Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series
Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inver...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 61; pp. 1 - 23 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 1558-0644 |
| DOI | 10.1109/TGRS.2023.3284992 |
Cover
| Abstract | Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inverse problems. Nevertheless, the scarcity of reference data to train supervised methodologies is a well-known constraint for remote sensing applications. To address such limitations, this work presents a new generic physics-guided probabilistic deep learning methodology to invert physical models. The presented methodology proposes a new strategy to combine probabilistic deep learning methods and physical models avoiding simulation-driven machine learning. The inverse problem is addressed through a Bayesian inference framework by proposing a new physically constrained self-supervised representation learning methodology. To show interest in the proposed strategy, the methodology is applied to the retrieval of phenological parameters from normalized difference vegetation index (NDVI) time series. As a result, the probability distributions of the intrinsic phenological model parameters are inferred. The feasibility of the method is evaluated on both simulated and real Sentinel-2 data and compared with different standard algorithms. Promising results show satisfactory accuracy predictions and low inference times for real applications. |
|---|---|
| AbstractList | Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a global scale. Such parameters and their corresponding uncertainties can be retrieved by machine learning methods solving probabilistic inverse problems. Nevertheless, the scarcity of reference data to train supervised methodologies is a well-known constraint for remote sensing applications. To address such limitations, this work presents a new generic physics-guided probabilistic deep learning methodology to invert physical models. The presented methodology proposes a new strategy to combine probabilistic deep learning methods and physical models avoiding simulation-driven machine learning. The inverse problem is addressed through a Bayesian inference framework by proposing a new physically constrained self-supervised representation learning methodology. To show interest in the proposed strategy, the methodology is applied to the retrieval of phenological parameters from normalized difference vegetation index (NDVI) time series. As a result, the probability distributions of the intrinsic phenological model parameters are inferred. The feasibility of the method is evaluated on both simulated and real Sentinel-2 data and compared with different standard algorithms. Promising results show satisfactory accuracy predictions and low inference times for real applications. |
| Author | Zerah, Yoel Valero, Silvia Inglada, Jordi |
| Author_xml | – sequence: 1 givenname: Yoel orcidid: 0000-0003-1786-7367 surname: Zerah fullname: Zerah, Yoel email: yoel.zerah@univ-toulouse.fr organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France – sequence: 2 givenname: Silvia orcidid: 0000-0002-5001-9450 surname: Valero fullname: Valero, Silvia email: silvia.valero@cesbio.cnes.fr organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France – sequence: 3 givenname: Jordi orcidid: 0000-0001-6896-0049 surname: Inglada fullname: Inglada, Jordi email: jordi.inglada@cesbio.cnes.fr organization: Centre d'Études Spatiales de la Biosphère (CESBIO), Centre National d'Études Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Institut de Recherche pour le Développement (IRD), Université Paul Sabatier (UPS), Université de Toulouse, Toulouse, France |
| BookMark | eNptkd1q4zAQhcXSwqZpH2BhLwR77VQ_dixflv5DSkOTspdCdkaJiiK5kpKSt-mj1qnLsoReDcyc73A4c4KOnHeA0C9KRpSS6nx--zQbMcL4iDORVxX7gQa0KERGxnl-hAaEVuOMiYr9RCcxvhBC84KWA_Q-Xe2iaWJ2FcwWHJ4GX6vaWBOTafAVQIsnoIIzbom1DzitAN-7LYRovMNe455XFj_4BdiI_5q0whdta7tl2muS7zTgvPXLT91UBbWGBAE_QQoGtt3uJvg1nqkE1poEeG7WEPEMums8Rcda2QhnX3OInm-u55d32eTx9v7yYpI1vKQpq0uhNNMgeFXoBsZ1w8qcQ06hpkIToIVStRCUE15rJlRdsAXj-aKkvIFiAXyIWO-7ca3avSlrZRvMWoWdpETuO5ZpGaLcdyy_Ou6gPz3UBv-6gZjki98E1-WUTHRt80p0KYao7FVN8DEG0LIx6bOcFJSx__z3Pzz0pwfkYabvmN89YwDgPz0txoJR_gFiZ6wZ |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1038_s44358_025_00022_3 crossref_primary_10_1016_j_rse_2024_114309 crossref_primary_10_1109_LGRS_2023_3293470 |
| Cites_doi | 10.1016/j.jcp.2018.10.045 10.1016/S0034-4257(02)00135-9 10.1109/TMI.2020.3025065 10.1109/TGRS.2013.2238242 10.1016/j.inffus.2021.05.008 10.1109/TGRS.2003.817274 10.1109/TGRS.2022.3144636 10.1103/PhysRevX.10.031056 10.1016/j.rse.2019.111511 10.3390/agronomy12020406 10.1109/TGRS.2017.2655365 10.1109/TGRS.2022.3159789 10.1093/mnras/staa2228 10.3390/rs12172760 10.1016/j.rse.2011.11.002 10.1016/j.rse.2022.112958 10.1109/TNNLS.2015.2396933 10.1137/0806023 10.3390/rs13112060 10.1109/TGRS.2011.2166965 10.1109/TGRS.2017.2767205 10.1029/2012JG001977 10.1109/ISIT50566.2022.9834769 10.3390/rs9010095 10.1109/TPWRS.2021.3105101 10.1109/TGRS.2018.2890633 10.1016/j.isprsjprs.2015.04.013 10.1007/s10712-018-9478-y 10.1016/j.rse.2021.112484 10.1561/2200000056 10.1109/CVPR.2018.00574 10.1016/j.rse.2020.112232 10.1038/s42254-021-00314-5 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| DOI | 10.1109/TGRS.2023.3284992 |
| DatabaseName | Accès INSA - IEEE Xplore ASPP 2005 IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 23 |
| ExternalDocumentID | oai:HAL:hal-03837736v3 10_1109_TGRS_2023_3284992 10156821 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: ANR-JCJC DeepChange Project grantid: 20-CE23-0003 funderid: 10.13039/501100001665 – fundername: Natural Intelligence Toulouse Institute (ANITI) from the Université Fédérale Toulouse Midi-Pyrenées grantid: ANITI ANR-19-P3IA-0004 – fundername: Centre National d’Études Spatiales (CNES) grantid: 51/19560 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c371t-b78af2fe8395fce6bc2743e41eb18f0e15aab881303bf28ab52d234d713ce5de3 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 1558-0644 |
| IngestDate | Sun Oct 26 04:10:53 EDT 2025 Mon Jun 30 10:11:24 EDT 2025 Wed Oct 01 02:57:53 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Aug 27 02:18:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-b78af2fe8395fce6bc2743e41eb18f0e15aab881303bf28ab52d234d713ce5de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5001-9450 0000-0001-6896-0049 0000-0003-1786-7367 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-03837736 |
| PQID | 2828939874 |
| PQPubID | 85465 |
| PageCount | 23 |
| ParticipantIDs | ieee_primary_10156821 unpaywall_primary_10_1109_tgrs_2023_3284992 crossref_citationtrail_10_1109_TGRS_2023_3284992 crossref_primary_10_1109_TGRS_2023_3284992 proquest_journals_2828939874 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 makhzani (ref20) 2017 ref11 ref10 srivastava (ref32) 2017 ref18 kriegler (ref33) 1969 von rueden (ref13) 2023; 35 takeishi (ref27) 2021 homan (ref42) 2014; 15 ref46 ref45 ref48 ref47 ref49 ref8 ref7 ref9 ref4 rybkin (ref29) 2020 ref3 ref6 ref5 ref40 kingma (ref16) 2014 ref35 ref34 ref37 ref36 ref31 lucas (ref19) 2019 ref30 zérah (ref39) 2022 ref2 ref1 ref38 doersch (ref17) 2016 von rueden (ref14) 2020 bingham (ref44) 2019; 20 ref24 ref23 ref26 ref25 phan (ref43) 2019 ref22 ref28 cui (ref21) 2022 higgins (ref41) 2017 |
| References_xml | – start-page: 97 year: 1969 ident: ref33 article-title: Preprocessing transformations and their effect on multispectral recognition publication-title: Proc 6th Int Symp Remote Sens Environ – year: 2019 ident: ref43 article-title: Composable effects for flexible and accelerated probabilistic programming in NumPyro publication-title: Proc Program Transformation ML Workshop (NeurIPS) – ident: ref22 doi: 10.1016/j.jcp.2018.10.045 – ident: ref38 doi: 10.1016/S0034-4257(02)00135-9 – start-page: 548 year: 2020 ident: ref14 article-title: Combining machine learning and simulation to a hybrid modelling approach: Current and future directions publication-title: Advances in Intelligent Data Analysis XV – year: 2021 ident: ref27 article-title: Variational autoencoder with differentiable physics engine for human gait analysis and synthesis publication-title: Proc NeurIPS Workshop Deep Generative Models Downstream Appl – ident: ref46 doi: 10.1109/TMI.2020.3025065 – ident: ref9 doi: 10.1109/TGRS.2013.2238242 – year: 2017 ident: ref20 article-title: Pixelgan autoencoders publication-title: Proc NIPS – ident: ref47 doi: 10.1016/j.inffus.2021.05.008 – ident: ref35 doi: 10.1109/TGRS.2003.817274 – ident: ref24 doi: 10.1109/TGRS.2022.3144636 – year: 2022 ident: ref39 article-title: Sentinel-2 time series for PHENO-VAE – ident: ref25 doi: 10.1103/PhysRevX.10.031056 – ident: ref6 doi: 10.1016/j.rse.2019.111511 – year: 2022 ident: ref21 article-title: Knowledge-augmented deep learning and its applications: A survey publication-title: arXiv 2212 00017 – ident: ref1 doi: 10.3390/agronomy12020406 – ident: ref36 doi: 10.1109/TGRS.2017.2655365 – ident: ref8 doi: 10.1109/TGRS.2022.3159789 – ident: ref28 doi: 10.1093/mnras/staa2228 – year: 2014 ident: ref16 article-title: Auto-encoding variational Bayes publication-title: Proc 2nd Int Conf Learn Represent (ICLR) – ident: ref4 doi: 10.3390/rs12172760 – ident: ref12 doi: 10.1016/j.rse.2011.11.002 – ident: ref11 doi: 10.1016/j.rse.2022.112958 – volume: 35 start-page: 614 year: 2023 ident: ref13 article-title: Informed machine learning-A taxonomy and survey of integrating prior knowledge into learning systems publication-title: IEEE Trans Knowl Data Eng – ident: ref48 doi: 10.1109/TNNLS.2015.2396933 – year: 2019 ident: ref19 article-title: Understanding posterior collapse in generative latent variable models publication-title: Proc DGS ICLR – ident: ref45 doi: 10.1137/0806023 – ident: ref7 doi: 10.3390/rs13112060 – ident: ref34 doi: 10.1109/TGRS.2011.2166965 – volume: 15 start-page: 1593 year: 2014 ident: ref42 article-title: The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo publication-title: J Mach Learn Res – ident: ref10 doi: 10.1109/TGRS.2017.2767205 – volume: 20 start-page: 1 year: 2019 ident: ref44 article-title: Pyro: Deep universal probabilistic programming publication-title: J Mach Learn Res – ident: ref37 doi: 10.1029/2012JG001977 – ident: ref31 doi: 10.1109/ISIT50566.2022.9834769 – year: 2017 ident: ref32 article-title: Autoencoding variational inference for topic models publication-title: Proc 5th Int Conf Learn Represent (ICLR) – ident: ref40 doi: 10.3390/rs9010095 – ident: ref49 doi: 10.1109/TPWRS.2021.3105101 – ident: ref26 doi: 10.1109/TGRS.2018.2890633 – year: 2017 ident: ref41 article-title: SS -VAE: Learning basic visual concepts with a constrained variational framework publication-title: Proc Int Conf Learn Represent – ident: ref3 doi: 10.1016/j.isprsjprs.2015.04.013 – ident: ref2 doi: 10.1007/s10712-018-9478-y – ident: ref15 doi: 10.1016/j.rse.2021.112484 – year: 2020 ident: ref29 publication-title: Simple and effective VAE training with calibrated decoders – ident: ref18 doi: 10.1561/2200000056 – ident: ref30 doi: 10.1109/CVPR.2018.00574 – ident: ref5 doi: 10.1016/j.rse.2020.112232 – ident: ref23 doi: 10.1038/s42254-021-00314-5 – year: 2016 ident: ref17 article-title: Tutorial on variational autoencoders publication-title: arXiv 1606 05908 |
| SSID | ssj0014517 |
| Score | 2.452117 |
| Snippet | Recent Sentinel satellite constellations and deep learning methods offer great possibilities for estimating the states and dynamics of physical parameters on a... |
| SourceID | unpaywall proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Autoencoders (AEs) Bayesian analysis Bayesian physics-guided learning Biological system modeling Constraints Data models Decoding Deep learning generative models Inverse problems large scale Learning algorithms Machine learning Mathematical models Methodology Methods Normalized difference vegetative index Parameters phenology monitoring Physical properties Physics Probability theory Remote sensing Representation learning Retrieval Satellite constellations satellite image time series (SITS) Satellites self-supervised representation learning Statistical analysis Statistical inference |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZGJwQ88GMMURjoHngCuSR2nDiPFaNMSEzVtorxFNmOs02UtEpSIfhr-FM5O-5oQZrEWyJd5Eh3vrvvfP6OkFdRKXJmGKdMxZomJhE0L6OKytgyk6V5EmlX7_h0nB7Nko_n4nyHwPouzCVmnMH3u2caOQSV8fQW2U0FZtsDsjs7no6_9LegU4p4wR9oCiEpRtckHFzGUf62u2gcHzfjI44-OM_ZVujxs1S20so7q3qpfnxX8_lGhJk86DsdW09M6BpLvo5WnR6Zn3_RNt708w_J_ZBewri3h0dkx9Z75N4G6eAeue2bPk37mPwKT_SwcT4Ppg1ubtcs67ib4dDaJQT61QvA3BYwVwTHy-ErbLCoYBqUDG6i2ryFz1fdJYz_HIlDt0AZW68dLEyV6wVDVcKJn-SFZg6TZvENTpVnBu0s-Dsp4Ip2tt0ns8n7s3dHNExsoIZncUd1JlXFKotZl6iMTbVB0MttEmNEkFVkY6GUltLFTV0xqbRgJeNJiUjZWFFa_oQM6kVtnxKIVFoiVLRGIuTjVayFFanlKjOqSoQxQxKtlVmYQGfupmrMCw9rorw4-3ByWjj9F0H_Q_L6-pNlz-Vxk_C-s5ANQUS6ksVDcrA2mSJs97bwuJXnMkuG5M21Gf2ziLPIrUWe_Zf0c3LXvfYFoAMy6JqVfYEpUadfhl3xG-wBB48 priority: 102 providerName: Unpaywall |
| Title | Physics-Driven Probabilistic Deep Learning for the Inversion of Physical Models With Application to Phenological Parameter Retrieval From Satellite Times Series |
| URI | https://ieeexplore.ieee.org/document/10156821 https://www.proquest.com/docview/2828939874 https://hal.science/hal-03837736 |
| UnpaywallVersion | submittedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 1558-0644 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCAEPfIwhCmO6B55ACYkTJ85jxSgTElW1rWI8RbZz3hAlqZJUCP4a_lRsxy0tCMRbHi5yojvf3e8-CXkeVaygiiYBFbEMUpWyoKgiHfAYqcqzIo2kjXe8n2Yn8_TdBbvwzequFwYRXfEZhvbR5fKrRq1sqMzccIM2uG0bv57zbGjW2qQMUhb73ugsMCiC-hRmHBWvzt-enoV2T3iYGG1cFHTHCLmtKjsO5q1VvRTfvorFYsvWTO6R6forhxKTz-Gql6H6_tsAx__-jfvkrvc6YTyIyQNyDet9cmdrFuE-uelqQVX3kPzwT8Fxa1UhzFpz520NrR3pDMeIS_BTWS_BuLxgXEiw4zpc4A0aDTPPe7CL1hYdfPjUX8H4V6Yc-sbQYL3WuzATtkTMcBhO3YIvI_0waZsvcCbcwNAewbWqgI3lYXdA5pM3569PAr_IIVBJHveBzLnQVKNxxphWmEllsHCCaWwMBdcRxkwIybk1p1JTLiSjFU3SygBohazC5BHZq5saHxOIRFYZBImKGySY6FgyZBkmIldCp0ypEYnWnC2Vn3Jul20sSod2oqK0wlBaYSi9MIzIi80ry2HEx7-IDyxDtwgHXo7I4Vp-Sq8FutLB2aTgeToiLzcy9cch_WXb7Rzy5C-HPCW3LdkQAToke327wmfGJ-rlkbsLR-TGfDobf_wJWlkLMQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQESoceJRWLG1hDpxACYlj53GsKNsF2tWq3YreItuZFMSSrJKsUPk1_FRsx7vsgkDcfLDlRDOe93xDyIug4BlVNPKoCKXHFONeVgSll4ZIVRJnLJAm3nE2jkeX7P0Vv3LN6rYXBhFt8Rn6Zmlz-UWtFiZUpl-49jZS0zZ-mzPGeN-utUoaMB667ujY034EdUnMMMheT0_OL3wzKdyPtDzOMrqhhuxclQ0Tc3tRzcXNNzGbrWmb4QMyXn5nX2TyxV900lfff4Nw_O8feUjuO7sTjnpGeURuYbVD7q2hEe6QO7YaVLWPyQ-38o4bIwxh0uhXb6poDagzHCPOweGyXoM2ekEbkWAAO2zoDeoSJo76YEatzVr4-Ln7BEe_cuXQ1XoPVkvJCxNhisQ0jeHcjvjS_A_Dpv4KF8JChnYItlkFTDQP211yOXw7fTPy3CgHT0VJ2HkySUVJS9TmGC8VxlJpbzhCFmpVkZYBhlwImaZGocqSpkJyWtCIFdqFVsgLjPbIVlVX-IRAIOJC-5CoUu0LRmUoOfIYI5EoUTKu1IAES8rmyuGcm3Ebs9z6O0GWG2bIDTPkjhkG5OXqyLwH-fjX5l1D0LWNPS0H5GDJP7mTA21uHdooSxM2IK9WPPXHJd11025c8vQvlzwn26Pp2Wl--m78YZ_cNUf6eNAB2eqaBR5qC6mTz-y7-AkJygzO |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZGJwQ88GMMURjoHngCuSR2nDiPFaNMSEzVtorxFNmOs02UtEpSIfhr-FM5O-5oQZrEWyJd5Eh3vrvvfP6OkFdRKXJmGKdMxZomJhE0L6OKytgyk6V5EmlX7_h0nB7Nko_n4nyHwPouzCVmnMH3u2caOQSV8fQW2U0FZtsDsjs7no6_9LegU4p4wR9oCiEpRtckHFzGUf62u2gcHzfjI44-OM_ZVujxs1S20so7q3qpfnxX8_lGhJk86DsdW09M6BpLvo5WnR6Zn3_RNt708w_J_ZBewri3h0dkx9Z75N4G6eAeue2bPk37mPwKT_SwcT4Ppg1ubtcs67ib4dDaJQT61QvA3BYwVwTHy-ErbLCoYBqUDG6i2ryFz1fdJYz_HIlDt0AZW68dLEyV6wVDVcKJn-SFZg6TZvENTpVnBu0s-Dsp4Ip2tt0ns8n7s3dHNExsoIZncUd1JlXFKotZl6iMTbVB0MttEmNEkFVkY6GUltLFTV0xqbRgJeNJiUjZWFFa_oQM6kVtnxKIVFoiVLRGIuTjVayFFanlKjOqSoQxQxKtlVmYQGfupmrMCw9rorw4-3ByWjj9F0H_Q_L6-pNlz-Vxk_C-s5ANQUS6ksVDcrA2mSJs97bwuJXnMkuG5M21Gf2ziLPIrUWe_Zf0c3LXvfYFoAMy6JqVfYEpUadfhl3xG-wBB48 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-Driven+Probabilistic+Deep+Learning+for+the+Inversion+of+Physical+Models+With+Application+to+Phenological+Parameter+Retrieval+From+Satellite+Times+Series&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zerah%2C+Yoel&rft.au=Valero%2C+Silvia&rft.au=Inglada%2C+Jordi&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=61&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1109%2FTGRS.2023.3284992&rft.externalDocID=10156821 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |