The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability
Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic...
Saved in:
| Published in | Multivariate behavioral research Vol. 55; no. 4; pp. 625 - 646 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Mahwah
Routledge
03.07.2020
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-3171 1532-7906 1532-7906 |
| DOI | 10.1080/00273171.2019.1663136 |
Cover
| Abstract | Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed. |
|---|---|
| AbstractList | Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed. Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed.Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed. |
| Author | Whittaker, Tiffany A. |
| Author_xml | – sequence: 1 givenname: Tiffany A. surname: Whittaker fullname: Whittaker, Tiffany A. email: t.whittaker@austin.utexas.edu organization: Department of Educational Psychology, the University of Texas at Austin |
| BookMark | eNqFkc2KFDEUhYOMYM_oIwgBN26qJ6lUkircKI0_Ay0K9rgNt5JbmCGdtEla6Xfwoa2ix82AugqE7zuHy7kkFzFFJOQ5Z2vOenbNWKsF13zdMj6suVKCC_WIrLgUbaMHpi7IamGaBXpCLku5Y4wp2Q0r8mv3Dekm7Q-QfUmRpoluoWKs9Ov8A2NA-jmnA8bi64l-sSkj_ZgchkJrorsMzlefIoS_YsfoMM8V8UyWpWKTfizpFeltzBjmHh9m8Sl5PEEo-Oz-vSK3797uNh-a7af3N5s328YKzWtjlda9BAaMOYuj7MZRdDApMaAVUitsgcvRjkz1nW2RWTeBVFI752AAp8QVeXnOPeT0_Yilmr0vFkOAiOlYTNsOgvG2H7oZffEAvUvHPN87U51she61FDP16kzZnErJOBnrKyzn1gw-GM7MspT5s5RZljL3S822fGAfst9DPv3Xe332fJxS3sPPlIMzFU4h5SlDtL4Y8e-I30Hzrus |
| CitedBy_id | crossref_primary_10_1080_19345747_2022_2110545 crossref_primary_10_1080_00220973_2024_2352766 crossref_primary_10_1016_j_scitotenv_2024_170238 crossref_primary_10_1080_00273171_2024_2307529 crossref_primary_10_1080_00273171_2023_2235697 |
| Cites_doi | 10.2307/2290910 10.1080/00273171.2015.1022643 10.1177/0013164402062004005 10.1207/S15328007SEM0802_3 10.1214/aos/1034276631 10.1037/h0059873 10.1177/0962280215584401 10.1037/0033-2909.110.2.305 10.1348/000711008X365676 10.1037/a0033805 10.1007/BF02293967 10.3102/1076998610375835 10.1002/9781118619179 10.1037/0022-006X.58.5.646 10.1177/0013164412440999 10.2307/1416623 10.1111/j.2044-8317.1955.tb00321.x 10.1002/sim.5705 10.1007/BF02291367 10.1111/j.2044-8317.1978.tb00581.x 10.1016/S0191-8869(97)00088-3 10.1080/03610739208253916 10.2307/1412159 10.1093/aje/kwj149 10.1037/a0024776 10.1093/biomet/70.1.41 10.1093/pan/mpi026 10.1177/0013164402062004009 10.1080/10705511.2017.1402334 10.1177/0049124198026003003 10.1177/1094428104263676 10.1177/0962280213519716 10.1097/00001648-200009000-00011 10.1111/j.0081-1750.2006.00164.x 10.1007/BF02294170 10.1177/2167696815621645 10.1177/1094428105284919 10.1177/0272989X09341755 10.1111/j.2044-8317.1993.tb01015.x 10.1002/sim.2580 10.1080/00273171.2011.568786 10.1080/00273171.2014.889594 10.3386/t0294 10.1198/016214508000000733 10.1053/j.nainr.2009.12.010 10.1007/BF02296196 10.1080/10705511.2016.1220839 10.1214/ss/1177012031 10.1007/BF02294825 10.1177/0013164402062004003 10.1037/a0015914 10.1080/10705511.2018.1522591 10.1037/10222-009 10.1201/9781420010138 10.1002/sim.1903 10.1037/h0037350 10.1146/annurev.psych.53.100901.135239 10.2307/3172730 10.1002/pam.10129 10.1177/109442810031002 10.1086/223991 |
| ContentType | Journal Article |
| Copyright | 2019 Taylor & Francis Group, LLC 2019 2019 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2019 Taylor & Francis Group, LLC 2019 – notice: 2019 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1080/00273171.2019.1663136 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1532-7906 |
| EndPage | 646 |
| ExternalDocumentID | 10_1080_00273171_2019_1663136 1663136 |
| Genre | Article |
| GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 123 4.4 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAYXX CITATION 7X8 |
| ID | FETCH-LOGICAL-c371t-c67785a0a00dceb54bb34af639ec3576e2a15bcb0684c2e0cdfa5657ddda9ad63 |
| ISSN | 0027-3171 1532-7906 |
| IngestDate | Fri Sep 05 13:58:10 EDT 2025 Wed Aug 13 07:49:52 EDT 2025 Wed Oct 01 05:04:50 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 Mon Oct 20 23:48:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c371t-c67785a0a00dceb54bb34af639ec3576e2a15bcb0684c2e0cdfa5657ddda9ad63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 2452378753 |
| PQPubID | 47318 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1080_00273171_2019_1663136 informaworld_taylorfrancis_310_1080_00273171_2019_1663136 proquest_miscellaneous_2293012894 proquest_journals_2452378753 crossref_primary_10_1080_00273171_2019_1663136 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-03 |
| PublicationDateYYYYMMDD | 2020-07-03 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Mahwah |
| PublicationPlace_xml | – name: Mahwah |
| PublicationTitle | Multivariate behavioral research |
| PublicationYear | 2020 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | CIT0072 CIT0071 CIT0030 CIT0032 CIT0034 CIT0033 CIT0070 Muthén B. O. (CIT0042) 1998 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0040 CIT0043 CIT0001 CIT0045 Nunnally J. C. (CIT0046) 1978 Mulaik S. A. (CIT0041) 2005 Wooldridge J. M. (CIT0073) 2010 CIT0003 CIT0047 CIT0002 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 Bartlett M. S. (CIT0010) 1937; 28 CIT0009 Cohen J. (CIT0021) 2003 CIT0008 CIT0050 CIT0052 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Muthén L. K. (CIT0044) 1998 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Hoshino T. (CIT0031) 2011 Thurstone L. L. (CIT0068) 1935 CIT0025 CIT0069 CIT0024 CIT0027 CIT0026 CIT0029 Stone C. A. (CIT0065) 2013; 18 Cohen J. (CIT0020) 1988 CIT0028 |
| References_xml | – ident: CIT0049 doi: 10.2307/2290910 – ident: CIT0050 doi: 10.1080/00273171.2015.1022643 – volume: 18 start-page: 1 issue: 13 year: 2013 ident: CIT0065 publication-title: Practical Assessment, Research & Evaluation – ident: CIT0009 doi: 10.1177/0013164402062004005 – volume-title: Mplus user’s guide year: 1998 ident: CIT0044 – ident: CIT0033 doi: 10.1207/S15328007SEM0802_3 – ident: CIT0055 doi: 10.1214/aos/1034276631 – ident: CIT0067 doi: 10.1037/h0059873 – ident: CIT0007 doi: 10.1177/0962280215584401 – ident: CIT0015 doi: 10.1037/0033-2909.110.2.305 – ident: CIT0008 doi: 10.1348/000711008X365676 – ident: CIT0022 doi: 10.1037/a0033805 – ident: CIT0063 doi: 10.1007/BF02293967 – ident: CIT0064 doi: 10.3102/1076998610375835 – ident: CIT0013 doi: 10.1002/9781118619179 – ident: CIT0053 doi: 10.1037/0022-006X.58.5.646 – ident: CIT0047 doi: 10.1177/0013164412440999 – volume: 28 start-page: 97 issue: 1 year: 1937 ident: CIT0010 publication-title: British Journal of Psychology doi: 10.2307/1416623 – ident: CIT0026 doi: 10.1111/j.2044-8317.1955.tb00321.x – ident: CIT0004 doi: 10.1002/sim.5705 – ident: CIT0069 doi: 10.1007/BF02291367 – ident: CIT0016 doi: 10.1111/j.2044-8317.1978.tb00581.x – ident: CIT0060 doi: 10.1016/S0191-8869(97)00088-3 – ident: CIT0030 doi: 10.1080/03610739208253916 – volume-title: Mplus technical appendices year: 1998 ident: CIT0042 – ident: CIT0062 doi: 10.2307/1412159 – ident: CIT0017 doi: 10.1093/aje/kwj149 – ident: CIT0036 doi: 10.1037/a0024776 – ident: CIT0052 doi: 10.1093/biomet/70.1.41 – ident: CIT0038 doi: 10.1093/pan/mpi026 – volume-title: Bias in factor score regression and a simple solution. year: 2011 ident: CIT0031 – ident: CIT0071 doi: 10.1177/0013164402062004009 – ident: CIT0027 doi: 10.1080/10705511.2017.1402334 – ident: CIT0029 doi: 10.1177/0049124198026003003 – ident: CIT0019 doi: 10.1177/1094428104263676 – ident: CIT0006 doi: 10.1177/0962280213519716 – ident: CIT0048 doi: 10.1097/00001648-200009000-00011 – ident: CIT0028 doi: 10.1111/j.0081-1750.2006.00164.x – ident: CIT0001 doi: 10.1007/BF02294170 – ident: CIT0066 doi: 10.1177/2167696815621645 – ident: CIT0034 doi: 10.1177/1094428105284919 – ident: CIT0002 doi: 10.1177/0272989X09341755 – ident: CIT0043 doi: 10.1111/j.2044-8317.1993.tb01015.x – volume-title: The vectors of mind year: 1935 ident: CIT0068 – start-page: 173 volume-title: Contemporary psychometrics year: 2005 ident: CIT0041 – volume-title: Applied multiple regression/correlation analysis for the behavioral sciences year: 2003 ident: CIT0021 – volume-title: Psychometric theory year: 1978 ident: CIT0046 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: CIT0020 – ident: CIT0005 doi: 10.1002/sim.2580 – ident: CIT0003 doi: 10.1080/00273171.2011.568786 – ident: CIT0025 doi: 10.1080/00273171.2014.889594 – ident: CIT0032 doi: 10.3386/t0294 – ident: CIT0056 doi: 10.1198/016214508000000733 – ident: CIT0058 doi: 10.1053/j.nainr.2009.12.010 – ident: CIT0061 doi: 10.1007/BF02296196 – ident: CIT0023 doi: 10.1080/10705511.2016.1220839 – ident: CIT0045 doi: 10.1214/ss/1177012031 – volume-title: Econometric analysis of cross section and panel data year: 2010 ident: CIT0073 – ident: CIT0040 doi: 10.1007/BF02294825 – ident: CIT0011 doi: 10.1177/0013164402062004003 – ident: CIT0024 doi: 10.1037/a0015914 – ident: CIT0037 doi: 10.1080/10705511.2018.1522591 – ident: CIT0072 doi: 10.1037/10222-009 – ident: CIT0018 doi: 10.1201/9781420010138 – ident: CIT0039 doi: 10.1002/sim.1903 – ident: CIT0054 doi: 10.1037/h0037350 – ident: CIT0014 doi: 10.1146/annurev.psych.53.100901.135239 – ident: CIT0035 doi: 10.2307/3172730 – ident: CIT0057 doi: 10.1002/pam.10129 – ident: CIT0070 doi: 10.1177/109442810031002 – ident: CIT0012 doi: 10.1086/223991 |
| SSID | ssj0006549 |
| Score | 2.292296 |
| Snippet | Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 625 |
| SubjectTerms | confirmatory factor analysis covariate reliability factor scores Monte Carlo studies Propensity scores Regression analysis Regression models |
| Title | The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2019.1663136 https://www.proquest.com/docview/2452378753 https://www.proquest.com/docview/2293012894 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 0027-3171 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 0027-3171 databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK97IXxFMUFmQkbqtEeTivY1VAFQKExC6suETxI6LaKkHFRYLfgPjNzNjOo2yXZblEkWs7aefrzHg885mQZ6kQec4D6YW1UB7jrPAqJhOvFrGSLIt4wbB2-M3bdHnKXp0lZ5PJr1HW0lZzX_zYW1fyP1KFNpArVsleQ7L9pNAA9yBfuIKE4frPMl6MDxI8fg2uY6OPP0CLqYl6h7H2xuRdvEfCSnP22dqwOoCVkisXCbysG1aYbbAq0PY0aR-L9hvOrtFf3aj1yhJ97-wOm6rerteICMAxC30eLMFK6-q8Q01dY_LB3B9HImDZiVHOeKxdI4x52iNVfNUpVPDgiyAda1xLzOuQxUbqM7VF0M4SpzY4eUHJd1mR4HnBwzA9r_BD8JzCeA-p9h_Grk9BDHtuVDtNidOUbpob5CACKxFMycF8-fzTx962p4lbULlv2tWEIVv7vvfZ8XZ2uHAv2H7j0JzcIjfdSoTOLaxuk4lq7pDD3iB-v0t-Ar7ogC_a1tTii3b4ogNwqAEOtcChuqUjfF3azeCLDvjCR_T4ojv4ukdOX744WSw9d3qHJ-Is1J5AasKkCqogkELxhHEes6oGj1iJGFa5KqrChAsepDkTkQqErCvcg5dSVkUl0_g-mTZtox4QmheKZaBtGM_gps5ykcMyPaqLVAqei2xGWPcrl8JR2-MJK-vyr1KeEb8f9sVyu1w1oBiLsNQmqFbbE3DK-IqxR528S6dCvpaY9hBnGDKYkaf9x6DgcdeualS7hT7gkKMXWbCH133fR-Rw-J8ekanebNVj8KE1f-KA_RsKlcRb |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPdALb8SWAkbimiWOnTg5ohVVKNsKwS7qzfJTqlglqJutVH4DP5qZdRK1oKqH3qLEj8QZz8sz3xDyvrC2LE3qEhasT4QRVaKFy5NguXdCZqYSmDt8fFLUS3F0mp9eyYXBsEq0oUMEitjyatzc6IweQuI-bEFYmETzjlVTBkKT8eI-2c1BGQEDbHfx7aiuR35c5L0SnKFHTrIhj-emga5JqGv4pf_x660QOnxE7PD6Mfbk53TTman9_Q-y492-7zF52Ouo9GMkqifknm-ekr2RVV4-I3-AuuhsLGFI20DnoLQ2Hf0BdzAbi35FL3-DER_0O0JlUqy6tlrTrqUgH91Z9EHe2Axz285hiia2XOMUs_YCR-88XQLRr84ixPjlc7I8_LSY1Ulf1yGxXLIusQhal-tUp6mz3uTCGC50AF3JWw72j880y401aVEKm_nUuqDxdNY5pyvtCv6C7DRt418SWlZeSKBDYSRcBFlasB-LLFSFs6a0ckLE8C-V7UHPsfbGSrERGzWutcK1Vv1aT8h07PYron7c1qG6Siiq27pbQqyNovgtfQ8GqlI9A1krPBDnEo3JCXk3Poatj-c5uvHtBtqAqob6RSX27zD9W_KgXhzP1fzzyZdXZC9DfwK6r_kB2enON_41KF2dedPvqr-UDSHH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkK98EYsLWAkrlmS2LGTY7VltZRSVdBF3Cw_pYpVUnWzldrf0B-NZ51EFFT10FuU-JE44_E8vwH4yI0pS53aJPPGJUyzKlHMFok31Fkmcl0xzB3-dsTnC3bwq-ijCVddWCXq0D4CRWx4NW7uM-v7iLhPGwyWTKB2l1WTLJyZGeUPYYujU2EEWyffD-bzgR3zopOBczTIiaxP47ltoBsH1A340v_Y9eYMmj0B3b99DD35PVm3emKu_gF2vNfnPYXHnYRK9iJJPYMHrn4O2wOjvHwB14G2yHQoYEgaTw6DyFq35Ge4g7lY5Bht_DXGe5AfCJRJsObackXahoTT0Z5GC-StzTCz7TxMUceWK5xi2lzg6K0ji0Dyy9MIMH75EhazzyfTedJVdUgMFVmbGISsK1Sq0tQapwumNWXKB0nJGRq0H5errNBGp7xkJnepsV6hb9ZaqyplOX0Fo7qp3WsgZeWYCFTItAgXXpQmaI889xW3RpdGjIH1v1KaDvIcK28sZTYgo8a1lrjWslvrMUyGbmcR8-OuDtXfdCLbjbHFx8ookt7Rd7cnKtmxj5VEdzgVqEqO4cPwOGx89Oao2jXr0CYIaihdVOzNPaZ_D4-O92fy8MvR1x3YztGYgLZruguj9nzt3gaJq9Xvuj31B-VHIGs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Comparison+of+Latent+Variable+Propensity+Score+Models+to+Traditional+Propensity+Score+Models+under+Conditions+of+Covariate+Unreliability&rft.jtitle=Multivariate+behavioral+research&rft.au=Whittaker%2C+Tiffany+A.&rft.date=2020-07-03&rft.issn=0027-3171&rft.eissn=1532-7906&rft.volume=55&rft.issue=4&rft.spage=625&rft.epage=646&rft_id=info:doi/10.1080%2F00273171.2019.1663136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00273171_2019_1663136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |