A semi-analytical x-space solution for parton evolution — Application to non-singlet and singlet DGLAP equation
A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation trans...
        Saved in:
      
    
          | Published in | The journal of high energy physics Vol. 2024; no. 7; pp. 72 - 29 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        09.07.2024
     Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479  | 
| DOI | 10.1007/JHEP07(2024)072 | 
Cover
| Abstract | A
bstract
We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning
x
-space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in
x
with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python. | 
    
|---|---|
| AbstractList | We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python. Abstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python. A bstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed under the considered evolution equation. Using these functions as a basis, the original integro-differential evolution equation transforms into a system of coupled ordinary differential equations, which can be solved numerically by restriction to a suitably chosen finite subsystem. The evolved distributions are obtained as analytic functions in x with numerically obtained coefficients, providing insight into the analytic behavior of the evolved parton distributions. As a proof-of-principle, we apply our method to the leading order non-singlet and singlet DGLAP equation. Comparing our results to traditional Mellin-space methods, we find good agreement. The method is implemented in the code POMPOM in Mathematica as well as in Python.  | 
    
| ArticleNumber | 72 | 
    
| Author | Wunder, Fabian Haug, Juliane Schüle, Oliver  | 
    
| Author_xml | – sequence: 1 givenname: Juliane orcidid: 0009-0008-3076-1122 surname: Haug fullname: Haug, Juliane organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics – sequence: 2 givenname: Oliver orcidid: 0009-0007-8347-0081 surname: Schüle fullname: Schüle, Oliver organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics – sequence: 3 givenname: Fabian orcidid: 0009-0007-4136-7844 surname: Wunder fullname: Wunder, Fabian email: fabian.wunder@uni-tuebingen.de organization: Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics  | 
    
| BookMark | eNp1kcFO3DAQhi1EpQLtuVdLvbSHlLHjxMlxRSlQrQQHOFsTx16yMnHWTqB760P0CfskNRsoSFVPMx79_6eZ34dkv_e9IeQDgy8MQB5_Pz-9AvmJAxefQfI9csCA11klZL3_qn9LDmNcA7CC1XBANgsazV2XYY9uO3YaHf2RxQG1odG7aex8T60PdMAwptbcPw9___xFF8PgkmX3Hj1NC2Wx61fOjBT7lj73X8-WiytqNtNO-Y68seiief9Uj8jNt9Prk_NseXl2cbJYZjqXbMza1tRCSEQDVjKuBTe1zSsOZYvS2gak1RYsNqIUJea6sEJAxdqGWcuFbvIjcjFzW49rNYTuDsNWeezUbuDDSqWbOu2Mgkq0ptRaiwaF5AwL0LUueVlpFIWuEwtm1tQPuH1A5_4CGajH-NX61gypPMavUvzJ8nG2DMFvJhNHtfZTSClHlYOUhWSlZEl1PKt08DEGY__hzt_6mvu0SkzKfmXCC_d_lj-M5qdB | 
    
| Cites_doi | 10.1146/annurev.ns.42.120192.001451 10.1016/0370-2693(89)90874-5 10.1103/PhysRevD.80.114002 10.1016/0010-4655(96)00013-6 10.1016/j.physrep.2009.12.008 10.1016/0370-2693(87)90601-0 10.1103/PhysRevLett.67.2264 10.1016/0550-3213(78)90323-1 10.1016/0370-2693(85)90999-2 10.1016/0370-2693(82)90162-9 10.1016/0370-2693(82)90816-4 10.1016/j.nuclphysb.2004.03.030 10.1140/epja/i2016-16149-3 10.1103/PhysRevLett.118.082002 10.1140/epja/i2016-16153-7 10.1140/epjc/s10052-022-10536-1 10.1016/j.cpc.2014.03.007 10.1142/9789814503266_0001 10.1016/S0010-4655(02)00584-2 10.1142/9789811234033_0019 10.1016/j.cpc.2005.03.103 10.1103/PhysRevD.81.094035 10.1103/PhysRevLett.25.316 10.1016/j.physrep.2018.03.002 10.1016/0550-3213(77)90384-4 10.1103/PhysRevD.9.416 10.1016/j.physletb.2019.134941 10.1142/S2010194515600514 10.1016/j.ppnp.2021.103908 10.1007/BF01556280 10.1140/epjc/s10052-023-11692-8 10.1103/PhysRevD.79.114022 10.1016/j.physrep.2003.08.002 10.1016/0010-4655(94)00159-Y 10.1016/j.cpc.2010.10.020 10.1038/s42254-020-00248-4 10.1016/j.physrep.2008.11.001 10.1103/PhysRevLett.23.1415 10.1016/j.cpc.2008.08.010 10.1016/S0010-4655(97)00129-X 10.1016/j.ppnp.2018.01.007 10.1140/epjc/s10052-017-5199-5 10.1103/PhysRevD.79.016003 10.1007/JHEP02(2017)090 10.1016/j.nuclphysb.2021.115542 10.1140/epjc/s10052-022-10878-w 10.1007/978-3-319-14848-9 10.1103/PhysRevD.9.980 10.1007/JHEP10(2017)166 10.5506/APhysPolB.46.2501 10.1140/epja/s10050-021-00353-7 10.1007/s100520050289 10.1038/s41586-022-04998-2 10.1016/0370-1573(80)90043-5 10.1103/PhysRev.185.1975 10.1103/PhysRevD.79.094010 10.1016/j.nuclphysb.2004.04.024 10.1140/epjc/s10052-022-10223-1 10.1016/0550-3213(89)90035-7 10.1103/PhysRevD.109.114023 10.1017/CBO9780511628788 10.1017/cbo9780511975592 10.1103/PhysRevD.103.014013 10.1016/0550-3213(82)90398-4 10.1103/PhysRevLett.101.072001  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/JHEP07(2024)072 | 
    
| DatabaseName | Springer Nature Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1029-8479 | 
    
| EndPage | 29 | 
    
| ExternalDocumentID | oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9 10.1007/jhep07(2024)072 10_1007_JHEP07_2024_072  | 
    
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYZH ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC ADTOC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 UNPAY  | 
    
| ID | FETCH-LOGICAL-c371t-dde9447aae0f712c42e9f38206da7ffb07fcf0fab4646a3c5f44081db1ff24cb3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1029-8479 1126-6708 1127-2236  | 
    
| IngestDate | Fri Oct 03 12:45:02 EDT 2025 Sun Sep 07 11:23:40 EDT 2025 Sat Oct 18 23:14:14 EDT 2025 Wed Oct 01 06:43:00 EDT 2025 Fri Feb 21 02:37:23 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | Factorization Renormalization Group Parton Distributions  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c371t-dde9447aae0f712c42e9f38206da7ffb07fcf0fab4646a3c5f44081db1ff24cb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0007-4136-7844 0009-0008-3076-1122 0009-0007-8347-0081  | 
    
| OpenAccessLink | https://doaj.org/article/084de6ccc4ba4721a50c9c6268ca45c9 | 
    
| PQID | 3077571671 | 
    
| PQPubID | 2034718 | 
    
| PageCount | 29 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9 unpaywall_primary_10_1007_jhep07_2024_072 proquest_journals_3077571671 crossref_primary_10_1007_JHEP07_2024_072 springer_journals_10_1007_JHEP07_2024_072  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-07-09 | 
    
| PublicationDateYYYYMMDD | 2024-07-09 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-09 day: 09  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | The journal of high energy physics | 
    
| PublicationTitleAbbrev | J. High Energ. Phys | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | R. Boussarie et al., TMD Handbook, arXiv:2304.03302 [INSPIRE]. DeurABrodskySJde TeramondGFThe QCD Running CouplingNucl. Phys.2016901[arXiv:1604.08082] [INSPIRE] P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE]. Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon. B20154625012015AcPPB..46.2501A10.5506/APhysPolB.46.2501[arXiv:1507.05267] [INSPIRE] R.P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett.23 (1969) 1415 [INSPIRE]. DiehlMNagarRTackmannFJChiliPDF: Chebyshev interpolation for parton distributionsEur. Phys. J. C2022822572022EPJC...82..257D10.1140/epjc/s10052-022-10223-1[arXiv:2112.09703] [INSPIRE] S. Weinzierl, Fast evolution of parton distributions, Comput. Phys. Commun.148 (2002) 314 [hep-ph/0203112] [INSPIRE]. HaglerPHadron structure from lattice quantum chromodynamicsPhys. Rept.2010490492010PhR...490...49H262967610.1016/j.physrep.2009.12.008[arXiv:0912.5483] [INSPIRE] M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C5 (1998) 461 [hep-ph/9806404] [INSPIRE]. NNPDF collaboration, Evidence for intrinsic charm quarks in the proton, Nature608 (2022) 483 [arXiv:2208.08372] [INSPIRE]. USQCD collaboration, Lattice QCD and Neutrino-Nucleus Scattering, Eur. Phys. J. A55 (2019) 196 [arXiv:1904.09931] [INSPIRE]. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D81 (2010) 094035 [arXiv:0910.0467] [INSPIRE]. DokshitzerYLDiakonovDTroianSIHard Processes in Quantum ChromodynamicsPhys. Rept.1980582691980PhR....58..269D10.1016/0370-1573(80)90043-5[INSPIRE] OwensJFTungW-KParton distribution functions of hadronsAnn. Rev. Nucl. Part. Sci.1992422911992ARNPS..42..291O10.1146/annurev.ns.42.120192.001451[INSPIRE] CandidoAHekhornFMagniGEKO: evolution kernel operatorsEur. Phys. J. C2022829762022EPJC...82..976C10.1140/epjc/s10052-022-10878-w[arXiv:2202.02338] [INSPIRE] S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. J. Zhou, F. Yuan and Z.-T. Liang, QCD Evolution of the Transverse Momentum Dependent Correlations, Phys. Rev. D79 (2009) 114022 [arXiv:0812.4484] [INSPIRE]. M. Hirai, S. Kumano and M. Miyama, Numerical solution of Q**2 evolution equations for polarized structure functions, Comput. Phys. Commun.108 (1998) 38 [hep-ph/9707220] [INSPIRE]. LutheTMaierAMarquardPSchroderYThe five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gaugeJHEP2017101662017JHEP...10..166L373012410.1007/JHEP10(2017)166[arXiv:1709.07718] [INSPIRE] BertoneVCarrazzaSRojoJAPFEL: A PDF Evolution Library with QED correctionsComput. Phys. Commun.201418516472014CoPhC.185.1647B320837510.1016/j.cpc.2014.03.007[arXiv:1310.1394] [INSPIRE] MartinelliGSachrajdaCTA Lattice Study of Nucleon StructureNucl. Phys. B19893163551989NuPhB.316..355M10.1016/0550-3213(89)90035-7[INSPIRE] BlanesSCasasFOteoJARosJThe magnus expansion and some of its applicationsPhys. Rept.20094701512009PhR...470..151B249419910.1016/j.physrep.2008.11.001[INSPIRE] EfremovAVTeryaevOVQCD Asymmetry and Polarized Hadron Structure FunctionsPhys. Lett. B19851503831985PhLB..150..383E10.1016/0370-2693(85)90999-2[INSPIRE] JiXYuanFZhaoYWhat we know and what we don’t know about the proton spin after 30 yearsNature Rev. Phys.20213272021NatRP...3...27J10.1038/s42254-020-00248-4[arXiv:2009.01291] [INSPIRE] JiYBelitskyAVOn equations of motion in twist-four evolutionInt. J. Mod. Phys. Conf. Ser.201537156005110.1142/S2010194515600514[arXiv:1410.5805] [INSPIRE] FucitoFParisiGPetrarcaSFirst evaluation of G(A) / G(V) in lattice QCD in the quenched approximationPhys. Lett. B19821151481982PhLB..115..148F10.1016/0370-2693(82)90816-4[INSPIRE] MartinelliGParisiGPetronzioRRapuanoFThe Proton and Neutron Magnetic Moments in Lattice QCDPhys. Lett. B19821164341982PhLB..116..434M10.1016/0370-2693(82)90162-9[INSPIRE] DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE] B.M. Pirnay, t3evol - Numerical Solution of Twist-three Evolution Equations, arXiv:1307.1272 [INSPIRE]. S. Forte and S. Carrazza, Parton distribution functions, in P. Calafiura, D. Rosseau and K. Terao eds., Artificial Intelligence for High Energy Physics, World Scientific (2022) p. 715, https://doi.org/10.1142/9789811234033_0019 [arXiv:2008.12305] [INSPIRE]. D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE]. GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE] J. Collins, Foundations of Perturbative QCD, Cambridge University Press (2011) [https://doi.org/10.1017/cbo9780511975592]. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE]. A. Schafer and J. Zhou, A note on the scale evolution of the ETQS function TF(x, x), Phys. Rev. D85 (2012) 117501 [arXiv:1203.5293] [INSPIRE]. V.E. Lyubovitskij, W. Vogelsang, F. Wunder and A.S. Zhevlakov, Perturbative T-odd asymmetries in the Drell-Yan process revisited, Phys. Rev. D109 (2024) 114023 [arXiv:2403.18741] [INSPIRE]. Y. Hatta and X. Yao, QCD evolution of the orbital angular momentum of quarks and gluons: Genuine twist-three part, Phys. Lett. B798 (2019) 134941 [arXiv:1906.07744] [INSPIRE]. T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Springer (2015) [https://doi.org/10.1007/978-3-319-14848-9] [INSPIRE]. BukhvostovAPKuraevEALipatovLNEvolution equations for higher twist operatorsSov. J. Nucl. Phys.198338263[INSPIRE] FurmanskiWPetronzioRA Method of Analyzing the Scaling Violation of Inclusive Spectra in Hard ProcessesNucl. Phys. B19821952371982NuPhB.195..237F10.1016/0550-3213(82)90398-4[INSPIRE] QiuJ-WStermanGFSingle transverse spin asymmetriesPhys. Rev. Lett.19916722641991PhRvL..67.2264Q10.1103/PhysRevLett.67.2264[INSPIRE] Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D79 (2009) 016003 [arXiv:0811.3101] [INSPIRE]. A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun.170 (2005) 65 [hep-ph/0408244] [INSPIRE]. DiehlMNagarRPloesslPTackmannFJEvolution and interpolation of double parton distributions using Chebyshev gridsEur. Phys. J. C2023835362023EPJC...83..536D10.1140/epjc/s10052-023-11692-8[arXiv:2305.04845] [INSPIRE] S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE]. AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A10.1016/0550-3213(77)90384-4[INSPIRE] W. Giele et al., The QCD / SM working group: Summary report, in the proceedings of the 2nd Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, May 21 – June 01 (2001) [hep-ph/0204316] [INSPIRE]. G. Falcioni et al., Four-loop splitting functions in QCD – The quark-to-gluon case, arXiv:2404.09701 [INSPIRE]. DiehlMIntroduction to GPDs and TMDsEur. Phys. J. A2016521492016EPJA...52..149D10.1140/epja/i2016-16149-3[arXiv:1512.01328] [INSPIRE] HerzogFThe five-loop beta function of Yang-Mills theory with fermionsJHEP2017020902017JHEP...02..090H363752410.1007/JHEP02(2017)090[arXiv:1701.01404] [INSPIRE] A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE]. BotjeMQCDNUM: Fast QCD Evolution and ConvolutionComput. Phys. Commun.20111824902011CoPhC.182..490B10.1016/j.cpc.2010.10.020[arXiv:1005.1481] [INSPIRE] GaoJHarland-LangLRojoJThe Structure of the Proton in the LHC Precision EraPhys. Rept.201874212018PhR...742....1G379900710.1016/j.physrep.2018.03.002[arXiv:1709.04922] [INSPIRE] T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D103 (2021) 014013 [arXiv:1912.10053] [INSPIRE]. RogersTCAn overview of transverse-momentum–dependent factorization and evolutionEur. Phys. J. A2016521532016EPJA...52..153R10.1140/epja/i2016-16153-7[arXiv:1509.04766] [INSPIRE] M. Diehl, Generalized parton distributions, Phys. Rept.388 (2003) 41 [hep-ph/0307382] [INSPIRE]. CabibboNPetronzioRTwo Stage Model of Hadron Structure: Parton Distributions and Their Q2DependenceNucl. Phys. B19781373951978NuPhB.137..395C10.1016/0550-3213(78)90323-1[INSPIRE] G. Martinelli and C.T. Sachrajda, Pion Structure Functions From Lattice QCD, Phys. Lett. B196 (1987) 184 [INSPIRE]. S. Rodini, L. Rossi and A. Vladimirov, Numerical implementation of evolution equations for twist-3 collinear PDFs, arXiv:2405.01162 [INSPIRE]. MartinelliGSachrajdaCTThe Quark Distribution Amplitude of the Proton: A Lattice Computation of the Lowest Two MomentsPhys. Lett. B19892173191989PhLB..217..319M10.1016/0370-2693(89)90874-5[INSPIRE] M. Miyama and S. Kumano, Numerical solution of Q**2 evolution equations in a brute force method, Comput. Phys. Commun.94 (1996) 185 [hep-ph/9508246] [INSPIRE]. V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D80 (2009) 114002 [Erratum ibid.86 (2012) 119902] [arXiv:0909.3410] [INSPIRE]. Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE]. ConstantinouMThe x-dependence of hadronic parton distributions: A review on the progress of lattice QCDEur. Phys. J. A202157772021EPJA...57...77C10.1140/epja/s10050-021-00353-7[arXiv:2010.02445] [INSPIRE] W. Vogelsang and F. Yuan, Next-to-leading Order Calcul G Martinelli (23910_CR12) 1982; 116 23910_CR60 23910_CR62 23910_CR61 23910_CR64 23910_CR63 23910_CR22 23910_CR66 23910_CR65 23910_CR24 YL Dokshitzer (23910_CR29) 1977; 46 23910_CR68 23910_CR23 23910_CR67 23910_CR26 23910_CR25 23910_CR69 X Artru (23910_CR28) 1990; 45 A Deur (23910_CR73) 2016; 90 S Blanes (23910_CR59) 2009; 470 VN Gribov (23910_CR31) 1972; 15 AV Efremov (23910_CR39) 1985; 150 P Hagler (23910_CR20) 2010; 490 M Diehl (23910_CR53) 2022; 82 23910_CR11 23910_CR55 23910_CR10 M Constantinou (23910_CR21) 2021; 57 M Diehl (23910_CR34) 2016; 52 GP Salam (23910_CR52) 2009; 180 23910_CR56 23910_CR14 23910_CR58 23910_CR17 G Martinelli (23910_CR16) 1989; 217 23910_CR18 G Altarelli (23910_CR32) 1977; 126 A Candido (23910_CR49) 2022; 82 V Bertone (23910_CR51) 2014; 185 TC Rogers (23910_CR33) 2016; 52 F Fucito (23910_CR13) 1982; 115 23910_CR42 23910_CR41 J-W Qiu (23910_CR40) 1991; 67 23910_CR44 H-W Lin (23910_CR19) 2018; 100 23910_CR43 T Luthe (23910_CR72) 2017; 10 23910_CR9 23910_CR46 23910_CR45 23910_CR7 23910_CR48 23910_CR8 23910_CR47 M Botje (23910_CR50) 2011; 182 W Furmanski (23910_CR57) 1982; 195 YL Dokshitzer (23910_CR30) 1980; 58 M Diehl (23910_CR54) 2023; 83 Y Ji (23910_CR38) 2015; 37 N Cabibbo (23910_CR4) 1978; 137 JF Owens (23910_CR27) 1992; 42 23910_CR70 23910_CR75 23910_CR74 AP Bukhvostov (23910_CR37) 1983; 38 23910_CR77 23910_CR76 23910_CR36 R Angeles-Martinez (23910_CR35) 2015; 46 23910_CR1 23910_CR2 F Herzog (23910_CR71) 2017; 02 23910_CR3 X Ji (23910_CR6) 2021; 3 J Gao (23910_CR5) 2018; 742 G Martinelli (23910_CR15) 1989; 316  | 
    
| References_xml | – reference: V.M. Braun, A.N. Manashov and B. Pirnay, Scale dependence of twist-three contributions to single spin asymmetries, Phys. Rev. D80 (2009) 114002 [Erratum ibid.86 (2012) 119902] [arXiv:0909.3410] [INSPIRE]. – reference: BlanesSCasasFOteoJARosJThe magnus expansion and some of its applicationsPhys. Rept.20094701512009PhR...470..151B249419910.1016/j.physrep.2008.11.001[INSPIRE] – reference: RogersTCAn overview of transverse-momentum–dependent factorization and evolutionEur. Phys. J. A2016521532016EPJA...52..153R10.1140/epja/i2016-16153-7[arXiv:1509.04766] [INSPIRE] – reference: R.P. Feynman, Very high-energy collisions of hadrons, Phys. Rev. Lett.23 (1969) 1415 [INSPIRE]. – reference: BukhvostovAPKuraevEALipatovLNEvolution equations for higher twist operatorsSov. J. Nucl. Phys.198338263[INSPIRE] – reference: DiehlMNagarRTackmannFJChiliPDF: Chebyshev interpolation for parton distributionsEur. Phys. J. C2022822572022EPJC...82..257D10.1140/epjc/s10052-022-10223-1[arXiv:2112.09703] [INSPIRE] – reference: USQCD collaboration, Lattice QCD and Neutrino-Nucleus Scattering, Eur. Phys. J. A55 (2019) 196 [arXiv:1904.09931] [INSPIRE]. – reference: BertoneVCarrazzaSRojoJAPFEL: A PDF Evolution Library with QED correctionsComput. Phys. Commun.201418516472014CoPhC.185.1647B320837510.1016/j.cpc.2014.03.007[arXiv:1310.1394] [INSPIRE] – reference: LutheTMaierAMarquardPSchroderYThe five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gaugeJHEP2017101662017JHEP...10..166L373012410.1007/JHEP10(2017)166[arXiv:1709.07718] [INSPIRE] – reference: GaoJHarland-LangLRojoJThe Structure of the Proton in the LHC Precision EraPhys. Rept.201874212018PhR...742....1G379900710.1016/j.physrep.2018.03.002[arXiv:1709.04922] [INSPIRE] – reference: R. Kobayashi, M. Konuma and S. Kumano, FORTRAN program for a numerical solution of the nonsinglet Altarelli-Parisi equation, Comput. Phys. Commun.86 (1995) 264 [hep-ph/9409289] [INSPIRE]. – reference: T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D103 (2021) 014013 [arXiv:1912.10053] [INSPIRE]. – reference: Z.-B. Kang and J.-W. Qiu, Evolution of twist-3 multi-parton correlation functions relevant to single transverse-spin asymmetry, Phys. Rev. D79 (2009) 016003 [arXiv:0811.3101] [INSPIRE]. – reference: DokshitzerYLCalculation of the Structure Functions for Deep Inelastic Scattering and e+e−Annihilation by Perturbation Theory in Quantum ChromodynamicsSov. Phys. JETP1977466411977JETP...46..641D[INSPIRE] – reference: EfremovAVTeryaevOVQCD Asymmetry and Polarized Hadron Structure FunctionsPhys. Lett. B19851503831985PhLB..150..383E10.1016/0370-2693(85)90999-2[INSPIRE] – reference: D.J. Gross and F. Wilczek, Asymptotically free gauge theories. 2, Phys. Rev. D9 (1974) 980 [INSPIRE]. – reference: CabibboNPetronzioRTwo Stage Model of Hadron Structure: Parton Distributions and Their Q2DependenceNucl. Phys. B19781373951978NuPhB.137..395C10.1016/0550-3213(78)90323-1[INSPIRE] – reference: M. Diehl, Generalized parton distributions, Phys. Rept.388 (2003) 41 [hep-ph/0307382] [INSPIRE]. – reference: JiXYuanFZhaoYWhat we know and what we don’t know about the proton spin after 30 yearsNature Rev. Phys.20213272021NatRP...3...27J10.1038/s42254-020-00248-4[arXiv:2009.01291] [INSPIRE] – reference: DeurABrodskySJde TeramondGFThe QCD Running CouplingNucl. Phys.2016901[arXiv:1604.08082] [INSPIRE] – reference: A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129 [hep-ph/0404111] [INSPIRE]. – reference: ConstantinouMThe x-dependence of hadronic parton distributions: A review on the progress of lattice QCDEur. Phys. J. A202157772021EPJA...57...77C10.1140/epja/s10050-021-00353-7[arXiv:2010.02445] [INSPIRE] – reference: T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Springer (2015) [https://doi.org/10.1007/978-3-319-14848-9] [INSPIRE]. – reference: S. Rodini, L. Rossi and A. Vladimirov, Numerical implementation of evolution equations for twist-3 collinear PDFs, arXiv:2405.01162 [INSPIRE]. – reference: M. Hirai, S. Kumano and M. Miyama, Numerical solution of Q**2 evolution equations for polarized structure functions, Comput. Phys. Commun.108 (1998) 38 [hep-ph/9707220] [INSPIRE]. – reference: MartinelliGParisiGPetronzioRRapuanoFThe Proton and Neutron Magnetic Moments in Lattice QCDPhys. Lett. B19821164341982PhLB..116..434M10.1016/0370-2693(82)90162-9[INSPIRE] – reference: I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D81 (2010) 094035 [arXiv:0910.0467] [INSPIRE]. – reference: A. Vogt, Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS, Comput. Phys. Commun.170 (2005) 65 [hep-ph/0408244] [INSPIRE]. – reference: S. Forte and S. Carrazza, Parton distribution functions, in P. Calafiura, D. Rosseau and K. Terao eds., Artificial Intelligence for High Energy Physics, World Scientific (2022) p. 715, https://doi.org/10.1142/9789811234033_0019 [arXiv:2008.12305] [INSPIRE]. – reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys. B19771262981977NuPhB.126..298A10.1016/0550-3213(77)90384-4[INSPIRE] – reference: Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C82 (2022) 869 [arXiv:2111.09849] [INSPIRE]. – reference: R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press (2011) [https://doi.org/10.1017/CBO9780511628788] [INSPIRE]. – reference: M. Miyama and S. Kumano, Numerical solution of Q**2 evolution equations in a brute force method, Comput. Phys. Commun.94 (1996) 185 [hep-ph/9508246] [INSPIRE]. – reference: MartinelliGSachrajdaCTThe Quark Distribution Amplitude of the Proton: A Lattice Computation of the Lowest Two MomentsPhys. Lett. B19892173191989PhLB..217..319M10.1016/0370-2693(89)90874-5[INSPIRE] – reference: M. Constantinou et al., Parton distributions and lattice-QCD calculations: Toward 3D structure, Prog. Part. Nucl. Phys.121 (2021) 103908 [arXiv:2006.08636] [INSPIRE]. – reference: OwensJFTungW-KParton distribution functions of hadronsAnn. Rev. Nucl. Part. Sci.1992422911992ARNPS..42..291O10.1146/annurev.ns.42.120192.001451[INSPIRE] – reference: W. Giele et al., The QCD / SM working group: Summary report, in the proceedings of the 2nd Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, May 21 – June 01 (2001) [hep-ph/0204316] [INSPIRE]. – reference: SalamGPRojoJA Higher Order Perturbative Parton Evolution Toolkit (HOPPET)Comput. Phys. Commun.20091801202009CoPhC.180..120S10.1016/j.cpc.2008.08.010[arXiv:0804.3755] [INSPIRE] – reference: FurmanskiWPetronzioRA Method of Analyzing the Scaling Violation of Inclusive Spectra in Hard ProcessesNucl. Phys. B19821952371982NuPhB.195..237F10.1016/0550-3213(82)90398-4[INSPIRE] – reference: P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett.118 (2017) 082002 [arXiv:1606.08659] [INSPIRE]. – reference: HaglerPHadron structure from lattice quantum chromodynamicsPhys. Rept.2010490492010PhR...490...49H262967610.1016/j.physrep.2009.12.008[arXiv:0912.5483] [INSPIRE] – reference: HerzogFThe five-loop beta function of Yang-Mills theory with fermionsJHEP2017020902017JHEP...02..090H363752410.1007/JHEP02(2017)090[arXiv:1701.01404] [INSPIRE] – reference: GribovVNLipatovLNDeep inelastic e p scattering in perturbation theorySov. J. Nucl. Phys.197215438[INSPIRE] – reference: S.D. Drell and T.-M. Yan, Massive Lepton Pair Production in Hadron-Hadron Collisions at High-Energies, Phys. Rev. Lett.25 (1970) 316 [Erratum ibid.25 (1970) 902] [INSPIRE]. – reference: NNPDF collaboration, Evidence for intrinsic charm quarks in the proton, Nature608 (2022) 483 [arXiv:2208.08372] [INSPIRE]. – reference: ArtruXMekhfiMTransversely Polarized Parton Densities, their Evolution and their MeasurementZ. Phys. C1990456691990ZPhyC..45..669A10.1007/BF01556280[INSPIRE] – reference: MartinelliGSachrajdaCTA Lattice Study of Nucleon StructureNucl. Phys. B19893163551989NuPhB.316..355M10.1016/0550-3213(89)90035-7[INSPIRE] – reference: G. Martinelli and C.T. Sachrajda, Pion Structure Functions From Lattice QCD, Phys. Lett. B196 (1987) 184 [INSPIRE]. – reference: S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101 [hep-ph/0403192] [INSPIRE]. – reference: H. Georgi and H.D. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions, Phys. Rev. D9 (1974) 416 [INSPIRE]. – reference: Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon. B20154625012015AcPPB..46.2501A10.5506/APhysPolB.46.2501[arXiv:1507.05267] [INSPIRE] – reference: J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE]. – reference: DokshitzerYLDiakonovDTroianSIHard Processes in Quantum ChromodynamicsPhys. Rept.1980582691980PhR....58..269D10.1016/0370-1573(80)90043-5[INSPIRE] – reference: G. Falcioni et al., Four-loop splitting functions in QCD – The quark-to-gluon case, arXiv:2404.09701 [INSPIRE]. – reference: BotjeMQCDNUM: Fast QCD Evolution and ConvolutionComput. Phys. Commun.20111824902011CoPhC.182..490B10.1016/j.cpc.2010.10.020[arXiv:1005.1481] [INSPIRE] – reference: JiYBelitskyAVOn equations of motion in twist-four evolutionInt. J. Mod. Phys. Conf. Ser.201537156005110.1142/S2010194515600514[arXiv:1410.5805] [INSPIRE] – reference: CandidoAHekhornFMagniGEKO: evolution kernel operatorsEur. Phys. J. C2022829762022EPJC...82..976C10.1140/epjc/s10052-022-10878-w[arXiv:2202.02338] [INSPIRE] – reference: V.E. Lyubovitskij, W. Vogelsang, F. Wunder and A.S. Zhevlakov, Perturbative T-odd asymmetries in the Drell-Yan process revisited, Phys. Rev. D109 (2024) 114023 [arXiv:2403.18741] [INSPIRE]. – reference: FucitoFParisiGPetrarcaSFirst evaluation of G(A) / G(V) in lattice QCD in the quenched approximationPhys. Lett. B19821151481982PhLB..115..148F10.1016/0370-2693(82)90816-4[INSPIRE] – reference: Y. Hatta and X. Yao, QCD evolution of the orbital angular momentum of quarks and gluons: Genuine twist-three part, Phys. Lett. B798 (2019) 134941 [arXiv:1906.07744] [INSPIRE]. – reference: J.D. Bjorken and E.A. Paschos, Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon, Phys. Rev.185 (1969) 1975 [INSPIRE]. – reference: J. Collins, Foundations of Perturbative QCD, Cambridge University Press (2011) [https://doi.org/10.1017/cbo9780511975592]. – reference: D. de Florian, R. Sassot, M. Stratmann and W. Vogelsang, Global Analysis of Helicity Parton Densities and Their Uncertainties, Phys. Rev. Lett.101 (2008) 072001 [arXiv:0804.0422] [INSPIRE]. – reference: B.M. Pirnay, t3evol - Numerical Solution of Twist-three Evolution Equations, arXiv:1307.1272 [INSPIRE]. – reference: DiehlMIntroduction to GPDs and TMDsEur. Phys. J. A2016521492016EPJA...52..149D10.1140/epja/i2016-16149-3[arXiv:1512.01328] [INSPIRE] – reference: J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B971 (2021) 115542 [arXiv:2107.06267] [INSPIRE]. – reference: NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C77 (2017) 663 [arXiv:1706.00428] [INSPIRE]. – reference: S. Weinzierl, Fast evolution of parton distributions, Comput. Phys. Commun.148 (2002) 314 [hep-ph/0203112] [INSPIRE]. – reference: M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C5 (1998) 461 [hep-ph/9806404] [INSPIRE]. – reference: J. Zhou, F. Yuan and Z.-T. Liang, QCD Evolution of the Transverse Momentum Dependent Correlations, Phys. Rev. D79 (2009) 114022 [arXiv:0812.4484] [INSPIRE]. – reference: A. Simonelli, Analytic Solutions of the DGLAP Evolution and Theoretical Uncertainties, arXiv:2401.13663 [INSPIRE]. – reference: R. Boussarie et al., TMD Handbook, arXiv:2304.03302 [INSPIRE]. – reference: QiuJ-WStermanGFSingle transverse spin asymmetriesPhys. Rev. Lett.19916722641991PhRvL..67.2264Q10.1103/PhysRevLett.67.2264[INSPIRE] – reference: A. Schafer and J. Zhou, A note on the scale evolution of the ETQS function TF(x, x), Phys. Rev. D85 (2012) 117501 [arXiv:1203.5293] [INSPIRE]. – reference: DiehlMNagarRPloesslPTackmannFJEvolution and interpolation of double parton distributions using Chebyshev gridsEur. Phys. J. C2023835362023EPJC...83..536D10.1140/epjc/s10052-023-11692-8[arXiv:2305.04845] [INSPIRE] – reference: LinH-WParton distributions and lattice QCD calculations: a community white paperProg. Part. Nucl. Phys.20181001072018PrPNP.100..107L10.1016/j.ppnp.2018.01.007[arXiv:1711.07916] [INSPIRE] – reference: W. Vogelsang and F. Yuan, Next-to-leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process, Phys. Rev. D79 (2009) 094010 [arXiv:0904.0410] [INSPIRE]. – volume: 42 start-page: 291 year: 1992 ident: 23910_CR27 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.ns.42.120192.001451 – ident: 23910_CR11 – volume: 217 start-page: 319 year: 1989 ident: 23910_CR16 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(89)90874-5 – ident: 23910_CR44 doi: 10.1103/PhysRevD.80.114002 – ident: 23910_CR55 doi: 10.1016/0010-4655(96)00013-6 – volume: 490 start-page: 49 year: 2010 ident: 23910_CR20 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2009.12.008 – ident: 23910_CR14 doi: 10.1016/0370-2693(87)90601-0 – volume: 67 start-page: 2264 year: 1991 ident: 23910_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2264 – volume: 137 start-page: 395 year: 1978 ident: 23910_CR4 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(78)90323-1 – ident: 23910_CR76 – volume: 150 start-page: 383 year: 1985 ident: 23910_CR39 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)90999-2 – volume: 116 start-page: 434 year: 1982 ident: 23910_CR12 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90162-9 – volume: 115 start-page: 148 year: 1982 ident: 23910_CR13 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(82)90816-4 – ident: 23910_CR66 doi: 10.1016/j.nuclphysb.2004.03.030 – volume: 52 start-page: 149 year: 2016 ident: 23910_CR34 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2016-16149-3 – ident: 23910_CR70 doi: 10.1103/PhysRevLett.118.082002 – volume: 52 start-page: 153 year: 2016 ident: 23910_CR33 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2016-16153-7 – ident: 23910_CR18 doi: 10.1140/epjc/s10052-022-10536-1 – volume: 185 start-page: 1647 year: 2014 ident: 23910_CR51 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.03.007 – ident: 23910_CR23 doi: 10.1142/9789814503266_0001 – ident: 23910_CR47 doi: 10.1016/S0010-4655(02)00584-2 – ident: 23910_CR26 doi: 10.1142/9789811234033_0019 – ident: 23910_CR48 doi: 10.1016/j.cpc.2005.03.103 – ident: 23910_CR24 doi: 10.1103/PhysRevD.81.094035 – volume: 90 start-page: 1 year: 2016 ident: 23910_CR73 publication-title: Nucl. Phys. – ident: 23910_CR3 doi: 10.1103/PhysRevLett.25.316 – volume: 46 start-page: 641 year: 1977 ident: 23910_CR29 publication-title: Sov. Phys. JETP – volume: 742 start-page: 1 year: 2018 ident: 23910_CR5 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2018.03.002 – volume: 126 start-page: 298 year: 1977 ident: 23910_CR32 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(77)90384-4 – ident: 23910_CR63 doi: 10.1103/PhysRevD.9.416 – ident: 23910_CR77 doi: 10.1016/j.physletb.2019.134941 – volume: 37 start-page: 1560051 year: 2015 ident: 23910_CR38 publication-title: Int. J. Mod. Phys. Conf. Ser. doi: 10.1142/S2010194515600514 – ident: 23910_CR17 – ident: 23910_CR22 doi: 10.1016/j.ppnp.2021.103908 – volume: 45 start-page: 669 year: 1990 ident: 23910_CR28 publication-title: Z. Phys. C doi: 10.1007/BF01556280 – volume: 83 start-page: 536 year: 2023 ident: 23910_CR54 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11692-8 – volume: 15 start-page: 438 year: 1972 ident: 23910_CR31 publication-title: Sov. J. Nucl. Phys. – ident: 23910_CR42 doi: 10.1103/PhysRevD.79.114022 – ident: 23910_CR46 – ident: 23910_CR69 – ident: 23910_CR36 doi: 10.1016/j.physrep.2003.08.002 – ident: 23910_CR58 doi: 10.1016/0010-4655(94)00159-Y – volume: 182 start-page: 490 year: 2011 ident: 23910_CR50 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.10.020 – ident: 23910_CR61 – volume: 3 start-page: 27 year: 2021 ident: 23910_CR6 publication-title: Nature Rev. Phys. doi: 10.1038/s42254-020-00248-4 – volume: 470 start-page: 151 year: 2009 ident: 23910_CR59 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2008.11.001 – ident: 23910_CR1 doi: 10.1103/PhysRevLett.23.1415 – volume: 180 start-page: 120 year: 2009 ident: 23910_CR52 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.08.010 – ident: 23910_CR56 doi: 10.1016/S0010-4655(97)00129-X – volume: 100 start-page: 107 year: 2018 ident: 23910_CR19 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2018.01.007 – ident: 23910_CR10 doi: 10.1140/epjc/s10052-017-5199-5 – ident: 23910_CR41 doi: 10.1103/PhysRevD.79.016003 – volume: 02 start-page: 090 year: 2017 ident: 23910_CR71 publication-title: JHEP doi: 10.1007/JHEP02(2017)090 – ident: 23910_CR68 doi: 10.1016/j.nuclphysb.2021.115542 – volume: 82 start-page: 976 year: 2022 ident: 23910_CR49 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10878-w – ident: 23910_CR74 – ident: 23910_CR25 doi: 10.1007/978-3-319-14848-9 – ident: 23910_CR64 doi: 10.1103/PhysRevD.9.980 – volume: 10 start-page: 166 year: 2017 ident: 23910_CR72 publication-title: JHEP doi: 10.1007/JHEP10(2017)166 – volume: 46 start-page: 2501 year: 2015 ident: 23910_CR35 publication-title: Acta Phys. Polon. B doi: 10.5506/APhysPolB.46.2501 – volume: 57 start-page: 77 year: 2021 ident: 23910_CR21 publication-title: Eur. Phys. J. A doi: 10.1140/epja/s10050-021-00353-7 – ident: 23910_CR75 doi: 10.1007/s100520050289 – ident: 23910_CR45 – ident: 23910_CR7 doi: 10.1038/s41586-022-04998-2 – volume: 58 start-page: 269 year: 1980 ident: 23910_CR30 publication-title: Phys. Rept. doi: 10.1016/0370-1573(80)90043-5 – volume: 38 start-page: 263 year: 1983 ident: 23910_CR37 publication-title: Sov. J. Nucl. Phys. – ident: 23910_CR2 doi: 10.1103/PhysRev.185.1975 – ident: 23910_CR43 doi: 10.1103/PhysRevD.79.094010 – ident: 23910_CR67 doi: 10.1016/j.nuclphysb.2004.04.024 – volume: 82 start-page: 257 year: 2022 ident: 23910_CR53 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10223-1 – volume: 316 start-page: 355 year: 1989 ident: 23910_CR15 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90035-7 – ident: 23910_CR60 doi: 10.1103/PhysRevD.109.114023 – ident: 23910_CR62 doi: 10.1017/CBO9780511628788 – ident: 23910_CR65 doi: 10.1017/cbo9780511975592 – ident: 23910_CR9 doi: 10.1103/PhysRevD.103.014013 – volume: 195 start-page: 237 year: 1982 ident: 23910_CR57 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90398-4 – ident: 23910_CR8 doi: 10.1103/PhysRevLett.101.072001  | 
    
| SSID | ssj0015190 | 
    
| Score | 2.4501872 | 
    
| Snippet | A
bstract
We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning
x
-space which is... We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x -space which is closed... We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is closed... Abstract We present a novel semi-analytical method for parton evolution. It is based on constructing a family of analytic functions spanning x-space which is...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 72 | 
    
| SubjectTerms | Algorithms Analytic functions Classical and Quantum Gravitation Differential equations Elementary Particles Evolutionary computation Factorization Mathematical analysis Methods Ordinary differential equations Parton Distributions Partons Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Renormalization Group String Theory Subsystems  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbhMxEB6VVAg4oJYfNdBWPnBoDla9a2cdHxBKaUpU0ShCVOptZc_aBdRuNk0K7Y2H4Al5EuzNOmmF4LbyerWWv_HMeMb-BuANV9YhzwQVTtbRKka13yZQJTCRnAtkLtx3Phllw1NxfNY9W4NRvAsTjlVGnVgr6mKCIUa-zwNXm3fuZfKumtJQNSpkV2MJDd2UVije1hRjD2A9DcxYLVg_GIzGn5Z5Be-vsEjww-T-8XAwZnIv9Yaqw2R6zzbVFP73_M5lqvQJPLouK337Q19c3LFGRxvwtHEjSX-B-yas2fIZPKyPc-LsOUz7ZGYvv1IdKEfqaDW5oV53oCVR1oj3VknlBcc_2u-x8ffPX6S_ymmT-YSUk5KGgIIHmOiyIPH58MPH_pjY6YIr_AWcHg0-vx_SprgCRS6TOfVqTQkhtbbMySRFkVrleGBzL7R0zjDp0DGnjchEpjl2XahNnRQmcS4VaPhLaPkB2C0gmckMM_7TnvEGX2lVaOOs7TGOzkmTtWEvTmteLTg08siWvEAgDwjkHoE2HIRpX3YL5Nd1w-TqPG_WUs56orAZIgqjhd_B6i5DhX5n1kMtuqjasB1By5sVOctX8tOGTgRy9fqf4-kskf5r7N--2OpO31f__-1reBx61kd91Ta05lfXdsc7NHOz20jpH-qz9eo priority: 102 providerName: ProQuest – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECZGY9SD8RnrKxw82AORLRTKsT4bo8aDJt42MAtRU2u19XXzR_gL_SUO2936igdvExY2Ez5gZhj4IGRDGB9AKMlk0PluFWcWwwRmJCRaCAk8xPvOxyeqdS4PL-oXBUlSvAvzI3-_ddjaO-V6E0N0WeUa19oxtFAqz8qqnWG6AN0QXvL2_G70zeTkzPzf3MlhBnSKTDx0uvblybbbX4zM_gyZLrxD2hzAOUtGfGeOjOenNKE3T-6atOdvrpiNTCL5JjR9ZrgkgKflEKLohNIujgcU_WNZ-P76RpufqWrav6UY9rO4T4C4UdvJaCnvHhw1T6m_G1CAL5Dz_b2znRYr3kxgIHTSZ7haGSm1tZ4HndRA1rwJIpK0Z1aH4LgOEHiwTiqprIB6iE9OJ5lLQqhJcGKRjKICfolQ5ZTjDps2HNpxY01mXfC-wQWEoJ2qkM2yW9PugBojLUmQBwikEYEUEaiQ7djtw2qR0zovQKjTYoqkvCEzrwBAOisxMLV1DgYw4GqAlXUwFbJagpYWE62XikjhhzGfTiqkWgL5-flPfapDpH_pfn3pu1_qLv_jvytkMor5cV6zSkb79w9-DZ2WvlvPB-wHWWjm6Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQVgg4lH-xUJAPHLoHFyd27PUxQMuqgmoPrFROkT2xVaCkWzZLW048BE_IkzDOz5a2QoJTRokTTTzj8YzH_oaQ58L4AEJJJoNuVqs4sxgmMCMh0UJI4CGed363pyYzubuf7XcgSfEszKX8_YtPB37O9SaG6HLENdraNZWh0z0ga7O9af6hyWWmhqGNNU0ZlVQxpZs6dEhrhpOf6gF9rn7twlzUQPZf8DNXqdFb5MaymtuzE3t4-Mfss3ObTHq-200nn7eWtduC75cgHf_hx-6Q9c4DpXmrMnfJNV_dI9ebnaCwuE-Oc7rwXz4yG9FKmoVuesrQ7ICnvZpSdHTpHHUOSf-tv_nrx0-an6fDaX1Eq6OKxbUI1A1qq5L29Os3b_Mp9cctzPgDMtvZfv9qwrq6DAyETmqGFtFIqa31POgkBZl6E0QEgi-tDsFxHSDwYJ1UUlkBWYhlrZPSJSGkEpx4SAbIgH9EqHLKcYevjh36Csaa0rrg_ZgLCEE7NSSbvYSKeQu_UfRAy7uT7SleYg8W2IND8jJKcNUs4mY3N7DXi24YFnwsS68AQDorMfi1GQcDGNSNwcoMzJBs9PIvusG8KESECcS4UidDMup14vzxX_kZrZTmCu-t9FdtH_9H2yfkZiSbLcNmgwzqr0v_FB2j2j3rBsVvJgEEjw priority: 102 providerName: Unpaywall  | 
    
| Title | A semi-analytical x-space solution for parton evolution — Application to non-singlet and singlet DGLAP equation | 
    
| URI | https://link.springer.com/article/10.1007/JHEP07(2024)072 https://www.proquest.com/docview/3077571671 https://doi.org/10.1007/jhep07(2024)072 https://doaj.org/article/084de6ccc4ba4721a50c9c6268ca45c9  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2024 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdgEwIOiL-iMCofOKyHaE7s2vExK-2qCaoKUWmcIvvF1kAj62jHnxsfgk_IJ-E5ibtOCHHhYjmOE728n2O_Zz__TMhLrp0HLkUivGpmq1hi0E1ItIBUcS6A-bDf-c1MThfi-GR4snXUV4gJa-mBW8UdsFxUTgKAsEagu2KGDDSgGZ6DEUNotu6xXEdnqls_QLuERSIfpg6Op-M5U_vo6IsBU9m1Maih6r9mX26WRO-S25f10nz_as7OtkadyX1yrzMXadGK-YDccPVDcqsJ24TVI3JR0JX79CExgVqkmZWm3xLsI8DR2KYoWqV0id-JWfclFv768ZMWV2vXdH1O6_M6CRMHCCQ1dUVj_tXR62JO3UXLCf6YLCbjd6Np0h2ikABX6TrB7ksLoYxxzKs0A5E57Xlgba-M8t4y5cEzb6yQQhoOQx_OoE4rm3qfCbD8CdlBAdxTQqWVlll8NLc4sGujK2O9cznj4L2yskf2o1rLZcuVUUZW5BaBMiBQIgI9chjUvqkWSK6bAoS-7KAv_wV9j-xF0Mruz1uVPHD6oROo0h4ZRCCvbv9VnsEG6T9k_3jqllt1n_0P2Z-TO-F9TeCv3iM768-X7gWaN2vbJzfzyVGf7B6OZ_O3eDXKREjlqN-0cUwXGaa7i9m8eP8bMcf_Ew | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVqhwQPyKQAEfQGoOq3rXzjo-VCilKWmbRhFqpd62ttfmR2WzaVJKbzwEz8PD8CSMN-ukFYJbb5bX9lqe8Xh-7G8AXjNpnWEpj7gTlbeKRgrNhEhyEwvGuKHOv3c-GKS9I7533Dpegl_hLYy_VhlkYiWo85HxPvIN5rHaULkX8dtyHPmsUT66GlJoqDq1Qr5ZQYzVDzv27eUFmnCTzd1tpPebJNnpHr7rRXWWgcgwEU8j3N-Sc6GUpU7EieGJlY55WPNcCec0Fc446pTmKU8VMy3nkzTHuY6dS7jRDMe9BSuccYnG38pWdzD8MI9joH5EA6AQFRt7ve6QivUED8YmFcm1s7BKGXBNz52HZu_C6nlRqssLdXp65fTbuQ_3arWVdGZ89gCWbPEQblfXR83kEYw7ZGK_fo6UhzipvOPke4SyylgSeJugdkxKZFQs2m-h8vePn6SziKGT6YgUoyLyDgxkKKKKnITy9vt-Z0jseIZN_hiObmSZn8AyTsA-BZLqVFONXdsaFQypZK60s7ZNmXFO6LQB62FZs3KG2ZEFdOYZBTJPgQwp0IAtv-zzZh5su6oYnX3M6r2b0TbPbWqM4VpxtJhVixpp0BJsG8VbRjZgLRAtqyXAJFvwawOagZCLz_-cT3NO6b_m_uWTLa-0ffb_376C1d7hQT_r7w72n8Md36u6ZizXYHl6dm5foDI11S9rjiVwctOb5A8ftzTf | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VIigcEL8iUMAHkJqDFe_aWWcPCAXSNP2hyoFKvS2216agstk0KaU3HoKn4XF4Esa766QVgltvK6-9a3lm7PnzNwAveWqd4YmgwsnKW8WoQjOBpsJEknNhmPP3nd_vJ6MDsXPYPVyBX-EujE-rDHtitVHnE-N95B3usdpQuZdRxzVpEePB8E05pb6ClI-0hnIaNYvs2vMzNN9mr7cHSOtXcTzc_PBuRJsKA9RwGc0pynYqhFTKMiej2IjYpo57SPNcSec0k8445pQWiUgUN13nCzRHuY6ci4XRHL97Da5Lj-Lub6kPtxYRDNSMWIASYrKzM9ocM7kR45HYZjK-dApWxQIuabiLoOxtWDstSnV-po6PL5x7w7twp1FYSb_msHuwYov7cKNKHDWzBzDtk5n9-pkqD25S-cXJd4q7lLEkcDVBvZiUyKL4aL-Fxt8_fpL-MnpO5hNSTArqXRfISkQVOQnPg629_pjYaY1K_hAOrmSRH8EqTsA-BpLoRDONQ3saVYtUpbnSztoe48Y5qZMWbIRlzcoarSMLuMw1BTJPgQwp0IK3ftkX3TzMdtUwOfmUNVKbsZ7IbWKMEVoJtJVVl5nUoA3YM0p0TdqC9UC0rJH9Wbbk1Ba0AyGXr_85n_aC0n_N_cuRLS_0ffL_376Amyga2d72_u5TuOUHVfnF6Tqszk9O7TPUoub6ecWuBD5etXz8Ab7jMnk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQVgg4lH-xUJAPHLoHFyd27PUxQMuqgmoPrFROkT2xVaCkWzZLW048BE_IkzDOz5a2QoJTRokTTTzj8YzH_oaQ58L4AEJJJoNuVqs4sxgmMCMh0UJI4CGed363pyYzubuf7XcgSfEszKX8_YtPB37O9SaG6HLENdraNZWh0z0ga7O9af6hyWWmhqGNNU0ZlVQxpZs6dEhrhpOf6gF9rn7twlzUQPZf8DNXqdFb5MaymtuzE3t4-Mfss3ObTHq-200nn7eWtduC75cgHf_hx-6Q9c4DpXmrMnfJNV_dI9ebnaCwuE-Oc7rwXz4yG9FKmoVuesrQ7ICnvZpSdHTpHHUOSf-tv_nrx0-an6fDaX1Eq6OKxbUI1A1qq5L29Os3b_Mp9cctzPgDMtvZfv9qwrq6DAyETmqGFtFIqa31POgkBZl6E0QEgi-tDsFxHSDwYJ1UUlkBWYhlrZPSJSGkEpx4SAbIgH9EqHLKcYevjh36Csaa0rrg_ZgLCEE7NSSbvYSKeQu_UfRAy7uT7SleYg8W2IND8jJKcNUs4mY3N7DXi24YFnwsS68AQDorMfi1GQcDGNSNwcoMzJBs9PIvusG8KESECcS4UidDMup14vzxX_kZrZTmCu-t9FdtH_9H2yfkZiSbLcNmgwzqr0v_FB2j2j3rBsVvJgEEjw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-analytical+x-space+solution+for+parton+evolution+%E2%80%94+Application+to+non-singlet+and+singlet+DGLAP+equation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Juliane+Haug&rft.au=Oliver+Sch%C3%BCle&rft.au=Fabian+Wunder&rft.date=2024-07-09&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2024&rft.issue=7&rft.spage=1&rft.epage=29&rft_id=info:doi/10.1007%2FJHEP07%282024%29072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_084de6ccc4ba4721a50c9c6268ca45c9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |