Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series

Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inver...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 23
Main Authors Zerah, Yoel, Valero, Silvia, Inglada, Jordi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2023.3284992

Cover

Abstract Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inverse problems. Nevertheless, the scarcity of reference data to train supervised methodologies is a well-known constraint for remote sensing applications. To address such limitations, this work presents a new generic physics-guided probabilistic deep learning methodology to invert physical models. The presented methodology proposes a new strategy to combine probabilistic deep learning methods and physical models avoiding simulation-driven machine learning. The inverse problem is addressed through a Bayesian inference framework by proposing a new physically constrained self-supervised representation learning methodology. To show interest in the proposed strategy, the methodology is applied to the retrieval of phenological parameters from normalized difference vegetation index (NDVI) time series. As a result, the probability distributions of the intrinsic phenological model parameters are inferred. The feasibility of the method is evaluated on both simulated and real Sentinel-2 data and compared with different standard algorithms. Promising results show satisfactory accuracy predictions and low inference times for real applications.
AbstractList Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inverse problems. Nevertheless, the scarcity of reference data to train supervised methodologies is a well-known constraint for remote sensing applications. To address such limitations, this work presents a new generic physics-guided probabilistic deep learning methodology to invert physical models. The presented methodology proposes a new strategy to combine probabilistic deep learning methods and physical models avoiding simulation-driven machine learning. The inverse problem is addressed through a Bayesian inference framework by proposing a new physically constrained self-supervised representation learning methodology. To show interest in the proposed strategy, the methodology is applied to the retrieval of phenological parameters from normalized difference vegetation index (NDVI) time series. As a result, the probability distributions of the intrinsic phenological model parameters are inferred. The feasibility of the method is evaluated on both simulated and real Sentinel-2 data and compared with different standard algorithms. Promising results show satisfactory accuracy predictions and low inference times for real applications.
Author Zerah, Yoel
Valero, Silvia
Inglada, Jordi
Author_xml – sequence: 1
  givenname: Yoel
  orcidid: 0000-0003-1786-7367
  surname: Zerah
  fullname: Zerah, Yoel
  email: yoel.zerah@univ-toulouse.fr
  organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France
– sequence: 2
  givenname: Silvia
  orcidid: 0000-0002-5001-9450
  surname: Valero
  fullname: Valero, Silvia
  email: silvia.valero@cesbio.cnes.fr
  organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France
– sequence: 3
  givenname: Jordi
  orcidid: 0000-0001-6896-0049
  surname: Inglada
  fullname: Inglada, Jordi
  email: jordi.inglada@cesbio.cnes.fr
  organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France
BookMark eNptkd1q4zAQhcXSwqZpH2BhLwR77VQ_dixflv5DSkOTspdCdkaJiiK5kpKSt-mj1qnLsoReDcyc73A4c4KOnHeA0C9KRpSS6nx--zQbMcL4iDORVxX7gQa0KERGxnl-hAaEVuOMiYr9RCcxvhBC84KWA_Q-Xe2iaWJ2FcwWHJ4GX6vaWBOTafAVQIsnoIIzbom1DzitAN-7LYRovMNe455XFj_4BdiI_5q0whdta7tl2muS7zTgvPXLT91UBbWGBAE_QQoGtt3uJvg1nqkE1poEeG7WEPEMums8Rcda2QhnX3OInm-u55d32eTx9v7yYpI1vKQpq0uhNNMgeFXoBsZ1w8qcQ06hpkIToIVStRCUE15rJlRdsAXj-aKkvIFiAXyIWO-7ca3avSlrZRvMWoWdpETuO5ZpGaLcdyy_Ou6gPz3UBv-6gZjki98E1-WUTHRt80p0KYao7FVN8DEG0LIx6bOcFJSx__z3Pzz0pwfkYabvmN89YwDgPz0txoJR_gFiZ6wZ
CODEN IGRSD2
CitedBy_id crossref_primary_10_1038_s44358_025_00022_3
crossref_primary_10_1016_j_rse_2024_114309
crossref_primary_10_1109_LGRS_2023_3293470
Cites_doi 10.1016/j.jcp.2018.10.045
10.1016/S0034-4257(02)00135-9
10.1109/TMI.2020.3025065
10.1109/TGRS.2013.2238242
10.1016/j.inffus.2021.05.008
10.1109/TGRS.2003.817274
10.1109/TGRS.2022.3144636
10.1103/PhysRevX.10.031056
10.1016/j.rse.2019.111511
10.3390/agronomy12020406
10.1109/TGRS.2017.2655365
10.1109/TGRS.2022.3159789
10.1093/mnras/staa2228
10.3390/rs12172760
10.1016/j.rse.2011.11.002
10.1016/j.rse.2022.112958
10.1109/TNNLS.2015.2396933
10.1137/0806023
10.3390/rs13112060
10.1109/TGRS.2011.2166965
10.1109/TGRS.2017.2767205
10.1029/2012JG001977
10.1109/ISIT50566.2022.9834769
10.3390/rs9010095
10.1109/TPWRS.2021.3105101
10.1109/TGRS.2018.2890633
10.1016/j.isprsjprs.2015.04.013
10.1007/s10712-018-9478-y
10.1016/j.rse.2021.112484
10.1561/2200000056
10.1109/CVPR.2018.00574
10.1016/j.rse.2020.112232
10.1038/s42254-021-00314-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOI 10.1109/TGRS.2023.3284992
DatabaseName Accès INSA - IEEE Xplore ASPP 2005
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 23
ExternalDocumentID oai:HAL:hal-03837736v3
10_1109_TGRS_2023_3284992
10156821
Genre orig-research
GrantInformation_xml – fundername: ANR-JCJC DeepChange Project
  grantid: 20-CE23-0003
  funderid: 10.13039/501100001665
– fundername: Natural Intelligence Toulouse Institute (ANITI) from the Université Fédérale Toulouse Midi-Pyrenées
  grantid: ANITI ANR-19-P3IA-0004
– fundername: Centre National d’Études Spatiales (CNES)
  grantid: 51/19560
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c371t-b78af2fe8395fce6bc2743e41eb18f0e15aab881303bf28ab52d234d713ce5de3
IEDL.DBID RIE
ISSN 0196-2892
1558-0644
IngestDate Sun Oct 26 04:10:53 EDT 2025
Mon Jun 30 10:11:24 EDT 2025
Wed Oct 01 02:57:53 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Aug 27 02:18:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-b78af2fe8395fce6bc2743e41eb18f0e15aab881303bf28ab52d234d713ce5de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5001-9450
0000-0001-6896-0049
0000-0003-1786-7367
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-03837736
PQID 2828939874
PQPubID 85465
PageCount 23
ParticipantIDs ieee_primary_10156821
unpaywall_primary_10_1109_tgrs_2023_3284992
crossref_citationtrail_10_1109_TGRS_2023_3284992
crossref_primary_10_1109_TGRS_2023_3284992
proquest_journals_2828939874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
makhzani (ref20) 2017
ref11
ref10
srivastava (ref32) 2017
ref18
kriegler (ref33) 1969
von rueden (ref13) 2023; 35
takeishi (ref27) 2021
homan (ref42) 2014; 15
ref46
ref45
ref48
ref47
ref49
ref8
ref7
ref9
ref4
rybkin (ref29) 2020
ref3
ref6
ref5
ref40
kingma (ref16) 2014
ref35
ref34
ref37
ref36
ref31
lucas (ref19) 2019
ref30
zérah (ref39) 2022
ref2
ref1
ref38
doersch (ref17) 2016
von rueden (ref14) 2020
bingham (ref44) 2019; 20
ref24
ref23
ref26
ref25
phan (ref43) 2019
ref22
ref28
cui (ref21) 2022
higgins (ref41) 2017
References_xml – start-page: 97
  year: 1969
  ident: ref33
  article-title: Preprocessing transformations and their effect on multispectral recognition
  publication-title: Proc 6th Int Symp Remote Sens Environ
– year: 2019
  ident: ref43
  article-title: Composable effects for flexible and accelerated probabilistic programming in NumPyro
  publication-title: Proc Program Transformation ML Workshop (NeurIPS)
– ident: ref22
  doi: 10.1016/j.jcp.2018.10.045
– ident: ref38
  doi: 10.1016/S0034-4257(02)00135-9
– start-page: 548
  year: 2020
  ident: ref14
  article-title: Combining machine learning and simulation to a hybrid modelling approach: Current and future directions
  publication-title: Advances in Intelligent Data Analysis XV
– year: 2021
  ident: ref27
  article-title: Variational autoencoder with differentiable physics engine for human gait analysis and synthesis
  publication-title: Proc NeurIPS Workshop Deep Generative Models Downstream Appl
– ident: ref46
  doi: 10.1109/TMI.2020.3025065
– ident: ref9
  doi: 10.1109/TGRS.2013.2238242
– year: 2017
  ident: ref20
  article-title: Pixelgan autoencoders
  publication-title: Proc NIPS
– ident: ref47
  doi: 10.1016/j.inffus.2021.05.008
– ident: ref35
  doi: 10.1109/TGRS.2003.817274
– ident: ref24
  doi: 10.1109/TGRS.2022.3144636
– year: 2022
  ident: ref39
  article-title: Sentinel-2 time series for PHENO-VAE
– ident: ref25
  doi: 10.1103/PhysRevX.10.031056
– ident: ref6
  doi: 10.1016/j.rse.2019.111511
– year: 2022
  ident: ref21
  article-title: Knowledge-augmented deep learning and its applications: A survey
  publication-title: arXiv 2212 00017
– ident: ref1
  doi: 10.3390/agronomy12020406
– ident: ref36
  doi: 10.1109/TGRS.2017.2655365
– ident: ref8
  doi: 10.1109/TGRS.2022.3159789
– ident: ref28
  doi: 10.1093/mnras/staa2228
– year: 2014
  ident: ref16
  article-title: Auto-encoding variational Bayes
  publication-title: Proc 2nd Int Conf Learn Represent (ICLR)
– ident: ref4
  doi: 10.3390/rs12172760
– ident: ref12
  doi: 10.1016/j.rse.2011.11.002
– ident: ref11
  doi: 10.1016/j.rse.2022.112958
– volume: 35
  start-page: 614
  year: 2023
  ident: ref13
  article-title: Informed machine learning-A taxonomy and survey of integrating prior knowledge into learning systems
  publication-title: IEEE Trans Knowl Data Eng
– ident: ref48
  doi: 10.1109/TNNLS.2015.2396933
– year: 2019
  ident: ref19
  article-title: Understanding posterior collapse in generative latent variable models
  publication-title: Proc DGS ICLR
– ident: ref45
  doi: 10.1137/0806023
– ident: ref7
  doi: 10.3390/rs13112060
– ident: ref34
  doi: 10.1109/TGRS.2011.2166965
– volume: 15
  start-page: 1593
  year: 2014
  ident: ref42
  article-title: The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J Mach Learn Res
– ident: ref10
  doi: 10.1109/TGRS.2017.2767205
– volume: 20
  start-page: 1
  year: 2019
  ident: ref44
  article-title: Pyro: Deep universal probabilistic programming
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1029/2012JG001977
– ident: ref31
  doi: 10.1109/ISIT50566.2022.9834769
– year: 2017
  ident: ref32
  article-title: Autoencoding variational inference for topic models
  publication-title: Proc 5th Int Conf Learn Represent (ICLR)
– ident: ref40
  doi: 10.3390/rs9010095
– ident: ref49
  doi: 10.1109/TPWRS.2021.3105101
– ident: ref26
  doi: 10.1109/TGRS.2018.2890633
– year: 2017
  ident: ref41
  article-title: SS -VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: Proc Int Conf Learn Represent
– ident: ref3
  doi: 10.1016/j.isprsjprs.2015.04.013
– ident: ref2
  doi: 10.1007/s10712-018-9478-y
– ident: ref15
  doi: 10.1016/j.rse.2021.112484
– year: 2020
  ident: ref29
  publication-title: Simple and effective VAE training with calibrated decoders
– ident: ref18
  doi: 10.1561/2200000056
– ident: ref30
  doi: 10.1109/CVPR.2018.00574
– ident: ref5
  doi: 10.1016/j.rse.2020.112232
– ident: ref23
  doi: 10.1038/s42254-021-00314-5
– year: 2016
  ident: ref17
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv 1606 05908
SSID ssj0014517
Score 2.452117
Snippet Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Autoencoders (AEs)
Bayesian analysis
Bayesian physics-guided learning
Biological system modeling
Constraints
Data models
Decoding
Deep learning
generative models
Inverse problems
large scale
Learning algorithms
Machine learning
Mathematical models
Methodology
Methods
Normalized difference vegetative index
Parameters
phenology monitoring
Physical properties
Physics
Probability theory
Remote sensing
Representation learning
Retrieval
Satellite constellations
satellite image time series (SITS)
Satellites
self-supervised representation learning
Statistical analysis
Statistical inference
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZGJwQ88GMMURjoHngCuSR2nDiPFaNMSEzVtorxFNmOs02UtEpSIfhr-FM5O-5oQZrEWyJd5Eh3vrvvfP6OkFdRKXJmGKdMxZomJhE0L6OKytgyk6V5EmlX7_h0nB7Nko_n4nyHwPouzCVmnMH3u2caOQSV8fQW2U0FZtsDsjs7no6_9LegU4p4wR9oCiEpRtckHFzGUf62u2gcHzfjI44-OM_ZVujxs1S20so7q3qpfnxX8_lGhJk86DsdW09M6BpLvo5WnR6Zn3_RNt708w_J_ZBewri3h0dkx9Z75N4G6eAeue2bPk37mPwKT_SwcT4Ppg1ubtcs67ib4dDaJQT61QvA3BYwVwTHy-ErbLCoYBqUDG6i2ryFz1fdJYz_HIlDt0AZW68dLEyV6wVDVcKJn-SFZg6TZvENTpVnBu0s-Dsp4Ip2tt0ns8n7s3dHNExsoIZncUd1JlXFKotZl6iMTbVB0MttEmNEkFVkY6GUltLFTV0xqbRgJeNJiUjZWFFa_oQM6kVtnxKIVFoiVLRGIuTjVayFFanlKjOqSoQxQxKtlVmYQGfupmrMCw9rorw4-3ByWjj9F0H_Q_L6-pNlz-Vxk_C-s5ANQUS6ksVDcrA2mSJs97bwuJXnMkuG5M21Gf2ziLPIrUWe_Zf0c3LXvfYFoAMy6JqVfYEpUadfhl3xG-wBB48
  priority: 102
  providerName: Unpaywall
Title Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series
URI https://ieeexplore.ieee.org/document/10156821
https://www.proquest.com/docview/2828939874
https://hal.science/hal-03837736
UnpaywallVersion submittedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 1558-0644
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCAEPfIwhCmO6B55ACYkTJ85jxSgTElW1rWI8RbZz3hAlqZJUCP4a_lRsxy0tCMRbHi5yojvf3e8-CXkeVaygiiYBFbEMUpWyoKgiHfAYqcqzIo2kjXe8n2Yn8_TdBbvwzequFwYRXfEZhvbR5fKrRq1sqMzccIM2uG0bv57zbGjW2qQMUhb73ugsMCiC-hRmHBWvzt-enoV2T3iYGG1cFHTHCLmtKjsO5q1VvRTfvorFYsvWTO6R6forhxKTz-Gql6H6_tsAx__-jfvkrvc6YTyIyQNyDet9cmdrFuE-uelqQVX3kPzwT8Fxa1UhzFpz520NrR3pDMeIS_BTWS_BuLxgXEiw4zpc4A0aDTPPe7CL1hYdfPjUX8H4V6Yc-sbQYL3WuzATtkTMcBhO3YIvI_0waZsvcCbcwNAewbWqgI3lYXdA5pM3569PAr_IIVBJHveBzLnQVKNxxphWmEllsHCCaWwMBdcRxkwIybk1p1JTLiSjFU3SygBohazC5BHZq5saHxOIRFYZBImKGySY6FgyZBkmIldCp0ypEYnWnC2Vn3Jul20sSod2oqK0wlBaYSi9MIzIi80ry2HEx7-IDyxDtwgHXo7I4Vp-Sq8FutLB2aTgeToiLzcy9cch_WXb7Rzy5C-HPCW3LdkQAToke327wmfGJ-rlkbsLR-TGfDobf_wJWlkLMQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQESoceJRWLG1hDpxACYlj53GsKNsF2tWq3YreItuZFMSSrJKsUPk1_FRsx7vsgkDcfLDlRDOe93xDyIug4BlVNPKoCKXHFONeVgSll4ZIVRJnLJAm3nE2jkeX7P0Vv3LN6rYXBhFt8Rn6Zmlz-UWtFiZUpl-49jZS0zZ-mzPGeN-utUoaMB667ujY034EdUnMMMheT0_OL3wzKdyPtDzOMrqhhuxclQ0Tc3tRzcXNNzGbrWmb4QMyXn5nX2TyxV900lfff4Nw_O8feUjuO7sTjnpGeURuYbVD7q2hEe6QO7YaVLWPyQ-38o4bIwxh0uhXb6poDagzHCPOweGyXoM2ekEbkWAAO2zoDeoSJo76YEatzVr4-Ln7BEe_cuXQ1XoPVkvJCxNhisQ0jeHcjvjS_A_Dpv4KF8JChnYItlkFTDQP211yOXw7fTPy3CgHT0VJ2HkySUVJS9TmGC8VxlJpbzhCFmpVkZYBhlwImaZGocqSpkJyWtCIFdqFVsgLjPbIVlVX-IRAIOJC-5CoUu0LRmUoOfIYI5EoUTKu1IAES8rmyuGcm3Ebs9z6O0GWG2bIDTPkjhkG5OXqyLwH-fjX5l1D0LWNPS0H5GDJP7mTA21uHdooSxM2IK9WPPXHJd11025c8vQvlzwn26Pp2Wl--m78YZ_cNUf6eNAB2eqaBR5qC6mTz-y7-AkJygzO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZGJwQ88GMMURjoHngCuSR2nDiPFaNMSEzVtorxFNmOs02UtEpSIfhr-FM5O-5oQZrEWyJd5Eh3vrvvfP6OkFdRKXJmGKdMxZomJhE0L6OKytgyk6V5EmlX7_h0nB7Nko_n4nyHwPouzCVmnMH3u2caOQSV8fQW2U0FZtsDsjs7no6_9LegU4p4wR9oCiEpRtckHFzGUf62u2gcHzfjI44-OM_ZVujxs1S20so7q3qpfnxX8_lGhJk86DsdW09M6BpLvo5WnR6Zn3_RNt708w_J_ZBewri3h0dkx9Z75N4G6eAeue2bPk37mPwKT_SwcT4Ppg1ubtcs67ib4dDaJQT61QvA3BYwVwTHy-ErbLCoYBqUDG6i2ryFz1fdJYz_HIlDt0AZW68dLEyV6wVDVcKJn-SFZg6TZvENTpVnBu0s-Dsp4Ip2tt0ns8n7s3dHNExsoIZncUd1JlXFKotZl6iMTbVB0MttEmNEkFVkY6GUltLFTV0xqbRgJeNJiUjZWFFa_oQM6kVtnxKIVFoiVLRGIuTjVayFFanlKjOqSoQxQxKtlVmYQGfupmrMCw9rorw4-3ByWjj9F0H_Q_L6-pNlz-Vxk_C-s5ANQUS6ksVDcrA2mSJs97bwuJXnMkuG5M21Gf2ziLPIrUWe_Zf0c3LXvfYFoAMy6JqVfYEpUadfhl3xG-wBB48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Driven+Probabilistic+Deep+Learning+for+the+Inversion+of+Physical+Models+With+Application+to+Phenological+Parameter+Retrieval+From+Satellite+Times+Series&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zerah%2C+Yoel&rft.au=Valero%2C+Silvia&rft.au=Inglada%2C+Jordi&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=61&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1109%2FTGRS.2023.3284992&rft.externalDocID=10156821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon