Hit and run ARMS: adaptive rejection Metropolis sampling with hit and run random direction

An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 86; no. 5; pp. 973 - 985
Main Authors Zhang, Huaiye, Wu, Yuefeng, Cheng, Lulu, Kim, Inyoung
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 23.03.2016
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2015.1046074

Cover

Abstract An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in the support of the multivariate distribution. While the ARMS updates samples only in the directions that are parallel to dimensions, our proposed method, the hit and run ARMS (HARARMS), updates samples in arbitrary directions determined by the hit and run algorithm, which makes it almost not possible to be trapped in any isolated subspaces. The HARARMS performs the same as ARMS in a single dimension while more reliable in multidimensional spaces. Its performance is illustrated by a Bayesian free-knot spline regression example. We showed that it overcomes the well-known 'lethargy' property and decisively find the global optimal number and locations of the knots of the spline function.
AbstractList An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in the support of the multivariate distribution. While the ARMS updates samples only in the directions that are parallel to dimensions, our proposed method, the hit and run ARMS (HARARMS), updates samples in arbitrary directions determined by the hit and run algorithm, which makes it almost not possible to be trapped in any isolated subspaces. The HARARMS performs the same as ARMS in a single dimension while more reliable in multidimensional spaces. Its performance is illustrated by a Bayesian free-knot spline regression example. We showed that it overcomes the well-known 'lethargy' property and decisively find the global optimal number and locations of the knots of the spline function.
Author Zhang, Huaiye
Wu, Yuefeng
Cheng, Lulu
Kim, Inyoung
Author_xml – sequence: 1
  givenname: Huaiye
  surname: Zhang
  fullname: Zhang, Huaiye
  organization: Department of Statistics, Virginia Polytechnic Institute and State University
– sequence: 2
  givenname: Yuefeng
  surname: Wu
  fullname: Wu, Yuefeng
  email: wuyue@umsl.edu
  organization: Department of Mathematics and Computer Science, University of Missouri Saint Louis
– sequence: 3
  givenname: Lulu
  surname: Cheng
  fullname: Cheng, Lulu
  organization: Department of Statistics, Virginia Polytechnic Institute and State University
– sequence: 4
  givenname: Inyoung
  surname: Kim
  fullname: Kim, Inyoung
  organization: Department of Statistics, Virginia Polytechnic Institute and State University
BookMark eNqFkMtKxDAUhoMoOI4-ghBw46aatLkY3SjiDRTBy8ZNSNNUM7RJTTKKb2_qjCAulCxOOHzf4Zx_A6w67wwA2xjtYXSA9hESRDBK90qEaW4RhjhZARNMWVVQzKpVMBmZYoTWwUaMM4QQxrScgKdLm6ByDQxzB0_ubu4PoWrUkOybgcHMjE7WO3hjUvCD72yEUfVDZ90zfLfpBb78sEP--B42NiysTbDWqi6arWWdgsfzs4fTy-L69uLq9OS60BXHqRANI6xRLeNacFaJmiDNayoIwS3hnJqyJrqqcSXya7igWDClciEIs5rqagp2F3OH4F_nJibZ26hN1yln_DxKzA8Y5qwsUUZ3fqEzPw8ub5cpSrlg4os6WlA6-BiDaaW2SY0npaBsJzGSY-7yO3c55i6XuWeb_rKHYHsVPv71jheeda0PvXr3oWtkUh-dD23OVtsoq79HfAJ9m5mM
CitedBy_id crossref_primary_10_1186_s13634_017_0524_6
crossref_primary_10_1016_j_dsp_2017_11_012
Cites_doi 10.1111/1467-9868.00128
10.1002/sim.1211
10.1080/01621459.1990.10476213
10.1137/0715022
10.1080/03610918208812251
10.1080/00949655.2011.647317
10.1007/s001800000047
10.1080/00401706.1989.10488470
10.1103/PhysRevE.62.3535
10.2307/2986138
10.1016/S0167-9473(02)00066-X
10.1080/00401706.1974.10489142
10.2307/1390645
10.2307/2347565
10.1002/9780470316726
10.1214/aos/1031594728
10.1093/biomet/57.1.97
10.1111/biom.12085
10.1093/biomet/88.4.1055
10.1016/0377-2217(82)90161-8
10.1016/0304-4076(95)01763-1
10.1006/jmva.1994.1028
10.1063/1.1699114
10.1080/00031305.1979.10482661
10.1017/CBO9780511755453
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
Copyright Taylor & Francis Ltd. 2016
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: Copyright Taylor & Francis Ltd. 2016
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2015.1046074
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 985
ExternalDocumentID 3917686961
10_1080_00949655_2015_1046074
1046074
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c371t-9d646daf67c97639b40c7b59441f4775e2b4c3b139393d795196aa9514016b5c3
ISSN 0094-9655
IngestDate Sun Sep 28 01:22:35 EDT 2025
Fri Jul 25 06:52:25 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Oct 01 04:58:51 EDT 2025
Mon Oct 20 23:45:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-9d646daf67c97639b40c7b59441f4775e2b4c3b139393d795196aa9514016b5c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1755796920
PQPubID 53118
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_00949655_2015_1046074
proquest_miscellaneous_1786176220
crossref_primary_10_1080_00949655_2015_1046074
informaworld_taylorfrancis_310_1080_00949655_2015_1046074
proquest_journals_1755796920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-23
PublicationDateYYYYMMDD 2016-03-23
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-23
  day: 23
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0031
Rice J.R (CIT0015) 1969
CIT0014
CIT0013
CIT0016
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Andersen HC (CIT0011) 2007; 148
Meyer R (CIT0004) 1999; 56
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
References_xml – ident: CIT0024
  doi: 10.1111/1467-9868.00128
– ident: CIT0006
  doi: 10.1002/sim.1211
– ident: CIT0028
  doi: 10.1080/01621459.1990.10476213
– ident: CIT0031
  doi: 10.1137/0715022
– ident: CIT0019
  doi: 10.1080/03610918208812251
– ident: CIT0022
  doi: 10.1080/00949655.2011.647317
– ident: CIT0027
  doi: 10.1007/s001800000047
– ident: CIT0020
  doi: 10.1080/00401706.1989.10488470
– ident: CIT0005
  doi: 10.1103/PhysRevE.62.3535
– ident: CIT0003
  doi: 10.2307/2986138
– volume: 148
  start-page: 5
  issue: 5
  year: 2007
  ident: CIT0011
  publication-title: J Soc Franç Stat
– ident: CIT0026
  doi: 10.1016/S0167-9473(02)00066-X
– ident: CIT0018
  doi: 10.1080/00401706.1974.10489142
– ident: CIT0013
  doi: 10.2307/1390645
– ident: CIT0001
  doi: 10.2307/2347565
– ident: CIT0029
  doi: 10.1002/9780470316726
– ident: CIT0021
  doi: 10.1214/aos/1031594728
– ident: CIT0002
  doi: 10.1093/biomet/57.1.97
– ident: CIT0007
  doi: 10.1111/biom.12085
– ident: CIT0025
  doi: 10.1093/biomet/88.4.1055
– ident: CIT0010
  doi: 10.1016/0377-2217(82)90161-8
– volume: 56
  start-page: 37
  issue: 1
  year: 1999
  ident: CIT0004
  publication-title: Can J Fish Aquat Sci
– ident: CIT0023
  doi: 10.1016/0304-4076(95)01763-1
– ident: CIT0014
  doi: 10.1006/jmva.1994.1028
– ident: CIT0030
  doi: 10.1063/1.1699114
– ident: CIT0016
  doi: 10.1080/00031305.1979.10482661
– volume-title: The approximation of functions, vol. 2
  year: 1969
  ident: CIT0015
– ident: CIT0017
  doi: 10.1017/CBO9780511755453
SSID ssj0001152
Score 2.0599084
Snippet An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS)...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 973
SubjectTerms adaptive rejection metropolis sampling
Algorithms
Bayesian analysis
empirical Bayesian method
free-knot splines
hit and run algorithm
Multivariate analysis
Probability distribution
Regression
regression splines
Rejection
Samples
Sampling
Sampling techniques
Statistical analysis
Statistical methods
Subspaces
Title Hit and run ARMS: adaptive rejection Metropolis sampling with hit and run random direction
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2015.1046074
https://www.proquest.com/docview/1755796920
https://www.proquest.com/docview/1786176220
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9FIOPAKIQEGLxC1yZHvtdZZbxEMWIhxoK6perPV6oxo1TlTbh_KH-JvMvhyHVJSiSI7leFZO5svM7O43Mwi9FZL4LIm5x2Wce5GAOWsuSeLFwYz5nBZBqEk0i680PY0-n8Vng8GvHmupbfKp-HljXsn_aBWugV5VluwdNNsNChfgHPQLR9AwHP9Jx2lp-eFtNZl_WxzrzOWCbzQd6Er-kKYP-EI2uhdCWU9qrhjkbv31oicPPqtYrybGxTll7UetKgFJ13bWdUVURwiDIL3-Xq5sM7C95ei05eX1dhuo1Za_lUtpHacmGEhz75f2st1SA1bGil0rq9Rfogio4miZLGJndlnkMWrq8U6ltbSUACKsdbOm2FbFLvub3RvD4SU9F81Ml5896-_okkwVwY8Vby_We9i-aQS0W237Dy_YcRODrmiqGSZTw2R2mHvoIAT34Q_RwTz9cP69c_qBae7UfVOXLKbKuN_0PDth0E6R3L2gQEc6J4_QA6tsPDd4e4wGshqhh679B7beYITuL7qSv_UIHR47ZNRP0DkgEwMkMCALK2S-ww6XuMMl3uISO1xihUt80ZM2uMQdLp-i008fT96nnu3i4QmSBI3HChrRgi9pIiD0JSyPfJHkMYM4fBklSSzDPBIkh5kIvIoEIn5GOYc3mPnTPBbkGRpW60o-R3gm_ChQ1ALKWBSCr_U5CWFQWVAeSEbGKHI_aiZsiXvVaeUy-6tSx2jaiW1MjZfbBFhfY1mjF9eWphNORm6RPXLqzawpqTOI4VVOOAv9MXrTfQyGXu3e8UquW3XPDGYbNAz9F3d93pfocPu3PELD5qqVryCWbvLXFse_AbixviI
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOdAeKCygLhQwEtcsSfyRNbcKUS3Q7AFaqeJi2Y4Xyke22s1e-PXMxEm0BaEeqhxySCZxHHvm2X5-A_DKB57qQtrEBukS4XHM6gIvEplNdWpVleUtiaacq9mZ-HAuz7f2whCtksbQiygU0fpq6tw0Gd1T4l4THU4rKYmZJdtVSgyEt-GORLBPWQx4Oh-8cRaz7pBJQjb9Lp7_PeZKfLqiXvqPt25D0PE--L7wkXnyY7Jp3MT__kvX8WZfdx_udQiVHcUm9QBuhXoE-332B9Y5gxHslYPi63oEu4Rao-jzQ_gyu2gYFoCtNjU7-lR-fsNsZS_Js7JV-N6yv2pWhqZN0XCxZmtLxPb6K6NpYfZtyxpDabX8xWLkRatHcHb87vTtLOmSOCSeF1mT6EoJVdmFKjwiH66dSH3hpEYYthBFIUPuhOcOgSgeVYGATytr8YQDP-Wk549hp17W4QDY1Kcio5VlpbXI0dWmluf40FApmwXNxyD6X2d8p3BOiTZ-mmwQQo1Va6hqTVe1Y5gMZpdR4uM6A73dLkzTzq0sYiIUw6-xPewbkem8xdoghKMtwTpPx_ByuIz9nBZvbB2WG7pnimBT5Xn65AavfwF3Z6fliTl5P__4FHbxkiJCXc4PYadZbcIzRFiNe952oT9nwxNI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA5tLBQsaUFI3HNksSPrLlV0NXy2BUCKiEuke04UB7Z1SZ74dczEydRC0I9VDnk4IydOPbMZ8_nGYBnzvNYZ9JExksbCYdrVut5FslkqmOjiiRtSTSLpZqfiTefZc8mrDtaJa2hyxAootXVNLnXRdkz4p4TG04rKYmYJVsnJdrBm3BLkVeMTnHEy0EZJyHpDolEJNMf4vlfNZfM06Xgpf8o69YCzfbB9u8eiCc_JtvGTtzvv8I6Xuvj7sJeh0_ZSRhQ9-CGr0aw3-d-YJ0qGMGdxRDvtR7BLmHWEPL5PnyZnzcM22ebbcVOPiw-vmCmMGvSq2zjv7fcr4otfNMmaDivWW2I1l59ZbQpzL5dkEZDWqx-sWB3UeoBnM1OP72cR10Kh8jxLGkiXSihClOqzCHu4dqK2GVWagRhpcgy6VMrHLcIQ_EqMoR7WhmDN1z2KSsdP4CdalX5h8CmLhYJ-ZWV1iJFRRsbnmKlvlAm8ZqPQfR_LnddfHNKs_EzT4YwqKFrc-ravOvaMUwGsXUI8HGVgL44LPKm3VkpQxqUnF8he9SPobzTFXWOAI4OBOs0HsPToRhnObluTOVXW3pmilBTpWl8eI3mn8Dt969m-bvXy7ePYBdLFLHpUn4EO81m648RXjX2cTuB_gDeHhHs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hit+and+run+ARMS%3A+adaptive+rejection+Metropolis+sampling+with+hit+and+run+random+direction&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Zhang%2C+Huaiye&rft.au=Wu%2C+Yuefeng&rft.au=Cheng%2C+Lulu&rft.au=Kim%2C+Inyoung&rft.date=2016-03-23&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=86&rft.issue=5&rft.spage=973&rft.epage=985&rft_id=info:doi/10.1080%2F00949655.2015.1046074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2015_1046074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon