A semi-analytical x-space solution for parton evolution — Application to non-singlet and singlet DGLAP equation

A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation trans...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2024; no. 7; pp. 72 - 29
Main Authors Haug, Juliane, Schüle, Oliver, Wunder, Fabian
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 09.07.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP07(2024)072

Cover

Abstract A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python.
AbstractList We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python.
Abstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python.
A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python.
ArticleNumber 72
Author Wunder, Fabian
Haug, Juliane
Schüle, Oliver
Author_xml – sequence: 1
  givenname: Juliane
  orcidid: 0009-0008-3076-1122
  surname: Haug
  fullname: Haug, Juliane
  organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics
– sequence: 2
  givenname: Oliver
  orcidid: 0009-0007-8347-0081
  surname: Schüle
  fullname: Schüle, Oliver
  organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics
– sequence: 3
  givenname: Fabian
  orcidid: 0009-0007-4136-7844
  surname: Wunder
  fullname: Wunder, Fabian
  email: fabian.wunder@uni-tuebingen.de
  organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics
BookMark eNp1kcFO3DAQhi1EpQLtuVdLvbSHlLHjxMlxRSlQrQQHOFsTx16yMnHWTqB760P0CfskNRsoSFVPMx79_6eZ34dkv_e9IeQDgy8MQB5_Pz-9AvmJAxefQfI9csCA11klZL3_qn9LDmNcA7CC1XBANgsazV2XYY9uO3YaHf2RxQG1odG7aex8T60PdMAwptbcPw9___xFF8PgkmX3Hj1NC2Wx61fOjBT7lj73X8-WiytqNtNO-Y68seiief9Uj8jNt9Prk_NseXl2cbJYZjqXbMza1tRCSEQDVjKuBTe1zSsOZYvS2gak1RYsNqIUJea6sEJAxdqGWcuFbvIjcjFzW49rNYTuDsNWeezUbuDDSqWbOu2Mgkq0ptRaiwaF5AwL0LUueVlpFIWuEwtm1tQPuH1A5_4CGajH-NX61gypPMavUvzJ8nG2DMFvJhNHtfZTSClHlYOUhWSlZEl1PKt08DEGY__hzt_6mvu0SkzKfmXCC_d_lj-M5qdB
Cites_doi 10.1146/annurev.ns.42.120192.001451
10.1016/0370-2693(89)90874-5
10.1103/PhysRevD.80.114002
10.1016/0010-4655(96)00013-6
10.1016/j.physrep.2009.12.008
10.1016/0370-2693(87)90601-0
10.1103/PhysRevLett.67.2264
10.1016/0550-3213(78)90323-1
10.1016/0370-2693(85)90999-2
10.1016/0370-2693(82)90162-9
10.1016/0370-2693(82)90816-4
10.1016/j.nuclphysb.2004.03.030
10.1140/epja/i2016-16149-3
10.1103/PhysRevLett.118.082002
10.1140/epja/i2016-16153-7
10.1140/epjc/s10052-022-10536-1
10.1016/j.cpc.2014.03.007
10.1142/9789814503266_0001
10.1016/S0010-4655(02)00584-2
10.1142/9789811234033_0019
10.1016/j.cpc.2005.03.103
10.1103/PhysRevD.81.094035
10.1103/PhysRevLett.25.316
10.1016/j.physrep.2018.03.002
10.1016/0550-3213(77)90384-4
10.1103/PhysRevD.9.416
10.1016/j.physletb.2019.134941
10.1142/S2010194515600514
10.1016/j.ppnp.2021.103908
10.1007/BF01556280
10.1140/epjc/s10052-023-11692-8
10.1103/PhysRevD.79.114022
10.1016/j.physrep.2003.08.002
10.1016/0010-4655(94)00159-Y
10.1016/j.cpc.2010.10.020
10.1038/s42254-020-00248-4
10.1016/j.physrep.2008.11.001
10.1103/PhysRevLett.23.1415
10.1016/j.cpc.2008.08.010
10.1016/S0010-4655(97)00129-X
10.1016/j.ppnp.2018.01.007
10.1140/epjc/s10052-017-5199-5
10.1103/PhysRevD.79.016003
10.1007/JHEP02(2017)090
10.1016/j.nuclphysb.2021.115542
10.1140/epjc/s10052-022-10878-w
10.1007/978-3-319-14848-9
10.1103/PhysRevD.9.980
10.1007/JHEP10(2017)166
10.5506/APhysPolB.46.2501
10.1140/epja/s10050-021-00353-7
10.1007/s100520050289
10.1038/s41586-022-04998-2
10.1016/0370-1573(80)90043-5
10.1103/PhysRev.185.1975
10.1103/PhysRevD.79.094010
10.1016/j.nuclphysb.2004.04.024
10.1140/epjc/s10052-022-10223-1
10.1016/0550-3213(89)90035-7
10.1103/PhysRevD.109.114023
10.1017/CBO9780511628788
10.1017/cbo9780511975592
10.1103/PhysRevD.103.014013
10.1016/0550-3213(82)90398-4
10.1103/PhysRevLett.101.072001
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP07(2024)072
DatabaseName Springer Nature Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 29
ExternalDocumentID oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9
10.1007/jhep07(2024)072
10_1007_JHEP07_2024_072
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYZH
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
ADTOC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
UNPAY
ID FETCH-LOGICAL-c371t-dde9447aae0f712c42e9f38206da7ffb07fcf0fab4646a3c5f44081db1ff24cb3
IEDL.DBID DOA
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Fri Oct 03 12:45:02 EDT 2025
Sun Sep 07 11:23:40 EDT 2025
Sat Oct 18 23:14:14 EDT 2025
Wed Oct 01 06:43:00 EDT 2025
Fri Feb 21 02:37:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Factorization
Renormalization Group
Parton Distributions
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-dde9447aae0f712c42e9f38206da7ffb07fcf0fab4646a3c5f44081db1ff24cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4136-7844
0009-0008-3076-1122
0009-0007-8347-0081
OpenAccessLink https://doaj.org/article/084de6ccc4ba4721a50c9c6268ca45c9
PQID 3077571671
PQPubID 2034718
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9
unpaywall_primary_10_1007_jhep07_2024_072
proquest_journals_3077571671
crossref_primary_10_1007_JHEP07_2024_072
springer_journals_10_1007_JHEP07_2024_072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-09
PublicationDateYYYYMMDD 2024-07-09
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-09
  day: 09
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References R. Boussarie et al., TMD Handbook, arXiv:2304.03302 [INSPIRE].
DeurABrodskySJde TeramondGFThe QCD Running CouplingNucl. Phys.2016901[arXiv:1604.08082] [INSPIRE]
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon. B20154625012015AcPPB..46.2501A10.5506/APhysPolB.46.2501[arXiv:1507.05267] [INSPIRE]
R.P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett.23 (1969) 1415 [INSPIRE].
DiehlMNagarRTackmannFJChiliPDF: Chebyshev interpolation for parton distributionsEur. Phys. J. C2022822572022EPJC...82..257D10.1140/epjc/s10052-022-10223-1[arXiv:2112.09703] [INSPIRE]
S. Weinzierl, Fast evolution of parton distributions, Comput. Phys. Commun.148 (2002) 314 [hep-ph/0203112] [INSPIRE].
HaglerPHadron structure from lattice quantum chromodynamicsPhys. Rept.2010490492010PhR...490...49H262967610.1016/j.physrep.2009.12.008[arXiv:0912.5483] [INSPIRE]
M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C5 (1998) 461 [hep-ph/9806404] [INSPIRE].
NNPDF collaboration, Evidence for intrinsic charm quarks in the proton, Nature608 (2022) 483 [arXiv:2208.08372] [INSPIRE].
USQCD collaboration, Lattice QCD and Neutrino-Nucleus Scattering, Eur. Phys. J. A55 (2019) 196 [arXiv:1904.09931] [INSPIRE].
I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
DokshitzerYLDiakonovDTroianSIHard Processes in Quantum ChromodynamicsPhys. Rept.1980582691980PhR....58..269D10.1016/0370-1573(80)90043-5[INSPIRE]
OwensJFTungW-KParton distribution functions of hadronsAnn. Rev. Nucl. Part. Sci.1992422911992ARNPS..42..291O10.1146/annurev.ns.42.120192.001451[INSPIRE]
CandidoAHekhornFMagniGEKO: evolution kernel operatorsEur. Phys. J. C2022829762022EPJC...82..976C10.1140/epjc/s10052-022-10878-w[arXiv:2202.02338] [INSPIRE]
S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE].
J. Zhou, F. Yuan and Z.-T. Liang, QCD Evolution of the Transverse Momentum Dependent Correlations, Phys. Rev. D79 (2009) 114022 [arXiv:0812.4484] [INSPIRE].
M. Hirai, S. Kumano and M. Miyama, Numerical solution of Q**2 evolution equations for polarized structure functions, Comput. Phys. Commun.108 (1998) 38 [hep-ph/9707220] [INSPIRE].
LutheTMaierAMarquardPSchroderYThe five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gaugeJHEP2017101662017JHEP...10..166L373012410.1007/JHEP10(2017)166[arXiv:1709.07718] [INSPIRE]
BertoneVCarrazzaSRojoJAPFEL: A PDF Evolution Library with QED correctionsComput. Phys. Commun.201418516472014CoPhC.185.1647B320837510.1016/j.cpc.2014.03.007[arXiv:1310.1394] [INSPIRE]
MartinelliGSachrajdaCTA Lattice Study of Nucleon StructureNucl. Phys. B19893163551989NuPhB.316..355M10.1016/0550-3213(89)90035-7[INSPIRE]
BlanesSCasasFOteoJARosJThe magnus expansion and some of its applicationsPhys. Rept.20094701512009PhR...470..151B249419910.1016/j.physrep.2008.11.001[INSPIRE]
EfremovAVTeryaevOVQCD Asymmetry and Polarized Hadron Structure FunctionsPhys. Lett. B19851503831985PhLB..150..383E10.1016/0370-2693(85)90999-2[INSPIRE]
JiXYuanFZhaoYWhat we know and what we don’t know about the proton spin after 30 yearsNature Rev. Phys.20213272021NatRP...3...27J10.1038/s42254-020-00248-4[arXiv:2009.01291] [INSPIRE]
JiYBelitskyAVOn equations of motion in twist-four evolutionInt. J. Mod. Phys. Conf. Ser.201537156005110.1142/S2010194515600514[arXiv:1410.5805] [INSPIRE]
FucitoFParisiGPetrarcaSFirst evaluation of G(A) / G(V) in lattice QCD in the quenched approximationPhys. Lett. B19821151481982PhLB..115..148F10.1016/0370-2693(82)90816-4[INSPIRE]
MartinelliGParisiGPetronzioRRapuanoFThe Proton and Neutron Magnetic Moments in Lattice QCDPhys. Lett. B19821164341982PhLB..116..434M10.1016/0370-2693(82)90162-9[INSPIRE]
DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE]
B.M. Pirnay, t3evol - Numerical Solution of Twist-three Evolution Equations, arXiv:1307.1272 [INSPIRE].
S. Forte and S. Carrazza, Parton distribution functions, in P. Calafiura, D. Rosseau and K. Terao eds., Artificial Intelligence for High Energy Physics, World Scientific (2022) p. 715, https://doi.org/10.1142/9789811234033_0019 [arXiv:2008.12305] [INSPIRE].
D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE].
GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE]
J. Collins, Foundations of Perturbative QCD, Cambridge University Press (2011) [https://doi.org/10.1017/cbo9780511975592].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE].
A. Schafer and J. Zhou, A note on the scale evolution of the ETQS function TF(x, x), Phys. Rev. D85 (2012) 117501 [arXiv:1203.5293] [INSPIRE].
V.E. Lyubovitskij, W. Vogelsang, F. Wunder and A.S. Zhevlakov, Perturbative T-odd asymmetries in the Drell-Yan process revisited, Phys. Rev. D109 (2024) 114023 [arXiv:2403.18741] [INSPIRE].
Y. Hatta and X. Yao, QCD evolution of the orbital angular momentum of quarks and gluons: Genuine twist-three part, Phys. Lett. B798 (2019) 134941 [arXiv:1906.07744] [INSPIRE].
T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Springer (2015) [https://doi.org/10.1007/978-3-319-14848-9] [INSPIRE].
BukhvostovAPKuraevEALipatovLNEvolution equations for higher twist operatorsSov. J. Nucl. Phys.198338263[INSPIRE]
FurmanskiWPetronzioRA Method of Analyzing the Scaling Violation of Inclusive Spectra in Hard ProcessesNucl. Phys. B19821952371982NuPhB.195..237F10.1016/0550-3213(82)90398-4[INSPIRE]
QiuJ-WStermanGFSingle transverse spin asymmetriesPhys. Rev. Lett.19916722641991PhRvL..67.2264Q10.1103/PhysRevLett.67.2264[INSPIRE]
Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D79 (2009) 016003 [arXiv:0811.3101] [INSPIRE].
A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun.170 (2005) 65 [hep-ph/0408244] [INSPIRE].
DiehlMNagarRPloesslPTackmannFJEvolution and interpolation of double parton distributions using Chebyshev gridsEur. Phys. J. C2023835362023EPJC...83..536D10.1140/epjc/s10052-023-11692-8[arXiv:2305.04845] [INSPIRE]
S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE].
AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A10.1016/0550-3213(77)90384-4[INSPIRE]
W. Giele et al., The QCD / SM working group: Summary report, in the proceedings of the 2nd Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, May 21 – June 01 (2001) [hep-ph/0204316] [INSPIRE].
G. Falcioni et al., Four-loop splitting functions in QCD – The quark-to-gluon case, arXiv:2404.09701 [INSPIRE].
DiehlMIntroduction to GPDs and TMDsEur. Phys. J. A2016521492016EPJA...52..149D10.1140/epja/i2016-16149-3[arXiv:1512.01328] [INSPIRE]
HerzogFThe five-loop beta function of Yang-Mills theory with fermionsJHEP2017020902017JHEP...02..090H363752410.1007/JHEP02(2017)090[arXiv:1701.01404] [INSPIRE]
A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE].
BotjeMQCDNUM: Fast QCD Evolution and ConvolutionComput. Phys. Commun.20111824902011CoPhC.182..490B10.1016/j.cpc.2010.10.020[arXiv:1005.1481] [INSPIRE]
GaoJHarland-LangLRojoJThe Structure of the Proton in the LHC Precision EraPhys. Rept.201874212018PhR...742....1G379900710.1016/j.physrep.2018.03.002[arXiv:1709.04922] [INSPIRE]
T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].
RogersTCAn overview of transverse-momentum–dependent factorization and evolutionEur. Phys. J. A2016521532016EPJA...52..153R10.1140/epja/i2016-16153-7[arXiv:1509.04766] [INSPIRE]
M. Diehl, Generalized parton distributions, Phys. Rept.388 (2003) 41 [hep-ph/0307382] [INSPIRE].
CabibboNPetronzioRTwo Stage Model of Hadron Structure: Parton Distributions and Their Q2DependenceNucl. Phys. B19781373951978NuPhB.137..395C10.1016/0550-3213(78)90323-1[INSPIRE]
G. Martinelli and C.T. Sachrajda, Pion Structure Functions From Lattice QCD, Phys. Lett. B196 (1987) 184 [INSPIRE].
S. Rodini, L. Rossi and A. Vladimirov, Numerical implementation of evolution equations for twist-3 collinear PDFs, arXiv:2405.01162 [INSPIRE].
MartinelliGSachrajdaCTThe Quark Distribution Amplitude of the Proton: A Lattice Computation of the Lowest Two MomentsPhys. Lett. B19892173191989PhLB..217..319M10.1016/0370-2693(89)90874-5[INSPIRE]
M. Miyama and S. Kumano, Numerical solution of Q**2 evolution equations in a brute force method, Comput. Phys. Commun.94 (1996) 185 [hep-ph/9508246] [INSPIRE].
V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D80 (2009) 114002 [Erratum ibid.86 (2012) 119902] [arXiv:0909.3410] [INSPIRE].
Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
ConstantinouMThe x-dependence of hadronic parton distributions: A review on the progress of lattice QCDEur. Phys. J. A202157772021EPJA...57...77C10.1140/epja/s10050-021-00353-7[arXiv:2010.02445] [INSPIRE]
W. Vogelsang and F. Yuan, Next-to-leading Order Calcul
G Martinelli (23910_CR12) 1982; 116
23910_CR60
23910_CR62
23910_CR61
23910_CR64
23910_CR63
23910_CR22
23910_CR66
23910_CR65
23910_CR24
YL Dokshitzer (23910_CR29) 1977; 46
23910_CR68
23910_CR23
23910_CR67
23910_CR26
23910_CR25
23910_CR69
X Artru (23910_CR28) 1990; 45
A Deur (23910_CR73) 2016; 90
S Blanes (23910_CR59) 2009; 470
VN Gribov (23910_CR31) 1972; 15
AV Efremov (23910_CR39) 1985; 150
P Hagler (23910_CR20) 2010; 490
M Diehl (23910_CR53) 2022; 82
23910_CR11
23910_CR55
23910_CR10
M Constantinou (23910_CR21) 2021; 57
M Diehl (23910_CR34) 2016; 52
GP Salam (23910_CR52) 2009; 180
23910_CR56
23910_CR14
23910_CR58
23910_CR17
G Martinelli (23910_CR16) 1989; 217
23910_CR18
G Altarelli (23910_CR32) 1977; 126
A Candido (23910_CR49) 2022; 82
V Bertone (23910_CR51) 2014; 185
TC Rogers (23910_CR33) 2016; 52
F Fucito (23910_CR13) 1982; 115
23910_CR42
23910_CR41
J-W Qiu (23910_CR40) 1991; 67
23910_CR44
H-W Lin (23910_CR19) 2018; 100
23910_CR43
T Luthe (23910_CR72) 2017; 10
23910_CR9
23910_CR46
23910_CR45
23910_CR7
23910_CR48
23910_CR8
23910_CR47
M Botje (23910_CR50) 2011; 182
W Furmanski (23910_CR57) 1982; 195
YL Dokshitzer (23910_CR30) 1980; 58
M Diehl (23910_CR54) 2023; 83
Y Ji (23910_CR38) 2015; 37
N Cabibbo (23910_CR4) 1978; 137
JF Owens (23910_CR27) 1992; 42
23910_CR70
23910_CR75
23910_CR74
AP Bukhvostov (23910_CR37) 1983; 38
23910_CR77
23910_CR76
23910_CR36
R Angeles-Martinez (23910_CR35) 2015; 46
23910_CR1
23910_CR2
F Herzog (23910_CR71) 2017; 02
23910_CR3
X Ji (23910_CR6) 2021; 3
J Gao (23910_CR5) 2018; 742
G Martinelli (23910_CR15) 1989; 316
References_xml – reference: V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D80 (2009) 114002 [Erratum ibid.86 (2012) 119902] [arXiv:0909.3410] [INSPIRE].
– reference: BlanesSCasasFOteoJARosJThe magnus expansion and some of its applicationsPhys. Rept.20094701512009PhR...470..151B249419910.1016/j.physrep.2008.11.001[INSPIRE]
– reference: RogersTCAn overview of transverse-momentum–dependent factorization and evolutionEur. Phys. J. A2016521532016EPJA...52..153R10.1140/epja/i2016-16153-7[arXiv:1509.04766] [INSPIRE]
– reference: R.P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett.23 (1969) 1415 [INSPIRE].
– reference: BukhvostovAPKuraevEALipatovLNEvolution equations for higher twist operatorsSov. J. Nucl. Phys.198338263[INSPIRE]
– reference: DiehlMNagarRTackmannFJChiliPDF: Chebyshev interpolation for parton distributionsEur. Phys. J. C2022822572022EPJC...82..257D10.1140/epjc/s10052-022-10223-1[arXiv:2112.09703] [INSPIRE]
– reference: USQCD collaboration, Lattice QCD and Neutrino-Nucleus Scattering, Eur. Phys. J. A55 (2019) 196 [arXiv:1904.09931] [INSPIRE].
– reference: BertoneVCarrazzaSRojoJAPFEL: A PDF Evolution Library with QED correctionsComput. Phys. Commun.201418516472014CoPhC.185.1647B320837510.1016/j.cpc.2014.03.007[arXiv:1310.1394] [INSPIRE]
– reference: LutheTMaierAMarquardPSchroderYThe five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gaugeJHEP2017101662017JHEP...10..166L373012410.1007/JHEP10(2017)166[arXiv:1709.07718] [INSPIRE]
– reference: GaoJHarland-LangLRojoJThe Structure of the Proton in the LHC Precision EraPhys. Rept.201874212018PhR...742....1G379900710.1016/j.physrep.2018.03.002[arXiv:1709.04922] [INSPIRE]
– reference: R. Kobayashi, M. Konuma and S. Kumano, FORTRAN program for a numerical solution of the nonsinglet Altarelli-Parisi equation, Comput. Phys. Commun.86 (1995) 264 [hep-ph/9409289] [INSPIRE].
– reference: T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].
– reference: Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D79 (2009) 016003 [arXiv:0811.3101] [INSPIRE].
– reference: DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE]
– reference: EfremovAVTeryaevOVQCD Asymmetry and Polarized Hadron Structure FunctionsPhys. Lett. B19851503831985PhLB..150..383E10.1016/0370-2693(85)90999-2[INSPIRE]
– reference: D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE].
– reference: CabibboNPetronzioRTwo Stage Model of Hadron Structure: Parton Distributions and Their Q2DependenceNucl. Phys. B19781373951978NuPhB.137..395C10.1016/0550-3213(78)90323-1[INSPIRE]
– reference: M. Diehl, Generalized parton distributions, Phys. Rept.388 (2003) 41 [hep-ph/0307382] [INSPIRE].
– reference: JiXYuanFZhaoYWhat we know and what we don’t know about the proton spin after 30 yearsNature Rev. Phys.20213272021NatRP...3...27J10.1038/s42254-020-00248-4[arXiv:2009.01291] [INSPIRE]
– reference: DeurABrodskySJde TeramondGFThe QCD Running CouplingNucl. Phys.2016901[arXiv:1604.08082] [INSPIRE]
– reference: A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE].
– reference: ConstantinouMThe x-dependence of hadronic parton distributions: A review on the progress of lattice QCDEur. Phys. J. A202157772021EPJA...57...77C10.1140/epja/s10050-021-00353-7[arXiv:2010.02445] [INSPIRE]
– reference: T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Springer (2015) [https://doi.org/10.1007/978-3-319-14848-9] [INSPIRE].
– reference: S. Rodini, L. Rossi and A. Vladimirov, Numerical implementation of evolution equations for twist-3 collinear PDFs, arXiv:2405.01162 [INSPIRE].
– reference: M. Hirai, S. Kumano and M. Miyama, Numerical solution of Q**2 evolution equations for polarized structure functions, Comput. Phys. Commun.108 (1998) 38 [hep-ph/9707220] [INSPIRE].
– reference: MartinelliGParisiGPetronzioRRapuanoFThe Proton and Neutron Magnetic Moments in Lattice QCDPhys. Lett. B19821164341982PhLB..116..434M10.1016/0370-2693(82)90162-9[INSPIRE]
– reference: I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].
– reference: A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun.170 (2005) 65 [hep-ph/0408244] [INSPIRE].
– reference: S. Forte and S. Carrazza, Parton distribution functions, in P. Calafiura, D. Rosseau and K. Terao eds., Artificial Intelligence for High Energy Physics, World Scientific (2022) p. 715, https://doi.org/10.1142/9789811234033_0019 [arXiv:2008.12305] [INSPIRE].
– reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A10.1016/0550-3213(77)90384-4[INSPIRE]
– reference: Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
– reference: R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press (2011) [https://doi.org/10.1017/CBO9780511628788] [INSPIRE].
– reference: M. Miyama and S. Kumano, Numerical solution of Q**2 evolution equations in a brute force method, Comput. Phys. Commun.94 (1996) 185 [hep-ph/9508246] [INSPIRE].
– reference: MartinelliGSachrajdaCTThe Quark Distribution Amplitude of the Proton: A Lattice Computation of the Lowest Two MomentsPhys. Lett. B19892173191989PhLB..217..319M10.1016/0370-2693(89)90874-5[INSPIRE]
– reference: M. Constantinou et al., Parton distributions and lattice-QCD calculations: Toward 3D structure, Prog. Part. Nucl. Phys.121 (2021) 103908 [arXiv:2006.08636] [INSPIRE].
– reference: OwensJFTungW-KParton distribution functions of hadronsAnn. Rev. Nucl. Part. Sci.1992422911992ARNPS..42..291O10.1146/annurev.ns.42.120192.001451[INSPIRE]
– reference: W. Giele et al., The QCD / SM working group: Summary report, in the proceedings of the 2nd Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, May 21 – June 01 (2001) [hep-ph/0204316] [INSPIRE].
– reference: SalamGPRojoJA Higher Order Perturbative Parton Evolution Toolkit (HOPPET)Comput. Phys. Commun.20091801202009CoPhC.180..120S10.1016/j.cpc.2008.08.010[arXiv:0804.3755] [INSPIRE]
– reference: FurmanskiWPetronzioRA Method of Analyzing the Scaling Violation of Inclusive Spectra in Hard ProcessesNucl. Phys. B19821952371982NuPhB.195..237F10.1016/0550-3213(82)90398-4[INSPIRE]
– reference: P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
– reference: HaglerPHadron structure from lattice quantum chromodynamicsPhys. Rept.2010490492010PhR...490...49H262967610.1016/j.physrep.2009.12.008[arXiv:0912.5483] [INSPIRE]
– reference: HerzogFThe five-loop beta function of Yang-Mills theory with fermionsJHEP2017020902017JHEP...02..090H363752410.1007/JHEP02(2017)090[arXiv:1701.01404] [INSPIRE]
– reference: GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE]
– reference: S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE].
– reference: NNPDF collaboration, Evidence for intrinsic charm quarks in the proton, Nature608 (2022) 483 [arXiv:2208.08372] [INSPIRE].
– reference: ArtruXMekhfiMTransversely Polarized Parton Densities, their Evolution and their MeasurementZ. Phys. C1990456691990ZPhyC..45..669A10.1007/BF01556280[INSPIRE]
– reference: MartinelliGSachrajdaCTA Lattice Study of Nucleon StructureNucl. Phys. B19893163551989NuPhB.316..355M10.1016/0550-3213(89)90035-7[INSPIRE]
– reference: G. Martinelli and C.T. Sachrajda, Pion Structure Functions From Lattice QCD, Phys. Lett. B196 (1987) 184 [INSPIRE].
– reference: S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE].
– reference: H. Georgi and H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D9 (1974) 416 [INSPIRE].
– reference: Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon. B20154625012015AcPPB..46.2501A10.5506/APhysPolB.46.2501[arXiv:1507.05267] [INSPIRE]
– reference: J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE].
– reference: DokshitzerYLDiakonovDTroianSIHard Processes in Quantum ChromodynamicsPhys. Rept.1980582691980PhR....58..269D10.1016/0370-1573(80)90043-5[INSPIRE]
– reference: G. Falcioni et al., Four-loop splitting functions in QCD – The quark-to-gluon case, arXiv:2404.09701 [INSPIRE].
– reference: BotjeMQCDNUM: Fast QCD Evolution and ConvolutionComput. Phys. Commun.20111824902011CoPhC.182..490B10.1016/j.cpc.2010.10.020[arXiv:1005.1481] [INSPIRE]
– reference: JiYBelitskyAVOn equations of motion in twist-four evolutionInt. J. Mod. Phys. Conf. Ser.201537156005110.1142/S2010194515600514[arXiv:1410.5805] [INSPIRE]
– reference: CandidoAHekhornFMagniGEKO: evolution kernel operatorsEur. Phys. J. C2022829762022EPJC...82..976C10.1140/epjc/s10052-022-10878-w[arXiv:2202.02338] [INSPIRE]
– reference: V.E. Lyubovitskij, W. Vogelsang, F. Wunder and A.S. Zhevlakov, Perturbative T-odd asymmetries in the Drell-Yan process revisited, Phys. Rev. D109 (2024) 114023 [arXiv:2403.18741] [INSPIRE].
– reference: FucitoFParisiGPetrarcaSFirst evaluation of G(A) / G(V) in lattice QCD in the quenched approximationPhys. Lett. B19821151481982PhLB..115..148F10.1016/0370-2693(82)90816-4[INSPIRE]
– reference: Y. Hatta and X. Yao, QCD evolution of the orbital angular momentum of quarks and gluons: Genuine twist-three part, Phys. Lett. B798 (2019) 134941 [arXiv:1906.07744] [INSPIRE].
– reference: J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE].
– reference: J. Collins, Foundations of Perturbative QCD, Cambridge University Press (2011) [https://doi.org/10.1017/cbo9780511975592].
– reference: D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Global Analysis of Helicity Parton Densities and Their Uncertainties, Phys. Rev. Lett.101 (2008) 072001 [arXiv:0804.0422] [INSPIRE].
– reference: B.M. Pirnay, t3evol - Numerical Solution of Twist-three Evolution Equations, arXiv:1307.1272 [INSPIRE].
– reference: DiehlMIntroduction to GPDs and TMDsEur. Phys. J. A2016521492016EPJA...52..149D10.1140/epja/i2016-16149-3[arXiv:1512.01328] [INSPIRE]
– reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B971 (2021) 115542 [arXiv:2107.06267] [INSPIRE].
– reference: NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
– reference: S. Weinzierl, Fast evolution of parton distributions, Comput. Phys. Commun.148 (2002) 314 [hep-ph/0203112] [INSPIRE].
– reference: M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C5 (1998) 461 [hep-ph/9806404] [INSPIRE].
– reference: J. Zhou, F. Yuan and Z.-T. Liang, QCD Evolution of the Transverse Momentum Dependent Correlations, Phys. Rev. D79 (2009) 114022 [arXiv:0812.4484] [INSPIRE].
– reference: A. Simonelli, Analytic Solutions of the DGLAP Evolution and Theoretical Uncertainties, arXiv:2401.13663 [INSPIRE].
– reference: R. Boussarie et al., TMD Handbook, arXiv:2304.03302 [INSPIRE].
– reference: QiuJ-WStermanGFSingle transverse spin asymmetriesPhys. Rev. Lett.19916722641991PhRvL..67.2264Q10.1103/PhysRevLett.67.2264[INSPIRE]
– reference: A. Schafer and J. Zhou, A note on the scale evolution of the ETQS function TF(x, x), Phys. Rev. D85 (2012) 117501 [arXiv:1203.5293] [INSPIRE].
– reference: DiehlMNagarRPloesslPTackmannFJEvolution and interpolation of double parton distributions using Chebyshev gridsEur. Phys. J. C2023835362023EPJC...83..536D10.1140/epjc/s10052-023-11692-8[arXiv:2305.04845] [INSPIRE]
– reference: LinH-WParton distributions and lattice QCD calculations: a community white paperProg. Part. Nucl. Phys.20181001072018PrPNP.100..107L10.1016/j.ppnp.2018.01.007[arXiv:1711.07916] [INSPIRE]
– reference: W. Vogelsang and F. Yuan, Next-to-leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process, Phys. Rev. D79 (2009) 094010 [arXiv:0904.0410] [INSPIRE].
– volume: 42
  start-page: 291
  year: 1992
  ident: 23910_CR27
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.ns.42.120192.001451
– ident: 23910_CR11
– volume: 217
  start-page: 319
  year: 1989
  ident: 23910_CR16
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(89)90874-5
– ident: 23910_CR44
  doi: 10.1103/PhysRevD.80.114002
– ident: 23910_CR55
  doi: 10.1016/0010-4655(96)00013-6
– volume: 490
  start-page: 49
  year: 2010
  ident: 23910_CR20
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2009.12.008
– ident: 23910_CR14
  doi: 10.1016/0370-2693(87)90601-0
– volume: 67
  start-page: 2264
  year: 1991
  ident: 23910_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.2264
– volume: 137
  start-page: 395
  year: 1978
  ident: 23910_CR4
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(78)90323-1
– ident: 23910_CR76
– volume: 150
  start-page: 383
  year: 1985
  ident: 23910_CR39
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)90999-2
– volume: 116
  start-page: 434
  year: 1982
  ident: 23910_CR12
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90162-9
– volume: 115
  start-page: 148
  year: 1982
  ident: 23910_CR13
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(82)90816-4
– ident: 23910_CR66
  doi: 10.1016/j.nuclphysb.2004.03.030
– volume: 52
  start-page: 149
  year: 2016
  ident: 23910_CR34
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2016-16149-3
– ident: 23910_CR70
  doi: 10.1103/PhysRevLett.118.082002
– volume: 52
  start-page: 153
  year: 2016
  ident: 23910_CR33
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2016-16153-7
– ident: 23910_CR18
  doi: 10.1140/epjc/s10052-022-10536-1
– volume: 185
  start-page: 1647
  year: 2014
  ident: 23910_CR51
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.03.007
– ident: 23910_CR23
  doi: 10.1142/9789814503266_0001
– ident: 23910_CR47
  doi: 10.1016/S0010-4655(02)00584-2
– ident: 23910_CR26
  doi: 10.1142/9789811234033_0019
– ident: 23910_CR48
  doi: 10.1016/j.cpc.2005.03.103
– ident: 23910_CR24
  doi: 10.1103/PhysRevD.81.094035
– volume: 90
  start-page: 1
  year: 2016
  ident: 23910_CR73
  publication-title: Nucl. Phys.
– ident: 23910_CR3
  doi: 10.1103/PhysRevLett.25.316
– volume: 46
  start-page: 641
  year: 1977
  ident: 23910_CR29
  publication-title: Sov. Phys. JETP
– volume: 742
  start-page: 1
  year: 2018
  ident: 23910_CR5
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2018.03.002
– volume: 126
  start-page: 298
  year: 1977
  ident: 23910_CR32
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(77)90384-4
– ident: 23910_CR63
  doi: 10.1103/PhysRevD.9.416
– ident: 23910_CR77
  doi: 10.1016/j.physletb.2019.134941
– volume: 37
  start-page: 1560051
  year: 2015
  ident: 23910_CR38
  publication-title: Int. J. Mod. Phys. Conf. Ser.
  doi: 10.1142/S2010194515600514
– ident: 23910_CR17
– ident: 23910_CR22
  doi: 10.1016/j.ppnp.2021.103908
– volume: 45
  start-page: 669
  year: 1990
  ident: 23910_CR28
  publication-title: Z. Phys. C
  doi: 10.1007/BF01556280
– volume: 83
  start-page: 536
  year: 2023
  ident: 23910_CR54
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11692-8
– volume: 15
  start-page: 438
  year: 1972
  ident: 23910_CR31
  publication-title: Sov. J. Nucl. Phys.
– ident: 23910_CR42
  doi: 10.1103/PhysRevD.79.114022
– ident: 23910_CR46
– ident: 23910_CR69
– ident: 23910_CR36
  doi: 10.1016/j.physrep.2003.08.002
– ident: 23910_CR58
  doi: 10.1016/0010-4655(94)00159-Y
– volume: 182
  start-page: 490
  year: 2011
  ident: 23910_CR50
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.10.020
– ident: 23910_CR61
– volume: 3
  start-page: 27
  year: 2021
  ident: 23910_CR6
  publication-title: Nature Rev. Phys.
  doi: 10.1038/s42254-020-00248-4
– volume: 470
  start-page: 151
  year: 2009
  ident: 23910_CR59
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2008.11.001
– ident: 23910_CR1
  doi: 10.1103/PhysRevLett.23.1415
– volume: 180
  start-page: 120
  year: 2009
  ident: 23910_CR52
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.08.010
– ident: 23910_CR56
  doi: 10.1016/S0010-4655(97)00129-X
– volume: 100
  start-page: 107
  year: 2018
  ident: 23910_CR19
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2018.01.007
– ident: 23910_CR10
  doi: 10.1140/epjc/s10052-017-5199-5
– ident: 23910_CR41
  doi: 10.1103/PhysRevD.79.016003
– volume: 02
  start-page: 090
  year: 2017
  ident: 23910_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)090
– ident: 23910_CR68
  doi: 10.1016/j.nuclphysb.2021.115542
– volume: 82
  start-page: 976
  year: 2022
  ident: 23910_CR49
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10878-w
– ident: 23910_CR74
– ident: 23910_CR25
  doi: 10.1007/978-3-319-14848-9
– ident: 23910_CR64
  doi: 10.1103/PhysRevD.9.980
– volume: 10
  start-page: 166
  year: 2017
  ident: 23910_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)166
– volume: 46
  start-page: 2501
  year: 2015
  ident: 23910_CR35
  publication-title: Acta Phys. Polon. B
  doi: 10.5506/APhysPolB.46.2501
– volume: 57
  start-page: 77
  year: 2021
  ident: 23910_CR21
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-021-00353-7
– ident: 23910_CR75
  doi: 10.1007/s100520050289
– ident: 23910_CR45
– ident: 23910_CR7
  doi: 10.1038/s41586-022-04998-2
– volume: 58
  start-page: 269
  year: 1980
  ident: 23910_CR30
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(80)90043-5
– volume: 38
  start-page: 263
  year: 1983
  ident: 23910_CR37
  publication-title: Sov. J. Nucl. Phys.
– ident: 23910_CR2
  doi: 10.1103/PhysRev.185.1975
– ident: 23910_CR43
  doi: 10.1103/PhysRevD.79.094010
– ident: 23910_CR67
  doi: 10.1016/j.nuclphysb.2004.04.024
– volume: 82
  start-page: 257
  year: 2022
  ident: 23910_CR53
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10223-1
– volume: 316
  start-page: 355
  year: 1989
  ident: 23910_CR15
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90035-7
– ident: 23910_CR60
  doi: 10.1103/PhysRevD.109.114023
– ident: 23910_CR62
  doi: 10.1017/CBO9780511628788
– ident: 23910_CR65
  doi: 10.1017/cbo9780511975592
– ident: 23910_CR9
  doi: 10.1103/PhysRevD.103.014013
– volume: 195
  start-page: 237
  year: 1982
  ident: 23910_CR57
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90398-4
– ident: 23910_CR8
  doi: 10.1103/PhysRevLett.101.072001
SSID ssj0015190
Score 2.4501872
Snippet A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is...
We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed...
We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed...
Abstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 72
SubjectTerms Algorithms
Analytic functions
Classical and Quantum Gravitation
Differential equations
Elementary Particles
Evolutionary computation
Factorization
Mathematical analysis
Methods
Ordinary differential equations
Parton Distributions
Partons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Renormalization Group
String Theory
Subsystems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB6VVAg4oJYfNdBWPnBoDla9a2cdHxBKaUpU0ShCVOptZc_aBdRuNk0K7Y2H4Al5EuzNOmmF4LbyerWWv_HMeMb-BuANV9YhzwQVTtbRKka13yZQJTCRnAtkLtx3Phllw1NxfNY9W4NRvAsTjlVGnVgr6mKCIUa-zwNXm3fuZfKumtJQNSpkV2MJDd2UVije1hRjD2A9DcxYLVg_GIzGn5Z5Be-vsEjww-T-8XAwZnIv9Yaqw2R6zzbVFP73_M5lqvQJPLouK337Q19c3LFGRxvwtHEjSX-B-yas2fIZPKyPc-LsOUz7ZGYvv1IdKEfqaDW5oV53oCVR1oj3VknlBcc_2u-x8ffPX6S_ymmT-YSUk5KGgIIHmOiyIPH58MPH_pjY6YIr_AWcHg0-vx_SprgCRS6TOfVqTQkhtbbMySRFkVrleGBzL7R0zjDp0DGnjchEpjl2XahNnRQmcS4VaPhLaPkB2C0gmckMM_7TnvEGX2lVaOOs7TGOzkmTtWEvTmteLTg08siWvEAgDwjkHoE2HIRpX3YL5Nd1w-TqPG_WUs56orAZIgqjhd_B6i5DhX5n1kMtuqjasB1By5sVOctX8tOGTgRy9fqf4-kskf5r7N--2OpO31f__-1reBx61kd91Ta05lfXdsc7NHOz20jpH-qz9eo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZGY9SD8RnrKxw82AORLRTKsT4bo8aDJt42MAtRU2u19XXzR_gL_SUO2936igdvExY2Ez5gZhj4IGRDGB9AKMlk0PluFWcWwwRmJCRaCAk8xPvOxyeqdS4PL-oXBUlSvAvzI3-_ddjaO-V6E0N0WeUa19oxtFAqz8qqnWG6AN0QXvL2_G70zeTkzPzf3MlhBnSKTDx0uvblybbbX4zM_gyZLrxD2hzAOUtGfGeOjOenNKE3T-6atOdvrpiNTCL5JjR9ZrgkgKflEKLohNIujgcU_WNZ-P76RpufqWrav6UY9rO4T4C4UdvJaCnvHhw1T6m_G1CAL5Dz_b2znRYr3kxgIHTSZ7haGSm1tZ4HndRA1rwJIpK0Z1aH4LgOEHiwTiqprIB6iE9OJ5lLQqhJcGKRjKICfolQ5ZTjDps2HNpxY01mXfC-wQWEoJ2qkM2yW9PugBojLUmQBwikEYEUEaiQ7djtw2qR0zovQKjTYoqkvCEzrwBAOisxMLV1DgYw4GqAlXUwFbJagpYWE62XikjhhzGfTiqkWgL5-flPfapDpH_pfn3pu1_qLv_jvytkMor5cV6zSkb79w9-DZ2WvlvPB-wHWWjm6Q
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQVgg4lH-xUJAPHLoHFyd27PUxQMuqgmoPrFROkT2xVaCkWzZLW048BE_IkzDOz5a2QoJTRokTTTzj8YzH_oaQ58L4AEJJJoNuVqs4sxgmMCMh0UJI4CGed363pyYzubuf7XcgSfEszKX8_YtPB37O9SaG6HLENdraNZWh0z0ga7O9af6hyWWmhqGNNU0ZlVQxpZs6dEhrhpOf6gF9rn7twlzUQPZf8DNXqdFb5MaymtuzE3t4-Mfss3ObTHq-200nn7eWtduC75cgHf_hx-6Q9c4DpXmrMnfJNV_dI9ebnaCwuE-Oc7rwXz4yG9FKmoVuesrQ7ICnvZpSdHTpHHUOSf-tv_nrx0-an6fDaX1Eq6OKxbUI1A1qq5L29Os3b_Mp9cctzPgDMtvZfv9qwrq6DAyETmqGFtFIqa31POgkBZl6E0QEgi-tDsFxHSDwYJ1UUlkBWYhlrZPSJSGkEpx4SAbIgH9EqHLKcYevjh36Csaa0rrg_ZgLCEE7NSSbvYSKeQu_UfRAy7uT7SleYg8W2IND8jJKcNUs4mY3N7DXi24YFnwsS68AQDorMfi1GQcDGNSNwcoMzJBs9PIvusG8KESECcS4UidDMup14vzxX_kZrZTmCu-t9FdtH_9H2yfkZiSbLcNmgwzqr0v_FB2j2j3rBsVvJgEEjw
  priority: 102
  providerName: Unpaywall
Title A semi-analytical x-space solution for parton evolution — Application to non-singlet and singlet DGLAP equation
URI https://link.springer.com/article/10.1007/JHEP07(2024)072
https://www.proquest.com/docview/3077571671
https://doi.org/10.1007/jhep07(2024)072
https://doaj.org/article/084de6ccc4ba4721a50c9c6268ca45c9
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdgEwIOiL-iMCofOKyHaE7s2vExK-2qCaoKUWmcIvvF1kAj62jHnxsfgk_IJ-E5ibtOCHHhYjmOE728n2O_Zz__TMhLrp0HLkUivGpmq1hi0E1ItIBUcS6A-bDf-c1MThfi-GR4snXUV4gJa-mBW8UdsFxUTgKAsEagu2KGDDSgGZ6DEUNotu6xXEdnqls_QLuERSIfpg6Op-M5U_vo6IsBU9m1Maih6r9mX26WRO-S25f10nz_as7OtkadyX1yrzMXadGK-YDccPVDcqsJ24TVI3JR0JX79CExgVqkmZWm3xLsI8DR2KYoWqV0id-JWfclFv768ZMWV2vXdH1O6_M6CRMHCCQ1dUVj_tXR62JO3UXLCf6YLCbjd6Np0h2ikABX6TrB7ksLoYxxzKs0A5E57Xlgba-M8t4y5cEzb6yQQhoOQx_OoE4rm3qfCbD8CdlBAdxTQqWVlll8NLc4sGujK2O9cznj4L2yskf2o1rLZcuVUUZW5BaBMiBQIgI9chjUvqkWSK6bAoS-7KAv_wV9j-xF0Mruz1uVPHD6oROo0h4ZRCCvbv9VnsEG6T9k_3jqllt1n_0P2Z-TO-F9TeCv3iM768-X7gWaN2vbJzfzyVGf7B6OZ_O3eDXKREjlqN-0cUwXGaa7i9m8eP8bMcf_Ew
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVqhwQPyKQAEfQGoOq3rXzjo-VCilKWmbRhFqpd62ttfmR2WzaVJKbzwEz8PD8CSMN-ukFYJbb5bX9lqe8Xh-7G8AXjNpnWEpj7gTlbeKRgrNhEhyEwvGuKHOv3c-GKS9I7533Dpegl_hLYy_VhlkYiWo85HxPvIN5rHaULkX8dtyHPmsUT66GlJoqDq1Qr5ZQYzVDzv27eUFmnCTzd1tpPebJNnpHr7rRXWWgcgwEU8j3N-Sc6GUpU7EieGJlY55WPNcCec0Fc446pTmKU8VMy3nkzTHuY6dS7jRDMe9BSuccYnG38pWdzD8MI9joH5EA6AQFRt7ve6QivUED8YmFcm1s7BKGXBNz52HZu_C6nlRqssLdXp65fTbuQ_3arWVdGZ89gCWbPEQblfXR83kEYw7ZGK_fo6UhzipvOPke4SyylgSeJugdkxKZFQs2m-h8vePn6SziKGT6YgUoyLyDgxkKKKKnITy9vt-Z0jseIZN_hiObmSZn8AyTsA-BZLqVFONXdsaFQypZK60s7ZNmXFO6LQB62FZs3KG2ZEFdOYZBTJPgQwp0IAtv-zzZh5su6oYnX3M6r2b0TbPbWqM4VpxtJhVixpp0BJsG8VbRjZgLRAtqyXAJFvwawOagZCLz_-cT3NO6b_m_uWTLa-0ffb_376C1d7hQT_r7w72n8Md36u6ZizXYHl6dm5foDI11S9rjiVwctOb5A8ftzTf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VIigcEL8iUMAHkJqDFe_aWWcPCAXSNP2hyoFKvS2216agstk0KaU3HoKn4XF4Esa766QVgltvK6-9a3lm7PnzNwAveWqd4YmgwsnKW8WoQjOBpsJEknNhmPP3nd_vJ6MDsXPYPVyBX-EujE-rDHtitVHnE-N95B3usdpQuZdRxzVpEePB8E05pb6ClI-0hnIaNYvs2vMzNN9mr7cHSOtXcTzc_PBuRJsKA9RwGc0pynYqhFTKMiej2IjYpo57SPNcSec0k8445pQWiUgUN13nCzRHuY6ci4XRHL97Da5Lj-Lub6kPtxYRDNSMWIASYrKzM9ocM7kR45HYZjK-dApWxQIuabiLoOxtWDstSnV-po6PL5x7w7twp1FYSb_msHuwYov7cKNKHDWzBzDtk5n9-pkqD25S-cXJd4q7lLEkcDVBvZiUyKL4aL-Fxt8_fpL-MnpO5hNSTArqXRfISkQVOQnPg629_pjYaY1K_hAOrmSRH8EqTsA-BpLoRDONQ3saVYtUpbnSztoe48Y5qZMWbIRlzcoarSMLuMw1BTJPgQwp0IK3ftkX3TzMdtUwOfmUNVKbsZ7IbWKMEVoJtJVVl5nUoA3YM0p0TdqC9UC0rJH9Wbbk1Ba0AyGXr_85n_aC0n_N_cuRLS_0ffL_376Amyga2d72_u5TuOUHVfnF6Tqszk9O7TPUoub6ecWuBD5etXz8Ab7jMnk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQVgg4lH-xUJAPHLoHFyd27PUxQMuqgmoPrFROkT2xVaCkWzZLW048BE_IkzDOz5a2QoJTRokTTTzj8YzH_oaQ58L4AEJJJoNuVqs4sxgmMCMh0UJI4CGed363pyYzubuf7XcgSfEszKX8_YtPB37O9SaG6HLENdraNZWh0z0ga7O9af6hyWWmhqGNNU0ZlVQxpZs6dEhrhpOf6gF9rn7twlzUQPZf8DNXqdFb5MaymtuzE3t4-Mfss3ObTHq-200nn7eWtduC75cgHf_hx-6Q9c4DpXmrMnfJNV_dI9ebnaCwuE-Oc7rwXz4yG9FKmoVuesrQ7ICnvZpSdHTpHHUOSf-tv_nrx0-an6fDaX1Eq6OKxbUI1A1qq5L29Os3b_Mp9cctzPgDMtvZfv9qwrq6DAyETmqGFtFIqa31POgkBZl6E0QEgi-tDsFxHSDwYJ1UUlkBWYhlrZPSJSGkEpx4SAbIgH9EqHLKcYevjh36Csaa0rrg_ZgLCEE7NSSbvYSKeQu_UfRAy7uT7SleYg8W2IND8jJKcNUs4mY3N7DXi24YFnwsS68AQDorMfi1GQcDGNSNwcoMzJBs9PIvusG8KESECcS4UidDMup14vzxX_kZrZTmCu-t9FdtH_9H2yfkZiSbLcNmgwzqr0v_FB2j2j3rBsVvJgEEjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-analytical+x-space+solution+for+parton+evolution+%E2%80%94+Application+to+non-singlet+and+singlet+DGLAP+equation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Juliane+Haug&rft.au=Oliver+Sch%C3%BCle&rft.au=Fabian+Wunder&rft.date=2024-07-09&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1007%2FJHEP07%282024%29072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon