The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability

Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic...

Full description

Saved in:
Bibliographic Details
Published inMultivariate behavioral research Vol. 55; no. 4; pp. 625 - 646
Main Author Whittaker, Tiffany A.
Format Journal Article
LanguageEnglish
Published Mahwah Routledge 03.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0027-3171
1532-7906
1532-7906
DOI10.1080/00273171.2019.1663136

Cover

Abstract Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed.
AbstractList Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed.
Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed.Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in observational studies using a set of baseline covariates. Propensity scores are most commonly calculated using baseline covariates in a logistic regression model to predict the binary grouping variable (control versus treatment). Low reliability associated with the covariates can adversely impact the calculation of treatment effects in propensity score models. The incorporation of latent variables when calculating propensity scores has been suggested to offset the negative impact of covariate unreliability. Simulation studies were conducted to compare the performance of latent variable methods with traditional propensity score methods when estimating the treatment effect under conditions of covariate unreliability. The results indicated that using factor scores or composite variables to compute propensity scores resulted in biased estimates and inflated Type I error rates as compared to using latent factors to compute propensity scores in certain conditions. This was largely dependent upon the number of infallible covariates also included in the PS model and the outcome analysis model analyzed. Implications of the findings are discussed.
Author Whittaker, Tiffany A.
Author_xml – sequence: 1
  givenname: Tiffany A.
  surname: Whittaker
  fullname: Whittaker, Tiffany A.
  email: t.whittaker@austin.utexas.edu
  organization: Department of Educational Psychology, the University of Texas at Austin
BookMark eNqFkc2KFDEUhYOMYM_oIwgBN26qJ6lUkircKI0_Ay0K9rgNt5JbmCGdtEla6Xfwoa2ix82AugqE7zuHy7kkFzFFJOQ5Z2vOenbNWKsF13zdMj6suVKCC_WIrLgUbaMHpi7IamGaBXpCLku5Y4wp2Q0r8mv3Dekm7Q-QfUmRpoluoWKs9Ov8A2NA-jmnA8bi64l-sSkj_ZgchkJrorsMzlefIoS_YsfoMM8V8UyWpWKTfizpFeltzBjmHh9m8Sl5PEEo-Oz-vSK3797uNh-a7af3N5s328YKzWtjlda9BAaMOYuj7MZRdDApMaAVUitsgcvRjkz1nW2RWTeBVFI752AAp8QVeXnOPeT0_Yilmr0vFkOAiOlYTNsOgvG2H7oZffEAvUvHPN87U51she61FDP16kzZnErJOBnrKyzn1gw-GM7MspT5s5RZljL3S822fGAfst9DPv3Xe332fJxS3sPPlIMzFU4h5SlDtL4Y8e-I30Hzrus
CitedBy_id crossref_primary_10_1080_19345747_2022_2110545
crossref_primary_10_1080_00220973_2024_2352766
crossref_primary_10_1016_j_scitotenv_2024_170238
crossref_primary_10_1080_00273171_2024_2307529
crossref_primary_10_1080_00273171_2023_2235697
Cites_doi 10.2307/2290910
10.1080/00273171.2015.1022643
10.1177/0013164402062004005
10.1207/S15328007SEM0802_3
10.1214/aos/1034276631
10.1037/h0059873
10.1177/0962280215584401
10.1037/0033-2909.110.2.305
10.1348/000711008X365676
10.1037/a0033805
10.1007/BF02293967
10.3102/1076998610375835
10.1002/9781118619179
10.1037/0022-006X.58.5.646
10.1177/0013164412440999
10.2307/1416623
10.1111/j.2044-8317.1955.tb00321.x
10.1002/sim.5705
10.1007/BF02291367
10.1111/j.2044-8317.1978.tb00581.x
10.1016/S0191-8869(97)00088-3
10.1080/03610739208253916
10.2307/1412159
10.1093/aje/kwj149
10.1037/a0024776
10.1093/biomet/70.1.41
10.1093/pan/mpi026
10.1177/0013164402062004009
10.1080/10705511.2017.1402334
10.1177/0049124198026003003
10.1177/1094428104263676
10.1177/0962280213519716
10.1097/00001648-200009000-00011
10.1111/j.0081-1750.2006.00164.x
10.1007/BF02294170
10.1177/2167696815621645
10.1177/1094428105284919
10.1177/0272989X09341755
10.1111/j.2044-8317.1993.tb01015.x
10.1002/sim.2580
10.1080/00273171.2011.568786
10.1080/00273171.2014.889594
10.3386/t0294
10.1198/016214508000000733
10.1053/j.nainr.2009.12.010
10.1007/BF02296196
10.1080/10705511.2016.1220839
10.1214/ss/1177012031
10.1007/BF02294825
10.1177/0013164402062004003
10.1037/a0015914
10.1080/10705511.2018.1522591
10.1037/10222-009
10.1201/9781420010138
10.1002/sim.1903
10.1037/h0037350
10.1146/annurev.psych.53.100901.135239
10.2307/3172730
10.1002/pam.10129
10.1177/109442810031002
10.1086/223991
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7X8
DOI 10.1080/00273171.2019.1663136
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1532-7906
EndPage 646
ExternalDocumentID 10_1080_00273171_2019_1663136
1663136
Genre Article
GroupedDBID --Z
-~X
.7I
.QK
0BK
0R~
123
4.4
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABPPZ
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACIWK
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EMOBN
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
MS~
NA5
NW-
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TWZ
UT5
UT9
VAE
WH7
YNT
YQT
ZL0
~01
~S~
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c371t-c67785a0a00dceb54bb34af639ec3576e2a15bcb0684c2e0cdfa5657ddda9ad63
ISSN 0027-3171
1532-7906
IngestDate Fri Sep 05 13:58:10 EDT 2025
Wed Aug 13 07:49:52 EDT 2025
Wed Oct 01 05:04:50 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
Mon Oct 20 23:48:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-c67785a0a00dceb54bb34af639ec3576e2a15bcb0684c2e0cdfa5657ddda9ad63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2452378753
PQPubID 47318
PageCount 22
ParticipantIDs crossref_citationtrail_10_1080_00273171_2019_1663136
informaworld_taylorfrancis_310_1080_00273171_2019_1663136
proquest_miscellaneous_2293012894
proquest_journals_2452378753
crossref_primary_10_1080_00273171_2019_1663136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-03
PublicationDateYYYYMMDD 2020-07-03
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Mahwah
PublicationPlace_xml – name: Mahwah
PublicationTitle Multivariate behavioral research
PublicationYear 2020
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0030
CIT0032
CIT0034
CIT0033
CIT0070
Muthén B. O. (CIT0042) 1998
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0040
CIT0043
CIT0001
CIT0045
Nunnally J. C. (CIT0046) 1978
Mulaik S. A. (CIT0041) 2005
Wooldridge J. M. (CIT0073) 2010
CIT0003
CIT0047
CIT0002
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
Bartlett M. S. (CIT0010) 1937; 28
CIT0009
Cohen J. (CIT0021) 2003
CIT0008
CIT0050
CIT0052
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
Muthén L. K. (CIT0044) 1998
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Hoshino T. (CIT0031) 2011
Thurstone L. L. (CIT0068) 1935
CIT0025
CIT0069
CIT0024
CIT0027
CIT0026
CIT0029
Stone C. A. (CIT0065) 2013; 18
Cohen J. (CIT0020) 1988
CIT0028
References_xml – ident: CIT0049
  doi: 10.2307/2290910
– ident: CIT0050
  doi: 10.1080/00273171.2015.1022643
– volume: 18
  start-page: 1
  issue: 13
  year: 2013
  ident: CIT0065
  publication-title: Practical Assessment, Research & Evaluation
– ident: CIT0009
  doi: 10.1177/0013164402062004005
– volume-title: Mplus user’s guide
  year: 1998
  ident: CIT0044
– ident: CIT0033
  doi: 10.1207/S15328007SEM0802_3
– ident: CIT0055
  doi: 10.1214/aos/1034276631
– ident: CIT0067
  doi: 10.1037/h0059873
– ident: CIT0007
  doi: 10.1177/0962280215584401
– ident: CIT0015
  doi: 10.1037/0033-2909.110.2.305
– ident: CIT0008
  doi: 10.1348/000711008X365676
– ident: CIT0022
  doi: 10.1037/a0033805
– ident: CIT0063
  doi: 10.1007/BF02293967
– ident: CIT0064
  doi: 10.3102/1076998610375835
– ident: CIT0013
  doi: 10.1002/9781118619179
– ident: CIT0053
  doi: 10.1037/0022-006X.58.5.646
– ident: CIT0047
  doi: 10.1177/0013164412440999
– volume: 28
  start-page: 97
  issue: 1
  year: 1937
  ident: CIT0010
  publication-title: British Journal of Psychology
  doi: 10.2307/1416623
– ident: CIT0026
  doi: 10.1111/j.2044-8317.1955.tb00321.x
– ident: CIT0004
  doi: 10.1002/sim.5705
– ident: CIT0069
  doi: 10.1007/BF02291367
– ident: CIT0016
  doi: 10.1111/j.2044-8317.1978.tb00581.x
– ident: CIT0060
  doi: 10.1016/S0191-8869(97)00088-3
– ident: CIT0030
  doi: 10.1080/03610739208253916
– volume-title: Mplus technical appendices
  year: 1998
  ident: CIT0042
– ident: CIT0062
  doi: 10.2307/1412159
– ident: CIT0017
  doi: 10.1093/aje/kwj149
– ident: CIT0036
  doi: 10.1037/a0024776
– ident: CIT0052
  doi: 10.1093/biomet/70.1.41
– ident: CIT0038
  doi: 10.1093/pan/mpi026
– volume-title: Bias in factor score regression and a simple solution.
  year: 2011
  ident: CIT0031
– ident: CIT0071
  doi: 10.1177/0013164402062004009
– ident: CIT0027
  doi: 10.1080/10705511.2017.1402334
– ident: CIT0029
  doi: 10.1177/0049124198026003003
– ident: CIT0019
  doi: 10.1177/1094428104263676
– ident: CIT0006
  doi: 10.1177/0962280213519716
– ident: CIT0048
  doi: 10.1097/00001648-200009000-00011
– ident: CIT0028
  doi: 10.1111/j.0081-1750.2006.00164.x
– ident: CIT0001
  doi: 10.1007/BF02294170
– ident: CIT0066
  doi: 10.1177/2167696815621645
– ident: CIT0034
  doi: 10.1177/1094428105284919
– ident: CIT0002
  doi: 10.1177/0272989X09341755
– ident: CIT0043
  doi: 10.1111/j.2044-8317.1993.tb01015.x
– volume-title: The vectors of mind
  year: 1935
  ident: CIT0068
– start-page: 173
  volume-title: Contemporary psychometrics
  year: 2005
  ident: CIT0041
– volume-title: Applied multiple regression/correlation analysis for the behavioral sciences
  year: 2003
  ident: CIT0021
– volume-title: Psychometric theory
  year: 1978
  ident: CIT0046
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: CIT0020
– ident: CIT0005
  doi: 10.1002/sim.2580
– ident: CIT0003
  doi: 10.1080/00273171.2011.568786
– ident: CIT0025
  doi: 10.1080/00273171.2014.889594
– ident: CIT0032
  doi: 10.3386/t0294
– ident: CIT0056
  doi: 10.1198/016214508000000733
– ident: CIT0058
  doi: 10.1053/j.nainr.2009.12.010
– ident: CIT0061
  doi: 10.1007/BF02296196
– ident: CIT0023
  doi: 10.1080/10705511.2016.1220839
– ident: CIT0045
  doi: 10.1214/ss/1177012031
– volume-title: Econometric analysis of cross section and panel data
  year: 2010
  ident: CIT0073
– ident: CIT0040
  doi: 10.1007/BF02294825
– ident: CIT0011
  doi: 10.1177/0013164402062004003
– ident: CIT0024
  doi: 10.1037/a0015914
– ident: CIT0037
  doi: 10.1080/10705511.2018.1522591
– ident: CIT0072
  doi: 10.1037/10222-009
– ident: CIT0018
  doi: 10.1201/9781420010138
– ident: CIT0039
  doi: 10.1002/sim.1903
– ident: CIT0054
  doi: 10.1037/h0037350
– ident: CIT0014
  doi: 10.1146/annurev.psych.53.100901.135239
– ident: CIT0035
  doi: 10.2307/3172730
– ident: CIT0057
  doi: 10.1002/pam.10129
– ident: CIT0070
  doi: 10.1177/109442810031002
– ident: CIT0012
  doi: 10.1086/223991
SSID ssj0006549
Score 2.292296
Snippet Propensity score (PS) methods are implemented by researchers to balance the differences between participants in control and treatment groups that exist in...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 625
SubjectTerms confirmatory factor analysis
covariate reliability
factor scores
Monte Carlo studies
Propensity scores
Regression analysis
Regression models
Title The Comparison of Latent Variable Propensity Score Models to Traditional Propensity Score Models under Conditions of Covariate Unreliability
URI https://www.tandfonline.com/doi/abs/10.1080/00273171.2019.1663136
https://www.proquest.com/docview/2452378753
https://www.proquest.com/docview/2293012894
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 0027-3171
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 0027-3171
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK97IXxFMUFmQkbqtEeTivY1VAFQKExC6suETxI6LaKkHFRYLfgPjNzNjOo2yXZblEkWs7aefrzHg885mQZ6kQec4D6YW1UB7jrPAqJhOvFrGSLIt4wbB2-M3bdHnKXp0lZ5PJr1HW0lZzX_zYW1fyP1KFNpArVsleQ7L9pNAA9yBfuIKE4frPMl6MDxI8fg2uY6OPP0CLqYl6h7H2xuRdvEfCSnP22dqwOoCVkisXCbysG1aYbbAq0PY0aR-L9hvOrtFf3aj1yhJ97-wOm6rerteICMAxC30eLMFK6-q8Q01dY_LB3B9HImDZiVHOeKxdI4x52iNVfNUpVPDgiyAda1xLzOuQxUbqM7VF0M4SpzY4eUHJd1mR4HnBwzA9r_BD8JzCeA-p9h_Grk9BDHtuVDtNidOUbpob5CACKxFMycF8-fzTx962p4lbULlv2tWEIVv7vvfZ8XZ2uHAv2H7j0JzcIjfdSoTOLaxuk4lq7pDD3iB-v0t-Ar7ogC_a1tTii3b4ogNwqAEOtcChuqUjfF3azeCLDvjCR_T4ojv4ukdOX744WSw9d3qHJ-Is1J5AasKkCqogkELxhHEes6oGj1iJGFa5KqrChAsepDkTkQqErCvcg5dSVkUl0_g-mTZtox4QmheKZaBtGM_gps5ykcMyPaqLVAqei2xGWPcrl8JR2-MJK-vyr1KeEb8f9sVyu1w1oBiLsNQmqFbbE3DK-IqxR528S6dCvpaY9hBnGDKYkaf9x6DgcdeualS7hT7gkKMXWbCH133fR-Rw-J8ekanebNVj8KE1f-KA_RsKlcRb
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPdALb8SWAkbimiWOnTg5ohVVKNsKwS7qzfJTqlglqJutVH4DP5qZdRK1oKqH3qLEj8QZz8sz3xDyvrC2LE3qEhasT4QRVaKFy5NguXdCZqYSmDt8fFLUS3F0mp9eyYXBsEq0oUMEitjyatzc6IweQuI-bEFYmETzjlVTBkKT8eI-2c1BGQEDbHfx7aiuR35c5L0SnKFHTrIhj-emga5JqGv4pf_x660QOnxE7PD6Mfbk53TTman9_Q-y492-7zF52Ouo9GMkqifknm-ekr2RVV4-I3-AuuhsLGFI20DnoLQ2Hf0BdzAbi35FL3-DER_0O0JlUqy6tlrTrqUgH91Z9EHe2Axz285hiia2XOMUs_YCR-88XQLRr84ixPjlc7I8_LSY1Ulf1yGxXLIusQhal-tUp6mz3uTCGC50AF3JWw72j880y401aVEKm_nUuqDxdNY5pyvtCv6C7DRt418SWlZeSKBDYSRcBFlasB-LLFSFs6a0ckLE8C-V7UHPsfbGSrERGzWutcK1Vv1aT8h07PYron7c1qG6Siiq27pbQqyNovgtfQ8GqlI9A1krPBDnEo3JCXk3Poatj-c5uvHtBtqAqob6RSX27zD9W_KgXhzP1fzzyZdXZC9DfwK6r_kB2enON_41KF2dedPvqr-UDSHH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkK98EYsLWAkrlmS2LGTY7VltZRSVdBF3Cw_pYpVUnWzldrf0B-NZ51EFFT10FuU-JE44_E8vwH4yI0pS53aJPPGJUyzKlHMFok31Fkmcl0xzB3-dsTnC3bwq-ijCVddWCXq0D4CRWx4NW7uM-v7iLhPGwyWTKB2l1WTLJyZGeUPYYujU2EEWyffD-bzgR3zopOBczTIiaxP47ltoBsH1A340v_Y9eYMmj0B3b99DD35PVm3emKu_gF2vNfnPYXHnYRK9iJJPYMHrn4O2wOjvHwB14G2yHQoYEgaTw6DyFq35Ge4g7lY5Bht_DXGe5AfCJRJsObackXahoTT0Z5GC-StzTCz7TxMUceWK5xi2lzg6K0ji0Dyy9MIMH75EhazzyfTedJVdUgMFVmbGISsK1Sq0tQapwumNWXKB0nJGRq0H5errNBGp7xkJnepsV6hb9ZaqyplOX0Fo7qp3WsgZeWYCFTItAgXXpQmaI889xW3RpdGjIH1v1KaDvIcK28sZTYgo8a1lrjWslvrMUyGbmcR8-OuDtXfdCLbjbHFx8ookt7Rd7cnKtmxj5VEdzgVqEqO4cPwOGx89Oao2jXr0CYIaihdVOzNPaZ_D4-O92fy8MvR1x3YztGYgLZruguj9nzt3gaJq9Xvuj31B-VHIGs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Comparison+of+Latent+Variable+Propensity+Score+Models+to+Traditional+Propensity+Score+Models+under+Conditions+of+Covariate+Unreliability&rft.jtitle=Multivariate+behavioral+research&rft.au=Whittaker%2C+Tiffany+A.&rft.date=2020-07-03&rft.issn=0027-3171&rft.eissn=1532-7906&rft.volume=55&rft.issue=4&rft.spage=625&rft.epage=646&rft_id=info:doi/10.1080%2F00273171.2019.1663136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00273171_2019_1663136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon