Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes
Fractional factorial (FF) designs are widely used in practice and typically are chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient FF designs. A construction procedure is proposed that allows a design to be constructed only from its m...
Saved in:
| Published in | Technometrics Vol. 51; no. 3; pp. 262 - 277 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria, VA
Taylor & Francis
01.08.2009
The American Society for Quality and The American Statistical Association American Society for Quality and the American Statistical Association American Society for Quality |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0040-1706 1537-2723 |
| DOI | 10.1198/tech.2009.07120 |
Cover
| Abstract | Fractional factorial (FF) designs are widely used in practice and typically are chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient FF designs. A construction procedure is proposed that allows a design to be constructed only from its minimum aberration projection in the sequential buildup process. To efficiently identify nonisomorphic designs, designs are categorized according to moment projection pattern. A fast isomorphism checking procedure is developed by matching the factors using their delete-one-factor projections. This algorithm is used to completely enumerate all 128-run designs of resolution 4, all 256-run designs of resolution 4 up to 17 factors, all 512-run designs of resolution 5, all 1024-run designs of resolution 6, and all 2048- and 4,096-run designs of resolution 7. A method is proposed for constructing minimum aberration (MA) designs using only a partial catalog of some good designs. Three approaches to constructing good designs with a large number of factors are suggested. Efficient designs, often with MA, are tabulated up to 40, 80, 160, 45, 47, and 65 factors for 128, 256, 512, 1024, 2048, and 4,096 runs, respectively. |
|---|---|
| AbstractList | Fractional factorial (FF) designs are widely used in practice and typically are chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient FF designs. A construction procedure is proposed that allows a design to be constructed only from its minimum aberration projection in the sequential buildup process. To efficiently identify nonisomorphic designs, designs are categorized according to moment projection pattern. A fast isomorphism checking procedure is developed by matching the factors using their delete-one-factor projections. This algorithm is used to completely enumerate all 128-run designs of resolution 4, all 256-run designs of resolution 4 up to 17 factors, all 512-run designs of resolution 5, all 1024-run designs of resolution 6, and all 2048- and 4,096-run designs of resolution 7. A method is proposed for constructing minimum aberration (MA) designs using only a partial catalog of some good designs. Three approaches to constructing good designs with a large number of factors are suggested. Efficient designs, often with MA, are tabulated up to 40, 80, 160, 45, 47, and 65 factors for 128, 256, 512, 1024, 2048, and 4,096 runs, respectively. Fractional factorial (FF) designs are widely used in practice and typically are chosen according to the minimum aberration criterion. A sequential algorithm is developed for constructing efficient FF designs. A construction procedure is proposed that allows a design to be constructed only from its minimum aberration projection in the sequential buildup process. To efficiently identify nonisomorphic designs, designs are categorized according to moment projection pattern. A fast isomorphism checking procedure is developed by matching the factors using their delete-one-factor projections. This algorithm is used to completely enumerate all 128-run designs of resolution 4, all 256-run designs of resolution 4 up to 17 factors, all 512-run designs of resolution 5, all 1024-run designs of resolution 6, and all 2048- and 4,096-run designs of resolution 7. A method is proposed for constructing minimum aberration (MA) designs using only a partial catalog of some good designs. Three approaches to constructing good designs with a large number of factors are suggested. Efficient designs, often with MA, are tabulated up to 40, 80, 160, 45, 47, and 65 factors for 128, 256, 512, 1024, 2048, and 4,096 runs, respectively. [PUBLICATION ABSTRACT] |
| Author | Xu, Hongquan |
| Author_xml | – sequence: 1 givenname: Hongquan surname: Xu fullname: Xu, Hongquan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21859142$$DView record in Pascal Francis |
| BookMark | eNp9kN9rWyEYhmV0sDTb9a4KMujlSf30eNTelTTZBoHBftDLg8doajjRVg2l_etnmq4Xg-3KD33ez5fnFJ2EGCxCH4HMAJS8KNbczighakYEUPIGTYAz0VBB2QmaENKSBgTp3qHTnLeEAKNSTNDN1biJyZfbnTd4HkMuaW-KjwFHhxfOeeNtKHiZ9POtHvGyTjVRp2ub_SZkfFPjeKXTxuLv-4B_-Ceb36O3To_Zfng5p-jXcvFz_qVZffv8dX61agwTUBrtiKLDIDXYNeWyNUaZjjMAZ7lyslPOgDASZKtbQdQauHAdH-hg5QBKGTZFn45771K839tc-m3cp9oz9xRYJxgTokLnL5DORo8u6WB87u-S3-n0WEHJFbS0chdHzqSYc7LuFQHSHyT3B8n9QXL_LLkm-F8J44s-mCpJ-_E_ubNjbpurzNdvWsJl19XiU3R5fPfBxbTTDzGN677oxzGmP_XZv5b_BoAWoHk |
| CODEN | TCMTA2 |
| CitedBy_id | crossref_primary_10_1016_j_jspi_2009_10_013 crossref_primary_10_1080_00401706_2018_1473798 crossref_primary_10_1002_sim_5526 crossref_primary_10_1080_00224065_2021_1991863 crossref_primary_10_1002_qre_1810 crossref_primary_10_1080_00401706_2012_676956 crossref_primary_10_1080_00401706_2013_822425 crossref_primary_10_1093_jrsssc_qlad031 crossref_primary_10_1016_j_csda_2020_107059 crossref_primary_10_1198_TECH_2010_08020 crossref_primary_10_1080_00401706_2018_1513381 crossref_primary_10_1016_j_csda_2022_107678 crossref_primary_10_1016_j_jspi_2010_04_009 crossref_primary_10_1016_j_spl_2017_06_029 crossref_primary_10_1093_biomet_ast073 crossref_primary_10_1016_j_jspi_2011_08_003 crossref_primary_10_1080_00224065_2021_1916412 crossref_primary_10_1016_j_jco_2011_04_001 crossref_primary_10_1214_13_AOS1160 crossref_primary_10_1016_j_jco_2013_04_002 crossref_primary_10_1007_s00362_017_0886_8 crossref_primary_10_1109_TAP_2012_2186272 crossref_primary_10_1214_08_SS040 crossref_primary_10_4236_ojapps_2025_152030 crossref_primary_10_1080_00401706_2015_1054436 crossref_primary_10_1080_24725854_2019_1655608 crossref_primary_10_1002_cjs_11494 crossref_primary_10_1002_widm_1046 crossref_primary_10_1016_j_jco_2014_12_001 crossref_primary_10_1016_j_jspi_2024_106192 crossref_primary_10_1080_0740817X_2012_654848 crossref_primary_10_1093_biomet_asac046 crossref_primary_10_3390_math11030750 |
| Cites_doi | 10.1006/jcom.2000.0569 10.2307/1268198 10.1109/18.133262 10.1016/j.jspi.2007.05.036 10.2307/1266725 10.1214/aos/1032181167 10.2307/2346973 10.2307/1270995 10.1080/00224065.2004.11980287 10.1214/009005360700000712 10.2307/1268764 10.1287/ijoc.1050.0136 10.1214/aoms/1177698525 10.1214/009053605000000813 10.1214/aoms/1177696965 10.1214/aos/1032181168 10.1007/s00184-005-0408-x 10.1080/00224065.2005.11980331 10.1214/aoms/1177698780 10.1093/biomet/90.1.233 10.1016/0378-3758(91)90062-J 10.2307/1403599 10.1198/004017004000000617 |
| ContentType | Journal Article |
| Copyright | 2009 American Statistical Association and the American Society for Quality
2009 2009 American Statistical Association and the American Society for Quality 2015 INIST-CNRS Copyright American Society for Quality Aug 2009 |
| Copyright_xml | – notice: 2009 American Statistical Association and the American Society for Quality 2009 – notice: 2009 American Statistical Association and the American Society for Quality – notice: 2015 INIST-CNRS – notice: Copyright American Society for Quality Aug 2009 |
| DBID | AAYXX CITATION IQODW 3V. 7WY 7WZ 7XB 87Z 88I 8AO 8C1 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ L.- L6V M0C M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYYUZ Q9U S0X |
| DOI | 10.1198/tech.2009.07120 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Science Database Engineering Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ABI/INFORM Collection China ProQuest Central Basic SIRS Editorial |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Public Health ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Business Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics Applied Sciences |
| EISSN | 1537-2723 |
| EndPage | 277 |
| ExternalDocumentID | 1860201991 21859142 10_1198_tech_2009_07120 40586621 10714421 |
| Genre | Research Article Feature |
| GroupedDBID | -ET -~X ..I .7F .DC .QJ 07G 0BK 0R~ 123 29Q 2AX 30N 4.4 5RE 7WY 85S 88I 8AO 8C1 8FE 8FG 8FL 96U AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABQDR ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACBEA ACDIW ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTCW ACTIO ACTMH ADBBV ADCVX ADGTB ADODI ADULT AEGXH AEISY AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFAZI AFKRA AFRVT AFVYC AGCQS AGDLA AGLNM AGMYJ AHDZW AIAGR AIHAF AIJEM AIYEW AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMXXU AQRUH AQTUD AVBZW AWYRJ AZQEC BCCOT BENPR BES BEZIV BGLVJ BLEHA BPHCQ BPLKW C06 CCCUG CCPQU CS3 DGEBU DKSSO DQDLB DSRWC DU5 DWIFK DWQXO EBS ECEWR EJD E~A E~B F5P FEDTE FRNLG FYUFA GIFXF GNUQQ GTTXZ H13 HCIFZ HFX HQ6 HZ~ H~P IHF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ KYCEM L6V M0C M2P M4Z M7S MS~ MW2 NA5 NY~ O9- P2P PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS RIG RNANH ROSJB RTWRZ RWL S-T S0X SA0 SNACF TAE TAQ TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UT5 UU3 WH7 WZA YNT ZE2 ZGOLN ~02 ~S~ ADYSH ALIPV AMPGV .-4 .GJ 3R3 41~ AAAVZ AAIKQ AAKBW AAYJJ AAYXX ABEFU ACAGQ ACGEE AEUMN AGLEN AGROQ AHMOU ALCKM AMATQ AMEWO AMVHM CITATION CRFIH DMQIW HF~ HGD HVGLF I-F IVXBP LJTGL MVM NHB NUSFT PUEGO QCRFL TFMCV UAP VOH YHZ YXB YYP ZCG ZXP ZY4 IQODW XOL 3V. 7XB 8FK L.- PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c371t-af092bb8a1ed2584cc9c65311fe59f869fc17c8184a4709d157f65b2be8b199c3 |
| IEDL.DBID | BENPR |
| ISSN | 0040-1706 |
| IngestDate | Wed Aug 13 10:53:51 EDT 2025 Mon Jul 21 09:15:07 EDT 2025 Wed Oct 01 02:30:54 EDT 2025 Thu Apr 24 23:13:34 EDT 2025 Thu Jun 19 15:03:09 EDT 2025 Mon Oct 20 23:30:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Linear code Experimental design MacWilliams identity Algorithmics Isomorphism Factorial design Fractional factorial design Catalogs Minimum aberration Resolution |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-af092bb8a1ed2584cc9c65311fe59f869fc17c8184a4709d157f65b2be8b199c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| PQID | 213673377 |
| PQPubID | 24108 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_213673377 jstor_primary_40586621 informaworld_taylorfrancis_310_1198_tech_2009_07120 crossref_primary_10_1198_tech_2009_07120 crossref_citationtrail_10_1198_tech_2009_07120 pascalfrancis_primary_21859142 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-08-01 |
| PublicationDateYYYYMMDD | 2009-08-01 |
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Alexandria, VA |
| PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
| PublicationTitle | Technometrics |
| PublicationYear | 2009 |
| Publisher | Taylor & Francis The American Society for Quality and The American Statistical Association American Society for Quality and the American Statistical Association American Society for Quality |
| Publisher_xml | – name: Taylor & Francis – name: The American Society for Quality and The American Statistical Association – name: American Society for Quality and the American Statistical Association – name: American Society for Quality |
| References | p_29 Block R. M. (p_3) 2005; 37 p_23 p_24 Telford J. K. (p_30) 2007; 27 p_20 p_22 Mee R. W. (p_26) 2004; 36 p_16 p_17 p_18 p_1 p_19 p_4 p_12 p_34 p_35 p_15 p_8 p_7 p_9 Zhu Y. (p_36) 2005; 15 Clark J. B. (p_13) 2001; 11 Brouwer A. E. (p_6) 1998 Xu H. (p_32) 2003; 13 p_10 p_11 p_33 |
| References_xml | – volume: 13 start-page: 691 year: 2003 ident: p_32 publication-title: Statistica Sinica – ident: p_24 doi: 10.1006/jcom.2000.0569 – ident: p_20 doi: 10.2307/1268198 – volume: 27 start-page: 224 year: 2007 ident: p_30 publication-title: Johns Hopkins APL Technical Digest – ident: p_8 doi: 10.1109/18.133262 – ident: p_23 doi: 10.1016/j.jspi.2007.05.036 – ident: p_4 doi: 10.2307/1266725 – ident: p_10 doi: 10.1214/aos/1032181167 – ident: p_19 doi: 10.2307/2346973 – ident: p_1 doi: 10.2307/1270995 – volume: 36 start-page: 400 year: 2004 ident: p_26 publication-title: Journal of Quality Technology doi: 10.1080/00224065.2004.11980287 – ident: p_34 doi: 10.1214/009005360700000712 – ident: p_18 doi: 10.2307/1268764 – ident: p_22 doi: 10.1287/ijoc.1050.0136 – volume: 15 start-page: 717 year: 2005 ident: p_36 publication-title: Statistica Sinica – volume: 11 start-page: 537 year: 2001 ident: p_13 publication-title: Statistica Sinica – ident: p_16 doi: 10.1214/aoms/1177698525 – ident: p_9 doi: 10.1214/009053605000000813 – ident: p_17 doi: 10.1214/aoms/1177696965 – ident: p_29 doi: 10.1214/aos/1032181168 – ident: p_33 doi: 10.1007/s00184-005-0408-x – volume: 37 start-page: 282 year: 2005 ident: p_3 publication-title: Journal of Quality Technology doi: 10.1080/00224065.2005.11980331 – ident: p_15 doi: 10.1214/aoms/1177698780 – ident: p_7 doi: 10.1093/biomet/90.1.233 – ident: p_11 doi: 10.1016/0378-3758(91)90062-J – start-page: 295 year: 1998 ident: p_6 publication-title: V. S. Pless and W. C. Huffman, New York: Elsevier, pp. – ident: p_12 doi: 10.2307/1403599 – ident: p_35 doi: 10.1198/004017004000000617 |
| SSID | ssj0013287 |
| Score | 2.0599601 |
| Snippet | Fractional factorial (FF) designs are widely used in practice and typically are chosen according to the minimum aberration criterion. A sequential algorithm is... |
| SourceID | proquest pascalfrancis crossref jstor informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 262 |
| SubjectTerms | Algorithms Applied sciences Binary codes Coding theory Coding, codes Construction Design Design efficiency Design engineering Design evaluation Exact sciences and technology Experimental design Factorial design Factorials Fractional factorial design Graphic design Information, signal and communications theory Isomorphism Linear code MacWilliams identity Mathematics Minimum aberration Probability and statistics R&D Research & development Resolution Sciences and techniques of general use Signal and communications theory Statistics Telecommunications and information theory |
| Title | Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run Sizes |
| URI | https://www.tandfonline.com/doi/abs/10.1198/tech.2009.07120 https://www.jstor.org/stable/40586621 https://www.proquest.com/docview/213673377 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: AHDZW dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1537-2723 dateEnd: 20100831 omitProxy: true ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1537-2723 dateEnd: 20100831 omitProxy: true ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1537-2723 dateEnd: 20100831 omitProxy: true ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: 8C1 dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTtwwEB3BcqGHqqVF3dKufOihl5Q4TuL4UCGgm6Kqu6poEdyi2LEpEt0Fsr3w9cw4TrSoopdIUexE8Rt7xvb4PYAPqnA1z-M6yrWsI4yIsUuJhkdGSkEeRmeKTiPP5vnJWfrtIrvYgFl_FobSKvsx0Q_UzdLQGvl-QtxiQkh5cHMbkWgUba72Chp1UFZoPnuGsU3YSogYawRbR9P5j9O1bYVC9ml0xBsTuH5w4r1PlKmBvlJyUv9ec1OPSEz7xEXKoqxbbEjXKWD8M5h7D1W-gOchtGSHnS28hA272IFna4SDeDcbWFrbHdimSLMjan4F54fXl_jDq99_rgwjGc-eWJYtHZt6ogn0T6y8605C4IdKL9WD9su--DSQlp1jdfadcsvZ6d8F-3l1b9vXcFZOfx2fREF1ITJC8lVUu1glWhc1t02C4YkxyuTYU7mzmXJFrpzh0qCfT-tUxqrhmXR5phNtC82VMmIXRovlwr4BlmYqIyHg2JHSGc4kC5s5UWunbKoxUhrDp76RKxMoyUkZ47ryUxNVVIQKKWWqyqMyho9DhZuOjePpomIdtWrlF0ACVpV4stauB3d4O8azRZ4nfAyTR2gPBTBEyhRPkzHs9fBXYRhoq8Fo3_736R5sd5tUlFf4DkYIsH2Psc5KT2BTxHO8FsecruXXSbDpBzW8_ks |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFH5BPIgHoihhRbEHTbyMbKfTaXswhACbRXY5KARu47TbKgnuIrPG6P_E_-h7nR9ZYvDGcTJtJ-nX96PT1-8DeGN0KHneL5PcqjLBjBhNSkx44pQSFGGsNHQbeXycD0-zj-fyfAlu2rswVFbZ-sToqCczR__It1PiFhNCqZ2rHwmJRtHhaqugUa-KI__7F-7Yqg-H-wjv2zQdHJzsDZNGVCBxQvF5Uoa-Sa3VJfeTFKOvc8bluBB58NIEnZvguHIYxrIyU30z4VKFXNrUem25MU7guA_gYSZSRX5A7_GFQwut2iI9YqVpmIRwW79NhKwNOabipC2-EARvUaS2ZZFUo1lWCFOo9TX-CRUx_g2ewGqTuLLdeqU9hSU_XYPHC3SG-DTuOGCrNVihPLamgX4GZ7uXX3E659--XzhGIqEtbS2bBXYQaSww-rHBdX3PAj80iEJAaB1sPxaZVOwMu7MRVa6zTz-n7PPFH189h9N7mf51WJ7Opn4DWCaNJJnhfiAdNdynai-DKG0wPrOYh_XgfTvJhWsIz0l347KIGx-jC0KFdDhNEVHpwbuuw1XN9XF3U7GIWjGPv1carApxZ6_1CG43OmbLOs9T3oOtW2h3DTABk4ZnaQ82W_iLxslURWcSL_779jU8Gp6MR8Xo8PhoE1bq4zCqYHwJywi2f4VZ1dxuxbXM4Mt9G89fDpUx8A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIqFyQFCoui0UH0DiEnYdJ3Z8QKjqNmrphxBQtTcTe22oVHZbsgjBP-PfMeN8aCtUbj1GsR3Jb8YzjsfvAbzQRai4HFWJtKpKMCNGlxITnjilBEUYm2u6jXx0LPdOsndn-dkS_OnuwlBZZbcmxoV6MnP0j3yYEreYEEoNQ1sV8X5cvr28SkhAig5aOzWNxkIO_K-fuHur3-yPEeqXaVruftrZS1qBgcQJxedJFUY6tbaouJ-kGImd006iUfLgcx0KqYPjymFIy6pMjfSE5yrI3KbWF5Zr7QSOewfuKiEl0fYXO3zhAKNQXcEeMdS0rEK4xR8SOWtLlKk46YwvBMRrdKldiSTVa1Y1QhYarY1_wkaMheVDeNAmsWy7sbpHsOSnq3B_gdoQn456Pth6FVYop20ooR_D6fbFF5zO-ddv546RYGhHYctmge1GSguMhKz83ty5wA-VURQIPYWNY8FJzU6xOzukKnb24ceUfTz_7esncHIr078Gy9PZ1K8Dy3Kdk-TwKJCmGu5ZC58HUdmgfWYxJxvA626SjWvJz0mD48LETZAuDKFCmpzaRFQG8KrvcNnwftzcVCyiZubxV0uLlRE39lqL4PajY-ZcSJnyAWxdQ7tvgMlYrnmWDmCzg9-0C05tevfY-O_b53AP3cYc7h8fbMJKczJGxYxPYRmx9s8wwZrbrWjKDD7ftu_8BVy_Nio |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithmic+Construction+of+Efficient+Fractional+Factorial+Designs+With+Large+Run+Sizes&rft.jtitle=Technometrics&rft.au=Xu%2C+Hongquan&rft.date=2009-08-01&rft.pub=American+Society+for+Quality&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=51&rft.issue=3&rft.spage=262&rft_id=info:doi/10.1198%2Ftech.2009.07120&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1860201991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon |