Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques

The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasi...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 20; no. 3; pp. 287 - 301
Main Authors Allen, John, Murray, Alan
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.1999
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
DOI10.1088/0967-3334/20/3/306

Cover

Abstract The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.
AbstractList The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.
The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular system, and are the subject of this study. Blood pressure and volume pulse waveforms were collected from 12 normal male subjects using non-invasive optical techniques, finger arterial blood pressure (BP, Finapres: Datex-Ohmeda) and photoelectric plethysmography (PPG) respectively, and captured to computer for three equal (1 min) measurement phases: baseline, hand raising and hand elevated. This simple physiological challenge was designed to induce a significant drop in peripheral blood pressure. A simple first order lag transfer function was chosen to study the relationship between blood pressure (system input) and blood volume pulse waveforms (system output), with parameters describing the dynamics (time constant, tau) and input-output gain (K). Tau and K were estimated for each subject using two different system identification techniques: a recursive parameter estimation algorithm which calculated tau and K from a linear auto-regressive with exogenous variable (ARX) model, and an artificial neural network which was trained to learn the non-linear process input-output relationships and then derive a linearized ARX model of the system. The identification techniques allowed the relationship between the blood pressure and blood volume pulses to be described simply, with the neural network technique providing a better model fit overall (p < 0.05, Wilcoxon). The median falls in tau following the hand raise challenge were 26% and 31% for the linear and neural network based techniques respectively (both p < 0.05, Wilcoxon). This preliminary study has shown that the time constant and gain parameters obtained using these techniques can provide physiological data for the clinical assessment of the peripheral circulation.
Author Murray, Alan
Allen, John
Author_xml – sequence: 1
  fullname: Allen, John
– sequence: 2
  fullname: Murray, Alan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10475582$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2KFDEUhYOMOD2jL-BCshJclJ2fTlVqKYM6AyNudB1SyS07WpXEJKXMg_i-prpbEQfEVSB83zlwzwU688EDQk8peUmJlFvSt13DOd9tGdnyLSftA7ShvKVNK7r-DG1-A-foIufPhFAqmXiEzinZdUJItkE_3gUL0-T8J1z2gBNMurjg895FPED5DuBxhOTiHpKe8DCFYHFMkPOSAGtvT1_fwrTMgOMyZch4yWtgTQWdDpCHZdV9TQzpC853ucCMnQVf3OjMoRMXMHvvvi6QH6OHo65JT07vJfr45vWHq-vm9v3bm6tXt43hHS2NHk3PqDDt0I87zQjvmRwZ6QEIlSPhmloBICkxVghgEjgRPWhNB2ZFSxm_RM-PuTGFtbeo2WVT76E9hCWrjpBqdLyCz07gMsxgVUxu1ulO_TpkBdgRMCnknGD8A1HrWmodQ61jKEYUV3WtKsm_JOPK4RYlaTf9W22Oqgvx_6pe3Ofvcyrakf8EOjO3VQ
CitedBy_id crossref_primary_10_1109_JSEN_2013_2240677
crossref_primary_10_1109_TBCAS_2017_2649940
crossref_primary_10_1088_0967_3334_24_2_306
crossref_primary_10_3390_e25121582
crossref_primary_10_1088_0967_3334_28_3_R01
crossref_primary_10_1088_0967_3334_29_3_007
crossref_primary_10_1007_s11517_006_0090_9
crossref_primary_10_1016_j_bspc_2023_104972
crossref_primary_10_1016_j_csi_2015_09_008
crossref_primary_10_1097_01_hjh_0000239277_05068_87
crossref_primary_10_1109_TBME_2004_843285
crossref_primary_10_1109_TBCAS_2011_2167717
crossref_primary_10_1016_j_eswa_2022_116788
crossref_primary_10_1177_0954411910396288
crossref_primary_10_1007_s11036_022_01984_w
crossref_primary_10_1364_BOE_7_003007
crossref_primary_10_3390_sym13040686
crossref_primary_10_1088_0967_3334_21_3_303
crossref_primary_10_1088_1361_6579_ab9481
crossref_primary_10_1556_APhysiol_98_2011_4_2
crossref_primary_10_3390_bioengineering10040460
crossref_primary_10_1088_0967_3334_30_1_006
crossref_primary_10_1002_mrm_10201
crossref_primary_10_3182_20050703_6_CZ_1902_02125
crossref_primary_10_4103_jmss_jmss_101_21
crossref_primary_10_1016_j_medengphy_2006_12_006
crossref_primary_10_1097_HJH_0000000000001337
crossref_primary_10_1088_1361_6579_ab9b67
crossref_primary_10_1541_ieejeiss_131_1540
crossref_primary_10_3389_fphys_2023_1187561
crossref_primary_10_1038_sj_jhh_1001478
crossref_primary_10_1007_s10558_007_9037_5
crossref_primary_10_1109_TBME_2006_876623
crossref_primary_10_1109_JSEN_2018_2873184
crossref_primary_10_1177_002029400603900303
crossref_primary_10_1109_JBHI_2017_2748280
crossref_primary_10_1111_jch_13700
crossref_primary_10_1016_j_cmpb_2010_06_014
Cites_doi 10.1007/BF02518879
10.1007/BF01618083
10.1016/0169-2607(93)90020-L
10.1016/S0008-6363(97)00003-5
10.1007/BF02443290
10.1109/10.19858
10.1007/BF02510971
10.1109/10.55678
10.1088/0967-3334/19/1/008
10.1007/BF02478660
10.1088/0967-3334/16/1/003
10.1016/0008-6363(95)00123-9
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0967-3334/20/3/306
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
EndPage 301
ExternalDocumentID 10475582
10_1088_0967_3334_20_3_306
Genre Journal Article
GroupedDBID -
02O
123
1JI
1PV
1WK
29O
53G
5VS
7.M
AAGCD
AAJIO
AALHV
AAPBV
ABHWH
ABPTK
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
EBS
EDWGO
EJD
EQZZN
F5P
FEDTE
GJ
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
RW3
S3P
T37
UCJ
UNR
X
XPP
ZMT
---
-~X
.GJ
AAGCF
AATNI
AAYXX
ABJNI
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
4.4
5B3
5ZH
7.Q
AAJKP
ABCXL
ABQJV
CBCFC
CEBXE
CGR
CUY
CVF
ECM
EIF
EMSAF
EPQRW
JCGBZ
NPM
SY9
W28
7X8
ID FETCH-LOGICAL-c371t-afc9215c6b9f4a203928f209ee018f03a1d5ee810cd55e28e3059eaa1b2d56123
IEDL.DBID IOP
ISSN 0967-3334
IngestDate Thu Oct 02 11:30:51 EDT 2025
Wed Feb 19 01:30:39 EST 2025
Wed Oct 01 02:38:09 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Tue Nov 10 14:51:11 EST 2020
Mon May 13 14:54:03 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-afc9215c6b9f4a203928f209ee018f03a1d5ee810cd55e28e3059eaa1b2d56123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10475582
PQID 70005973
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_70005973
crossref_citationtrail_10_1088_0967_3334_20_3_306
iop_primary_10_1088_0967_3334_20_3_306
pubmed_primary_10475582
crossref_primary_10_1088_0967_3334_20_3_306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-08-01
PublicationDateYYYYMMDD 1999-08-01
PublicationDate_xml – month: 08
  year: 1999
  text: 1999-08-01
  day: 01
PublicationDecade 1990
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAlternate Physiol Meas
PublicationYear 1999
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mills P M (16) 1996
Wesseling K H (28) 1973; 6
Gratz I (9) 1992; 8
Raven F (24) 1978
Molhoek P G (17) 1983; 4
López-Beltrán E A (15) 1998; 36
Smith N T (27) 1985; 1
Rowell L B (25) 1993
Ljung L (12) 1987
Billings S A (3) 1995
Ljung L (13) 1991
Cavallo A (5) 1996
Clark K P (6) 1991
11
Singaram M (26) 1994; 16
Ljung L (14) 1983
Deswysen B (7) 1980; 18
Nitzan M (18) 1998; 19
Penaz J (23) 1997; 35
Pochet T (22) 1996; 34
2
Box G E P (4) 1976
8
Nørgaard M (19) 1997
Kanjilal P P (10) 1995
Allen J (1) 1995; 16
Ocasio W C (20) 1993; 39
21
References_xml – start-page: 229
  year: 1995
  ident: 3
– volume: 36
  start-page: 748
  issn: 0140-0118
  year: 1998
  ident: 15
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02518879
– volume: 34
  start-page: 107
  year: 1996
  ident: 22
  publication-title: (Proc. 10th Nordic - Baltic Conf. on Biomedical Engineering (Tampere 1996)) Med. Biol. Eng. Comput.
– year: 1997
  ident: 19
– volume: 16
  start-page: 127
  issn: 0095-0963
  year: 1994
  ident: 26
  publication-title: Automedica
– volume: 4
  start-page: 241
  issn: 0095-0963
  year: 1983
  ident: 17
  publication-title: Automedica
– volume: 8
  start-page: 20
  issn: 0748-1977
  year: 1992
  ident: 9
  publication-title: J. Clin. Monit.
  doi: 10.1007/BF01618083
– volume: 39
  start-page: 169
  issn: 0169-2607
  year: 1993
  ident: 20
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/0169-2607(93)90020-L
– ident: 8
  doi: 10.1016/S0008-6363(97)00003-5
– start-page: 337
  year: 1976
  ident: 4
– volume: 18
  start-page: 153
  issn: 0140-0118
  year: 1980
  ident: 7
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02443290
– start-page: 225
  year: 1991
  ident: 6
– ident: 2
  doi: 10.1109/10.19858
– start-page: 236
  year: 1995
  ident: 10
– year: 1983
  ident: 14
– start-page: 7
  year: 1996
  ident: 16
– volume: 35
  start-page: 633
  issn: 0140-0118
  year: 1997
  ident: 23
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02510971
– volume: 1
  start-page: 517
  issn: 0748-1977
  year: 1985
  ident: 27
  publication-title: J. Clin. Monit.
– start-page: 121
  year: 1978
  ident: 24
– year: 1991
  ident: 13
– start-page: 237
  year: 1996
  ident: 5
– ident: 11
  doi: 10.1109/10.55678
– volume: 19
  start-page: 93
  issn: 0967-3334
  year: 1998
  ident: 18
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/19/1/008
– year: 1987
  ident: 12
– volume: 6
  start-page: 724
  issn: 0140-0118
  year: 1973
  ident: 28
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02478660
– volume: 16
  start-page: 29
  issn: 0967-3334
  year: 1995
  ident: 1
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/16/1/003
– ident: 21
  doi: 10.1016/0008-6363(95)00123-9
– year: 1993
  ident: 25
SSID ssj0011825
Score 1.7590854
Snippet The relationships between peripheral blood pressure and blood volume pulse waveforms can provide valuable physiological data about the peripheral vascular...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 287
SubjectTerms Adult
Age Factors
Blood Pressure - physiology
Blood Volume - physiology
Humans
Middle Aged
Neural Networks (Computer)
Posture
Pulse
Time Factors
Title Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques
URI http://iopscience.iop.org/0967-3334/20/3/306
https://www.ncbi.nlm.nih.gov/pubmed/10475582
https://www.proquest.com/docview/70005973
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6579
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011825
  issn: 0967-3334
  databaseCode: IOP
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEB3SQEt7aNLt1zZNK0rppXhjS_JaOZbSEAppcmggNyHrI1kSvGZ3fen_6P_tjCwvW9KG3IwZjTAjaZ6ZpzcAH52npoQ2z7hxIZN2KjLlxTTzrgq1VDUPNhJkf0yPz-X3i_JiC4ZWcrN5m07-CT7GSj5ibNwGQkj8Tz8QByLqa1Pip9t6p2frkgEC5chXHMzTDRncRf9w8VcWeoBT_R9gxkRztAMnw3Wdnl9yPelW9cT-uq3eeK9v2IWnCXGyL_0SeQZbvhnBkw0dwhE8OkkV9hE8jJRQu3wOv6lNWlTsZggS2WJgzV3NWpbYXYxkkqMuwQ2LDHgWabXdwjPTuPSqP_9Y22ESXjLi2V8ywrZmEY1IUBOHNz0dnfXK0mzmEospzsnWSrPLF3B-9O3n1-MsNXHIrKiKVWYw2Agr7LQ-DNLwHPGYCjw_9D4vVMiFKVzpvSpy68rSc1woCPi8MUXNHXXuFC9hu5k3_jUw6YMI0ltlSEGIo5_SkEK9NIYaiLgxFENQtU0K59Ro40bHSrtSmuKgKQ6a51pojMMYPq_HtL2-x53WHzCka8PbBrp1YQyfNo3u8vZ-WHMaNzVVakzj591SV1E3pxJjeNUvxQ1vsipLxd_cd5I9eNwrTRBn8S1srxad30cctarfxf3zBywrEzM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIio48FgKLAVqIcQFZTex4433iAqrlkfpgUrcLMePtqLKRrubC_-D_8v4kdXyqpC4RdF4nGTG9hf58zcAL4z1RQl1nlFlXFbqCcuEZZPMmsrVpaip04Egezw5PC3ffeE9mzCchZm3aeof4WUUCo6fMBHixBhBN44Lxkr8cR-zMWLecWvcFlznjE99EYOjTyfrjQSEz4HF2LdJ52b-7OentWkL-_877AzLz-wO1P2DR9bJ11G3qkf62y-ajv_1ZnfhdgKn5HVscA-u2WYAtzYkCwew8zFtxg_gRmCP6uV9-O4rqgVxb4J4kix6gt35RUsSEYx4ReUgYXBJAlmeBAZut7BENSbdilMlaTtcr5fEU_LPiIfBahGMvPYmNm8ic51EEWpyYRLhKfRJ1qK0y104nb39fHCYpXoPmWZVscoU5gUiED2pp65UNEfoJhzNp9bmhXA5U4Xh1ooi14ZzSzGnEBtapYqaGl_kkz2A7Wbe2EdASuuYK60WyosNUfTDlRezL5XytUbMEIo-0lInMXRfk-NShk15IaSPhfSxkDSXTGIshvBq3aaNUiBXWj_HMK8NfzeQGNohvNw0usrbfp-IEse_39RRjZ13S1kFiZ2KDeFhzM8Nb2XFuaCP_7WTfdg5eTOTH46O3-_BzahP4ZmOT2B7tejsU0Rfq_pZGF8_AMIhIyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+relationship+between+peripheral+blood+pressure+and+blood+volume+pulses+using+linear+and+neural+network+system+identification+techniques&rft.jtitle=Physiological+measurement&rft.au=Allen%2C+John&rft.au=Murray%2C+Alan&rft.date=1999-08-01&rft.pub=IOP+Publishing&rft.issn=0967-3334&rft.eissn=1361-6579&rft.volume=20&rft.spage=287&rft_id=info:doi/10.1088%2F0967-3334%2F20%2F3%2F306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0967_3334_20_3_306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon