FjOLsTeT2BzrSauqfAnLSJkE6jt24lgkRr4bnd9RKPEF5y04V3rYAKG9qXE4vGpEA3hqRZ_CHNLuwsB181XTv-Pew1SbqgvYxzWR1KEvCLqCtW0c8Uz5Msj3HkS1yM5VzUk3vYPy7oGXF256gnf8Rd2GrXqgiaYFb8xu2z_79-AfcQ0MXx4ehoE-4neHZqIj1b0JnffHfP8ewzN9sBVAy-3jWOfwElwBcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Properties+of+Topological+Manifolds+of+Simplicial+Polynomials&rft.jtitle=Symmetry+%28Basel%29&rft.au=Bagchi%2C+Susmit&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=16&rft.issue=1&rft.spage=102&rft_id=info:doi/10.3390%2Fsym16010102&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon