Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques
The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasi...
Saved in:
| Published in | Physiological measurement Vol. 20; no. 3; pp. 287 - 301 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.08.1999
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0967-3334 1361-6579 |
| DOI | 10.1088/0967-3334/20/3/306 |
Cover
| Abstract | The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation. |
|---|---|
| AbstractList | The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation. The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation. |
| Author | Murray, Alan Allen, John |
| Author_xml | – sequence: 1 fullname: Allen, John – sequence: 2 fullname: Murray, Alan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10475582$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc2KFDEUhYOMOD2jL-BCshJclJ2fTlVqKYM6AyNudB1SyS07WpXEJKXMg_i-prpbEQfEVSB83zlwzwU688EDQk8peUmJlFvSt13DOd9tGdnyLSftA7ShvKVNK7r-DG1-A-foIufPhFAqmXiEzinZdUJItkE_3gUL0-T8J1z2gBNMurjg895FPED5DuBxhOTiHpKe8DCFYHFMkPOSAGtvT1_fwrTMgOMyZch4yWtgTQWdDpCHZdV9TQzpC853ucCMnQVf3OjMoRMXMHvvvi6QH6OHo65JT07vJfr45vWHq-vm9v3bm6tXt43hHS2NHk3PqDDt0I87zQjvmRwZ6QEIlSPhmloBICkxVghgEjgRPWhNB2ZFSxm_RM-PuTGFtbeo2WVT76E9hCWrjpBqdLyCz07gMsxgVUxu1ulO_TpkBdgRMCnknGD8A1HrWmodQ61jKEYUV3WtKsm_JOPK4RYlaTf9W22Oqgvx_6pe3Ofvcyrakf8EOjO3VQ |
| CitedBy_id | crossref_primary_10_1109_JSEN_2013_2240677 crossref_primary_10_1109_TBCAS_2017_2649940 crossref_primary_10_1088_0967_3334_24_2_306 crossref_primary_10_3390_e25121582 crossref_primary_10_1088_0967_3334_28_3_R01 crossref_primary_10_1088_0967_3334_29_3_007 crossref_primary_10_1007_s11517_006_0090_9 crossref_primary_10_1016_j_bspc_2023_104972 crossref_primary_10_1016_j_csi_2015_09_008 crossref_primary_10_1097_01_hjh_0000239277_05068_87 crossref_primary_10_1109_TBME_2004_843285 crossref_primary_10_1109_TBCAS_2011_2167717 crossref_primary_10_1016_j_eswa_2022_116788 crossref_primary_10_1177_0954411910396288 crossref_primary_10_1007_s11036_022_01984_w crossref_primary_10_1364_BOE_7_003007 crossref_primary_10_3390_sym13040686 crossref_primary_10_1088_0967_3334_21_3_303 crossref_primary_10_1088_1361_6579_ab9481 crossref_primary_10_1556_APhysiol_98_2011_4_2 crossref_primary_10_3390_bioengineering10040460 crossref_primary_10_1088_0967_3334_30_1_006 crossref_primary_10_1002_mrm_10201 crossref_primary_10_3182_20050703_6_CZ_1902_02125 crossref_primary_10_4103_jmss_jmss_101_21 crossref_primary_10_1016_j_medengphy_2006_12_006 crossref_primary_10_1097_HJH_0000000000001337 crossref_primary_10_1088_1361_6579_ab9b67 crossref_primary_10_1541_ieejeiss_131_1540 crossref_primary_10_3389_fphys_2023_1187561 crossref_primary_10_1038_sj_jhh_1001478 crossref_primary_10_1007_s10558_007_9037_5 crossref_primary_10_1109_TBME_2006_876623 crossref_primary_10_1109_JSEN_2018_2873184 crossref_primary_10_1177_002029400603900303 crossref_primary_10_1109_JBHI_2017_2748280 crossref_primary_10_1111_jch_13700 crossref_primary_10_1016_j_cmpb_2010_06_014 |
| Cites_doi | 10.1007/BF02518879 10.1007/BF01618083 10.1016/0169-2607(93)90020-L 10.1016/S0008-6363(97)00003-5 10.1007/BF02443290 10.1109/10.19858 10.1007/BF02510971 10.1109/10.55678 10.1088/0967-3334/19/1/008 10.1007/BF02478660 10.1088/0967-3334/16/1/003 10.1016/0008-6363(95)00123-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1088/0967-3334/20/3/306 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Physics |
| EISSN | 1361-6579 |
| EndPage | 301 |
| ExternalDocumentID | 10475582 10_1088_0967_3334_20_3_306 |
| Genre | Journal Article |
| GroupedDBID | - 02O 123 1JI 1PV 1WK 29O 53G 5VS 7.M AAGCD AAJIO AALHV AAPBV ABHWH ABPTK ACGFS AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 EBS EDWGO EJD EQZZN F5P FEDTE GJ HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 R4D RIN RKQ RNS RO9 ROL RPA RW3 S3P T37 UCJ UNR X XPP ZMT --- -~X .GJ AAGCF AATNI AAYXX ABJNI ABVAM ACAFW ACARI ACHIP ADEQX AEINN AERVB AGQPQ AKPSB AOAED ARNYC CITATION CRLBU IJHAN PJBAE 4.4 5B3 5ZH 7.Q AAJKP ABCXL ABQJV CBCFC CEBXE CGR CUY CVF ECM EIF EMSAF EPQRW JCGBZ NPM SY9 W28 7X8 |
| ID | FETCH-LOGICAL-c371t-afc9215c6b9f4a203928f209ee018f03a1d5ee810cd55e28e3059eaa1b2d56123 |
| IEDL.DBID | IOP |
| ISSN | 0967-3334 |
| IngestDate | Thu Oct 02 11:30:51 EDT 2025 Wed Feb 19 01:30:39 EST 2025 Wed Oct 01 02:38:09 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Nov 10 14:51:11 EST 2020 Mon May 13 14:54:03 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-afc9215c6b9f4a203928f209ee018f03a1d5ee810cd55e28e3059eaa1b2d56123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 10475582 |
| PQID | 70005973 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_70005973 crossref_citationtrail_10_1088_0967_3334_20_3_306 iop_primary_10_1088_0967_3334_20_3_306 pubmed_primary_10475582 crossref_primary_10_1088_0967_3334_20_3_306 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1999-08-01 |
| PublicationDateYYYYMMDD | 1999-08-01 |
| PublicationDate_xml | – month: 08 year: 1999 text: 1999-08-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Physiological measurement |
| PublicationTitleAlternate | Physiol Meas |
| PublicationYear | 1999 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Mills P M (16) 1996 Wesseling K H (28) 1973; 6 Gratz I (9) 1992; 8 Raven F (24) 1978 Molhoek P G (17) 1983; 4 López-Beltrán E A (15) 1998; 36 Smith N T (27) 1985; 1 Rowell L B (25) 1993 Ljung L (12) 1987 Billings S A (3) 1995 Ljung L (13) 1991 Cavallo A (5) 1996 Clark K P (6) 1991 11 Singaram M (26) 1994; 16 Ljung L (14) 1983 Deswysen B (7) 1980; 18 Nitzan M (18) 1998; 19 Penaz J (23) 1997; 35 Pochet T (22) 1996; 34 2 Box G E P (4) 1976 8 Nørgaard M (19) 1997 Kanjilal P P (10) 1995 Allen J (1) 1995; 16 Ocasio W C (20) 1993; 39 21 |
| References_xml | – start-page: 229 year: 1995 ident: 3 – volume: 36 start-page: 748 issn: 0140-0118 year: 1998 ident: 15 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02518879 – volume: 34 start-page: 107 year: 1996 ident: 22 publication-title: (Proc. 10th Nordic - Baltic Conf. on Biomedical Engineering (Tampere 1996)) Med. Biol. Eng. Comput. – year: 1997 ident: 19 – volume: 16 start-page: 127 issn: 0095-0963 year: 1994 ident: 26 publication-title: Automedica – volume: 4 start-page: 241 issn: 0095-0963 year: 1983 ident: 17 publication-title: Automedica – volume: 8 start-page: 20 issn: 0748-1977 year: 1992 ident: 9 publication-title: J. Clin. Monit. doi: 10.1007/BF01618083 – volume: 39 start-page: 169 issn: 0169-2607 year: 1993 ident: 20 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/0169-2607(93)90020-L – ident: 8 doi: 10.1016/S0008-6363(97)00003-5 – start-page: 337 year: 1976 ident: 4 – volume: 18 start-page: 153 issn: 0140-0118 year: 1980 ident: 7 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02443290 – start-page: 225 year: 1991 ident: 6 – ident: 2 doi: 10.1109/10.19858 – start-page: 236 year: 1995 ident: 10 – year: 1983 ident: 14 – start-page: 7 year: 1996 ident: 16 – volume: 35 start-page: 633 issn: 0140-0118 year: 1997 ident: 23 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02510971 – volume: 1 start-page: 517 issn: 0748-1977 year: 1985 ident: 27 publication-title: J. Clin. Monit. – start-page: 121 year: 1978 ident: 24 – year: 1991 ident: 13 – start-page: 237 year: 1996 ident: 5 – ident: 11 doi: 10.1109/10.55678 – volume: 19 start-page: 93 issn: 0967-3334 year: 1998 ident: 18 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/19/1/008 – year: 1987 ident: 12 – volume: 6 start-page: 724 issn: 0140-0118 year: 1973 ident: 28 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02478660 – volume: 16 start-page: 29 issn: 0967-3334 year: 1995 ident: 1 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/16/1/003 – ident: 21 doi: 10.1016/0008-6363(95)00123-9 – year: 1993 ident: 25 |
| SSID | ssj0011825 |
| Score | 1.7590854 |
| Snippet | The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular... |
| SourceID | proquest pubmed crossref iop |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 287 |
| SubjectTerms | Adult Age Factors Blood Pressure - physiology Blood Volume - physiology Humans Middle Aged Neural Networks (Computer) Posture Pulse Time Factors |
| Title | Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques |
| URI | http://iopscience.iop.org/0967-3334/20/3/306 https://www.ncbi.nlm.nih.gov/pubmed/10475582 https://www.proquest.com/docview/70005973 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6579 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011825 issn: 0967-3334 databaseCode: IOP dateStart: 19930101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQEt7aNLt1zZNK0rppXhjS_JaOZbSEAppcmggNyHrI1kSvGZ3fen_6P_tjCwvW9KG3IwZjTAjaZ6ZpzcAH52npoQ2z7hxIZN2KjLlxTTzrgq1VDUPNhJkf0yPz-X3i_JiC4ZWcrN5m07-CT7GSj5ibNwGQkj8Tz8QByLqa1Pip9t6p2frkgEC5chXHMzTDRncRf9w8VcWeoBT_R9gxkRztAMnw3Wdnl9yPelW9cT-uq3eeK9v2IWnCXGyL_0SeQZbvhnBkw0dwhE8OkkV9hE8jJRQu3wOv6lNWlTsZggS2WJgzV3NWpbYXYxkkqMuwQ2LDHgWabXdwjPTuPSqP_9Y22ESXjLi2V8ywrZmEY1IUBOHNz0dnfXK0mzmEospzsnWSrPLF3B-9O3n1-MsNXHIrKiKVWYw2Agr7LQ-DNLwHPGYCjw_9D4vVMiFKVzpvSpy68rSc1woCPi8MUXNHXXuFC9hu5k3_jUw6YMI0ltlSEGIo5_SkEK9NIYaiLgxFENQtU0K59Ro40bHSrtSmuKgKQ6a51pojMMYPq_HtL2-x53WHzCka8PbBrp1YQyfNo3u8vZ-WHMaNzVVakzj591SV1E3pxJjeNUvxQ1vsipLxd_cd5I9eNwrTRBn8S1srxad30cctarfxf3zBywrEzM |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIio48FgKLAVqIcQFZTex4433iAqrlkfpgUrcLMePtqLKRrubC_-D_8v4kdXyqpC4RdF4nGTG9hf58zcAL4z1RQl1nlFlXFbqCcuEZZPMmsrVpaip04Egezw5PC3ffeE9mzCchZm3aeof4WUUCo6fMBHixBhBN44Lxkr8cR-zMWLecWvcFlznjE99EYOjTyfrjQSEz4HF2LdJ52b-7OentWkL-_877AzLz-wO1P2DR9bJ11G3qkf62y-ajv_1ZnfhdgKn5HVscA-u2WYAtzYkCwew8zFtxg_gRmCP6uV9-O4rqgVxb4J4kix6gt35RUsSEYx4ReUgYXBJAlmeBAZut7BENSbdilMlaTtcr5fEU_LPiIfBahGMvPYmNm8ic51EEWpyYRLhKfRJ1qK0y104nb39fHCYpXoPmWZVscoU5gUiED2pp65UNEfoJhzNp9bmhXA5U4Xh1ooi14ZzSzGnEBtapYqaGl_kkz2A7Wbe2EdASuuYK60WyosNUfTDlRezL5XytUbMEIo-0lInMXRfk-NShk15IaSPhfSxkDSXTGIshvBq3aaNUiBXWj_HMK8NfzeQGNohvNw0usrbfp-IEse_39RRjZ13S1kFiZ2KDeFhzM8Nb2XFuaCP_7WTfdg5eTOTH46O3-_BzahP4ZmOT2B7tejsU0Rfq_pZGF8_AMIhIyE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+relationship+between+peripheral+blood+pressure+and+blood+volume+pulses+using+linear+and+neural+network+system+identification+techniques&rft.jtitle=Physiological+measurement&rft.au=Allen%2C+John&rft.au=Murray%2C+Alan&rft.date=1999-08-01&rft.pub=IOP+Publishing&rft.issn=0967-3334&rft.eissn=1361-6579&rft.volume=20&rft.spage=287&rft_id=info:doi/10.1088%2F0967-3334%2F20%2F3%2F306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0967_3334_20_3_306 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon |