Hit and run ARMS: adaptive rejection Metropolis sampling with hit and run random direction
An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in...
        Saved in:
      
    
          | Published in | Journal of statistical computation and simulation Vol. 86; no. 5; pp. 973 - 985 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        23.03.2016
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-9655 1563-5163  | 
| DOI | 10.1080/00949655.2015.1046074 | 
Cover
| Abstract | An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in the support of the multivariate distribution. While the ARMS updates samples only in the directions that are parallel to dimensions, our proposed method, the hit and run ARMS (HARARMS), updates samples in arbitrary directions determined by the hit and run algorithm, which makes it almost not possible to be trapped in any isolated subspaces. The HARARMS performs the same as ARMS in a single dimension while more reliable in multidimensional spaces. Its performance is illustrated by a Bayesian free-knot spline regression example. We showed that it overcomes the well-known 'lethargy' property and decisively find the global optimal number and locations of the knots of the spline function. | 
    
|---|---|
| AbstractList | An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS) algorithm by incorporating the hit and run sampling. It is not rare that the ARMS is trapped away from some subspace with significant probability in the support of the multivariate distribution. While the ARMS updates samples only in the directions that are parallel to dimensions, our proposed method, the hit and run ARMS (HARARMS), updates samples in arbitrary directions determined by the hit and run algorithm, which makes it almost not possible to be trapped in any isolated subspaces. The HARARMS performs the same as ARMS in a single dimension while more reliable in multidimensional spaces. Its performance is illustrated by a Bayesian free-knot spline regression example. We showed that it overcomes the well-known 'lethargy' property and decisively find the global optimal number and locations of the knots of the spline function. | 
    
| Author | Zhang, Huaiye Wu, Yuefeng Cheng, Lulu Kim, Inyoung  | 
    
| Author_xml | – sequence: 1 givenname: Huaiye surname: Zhang fullname: Zhang, Huaiye organization: Department of Statistics, Virginia Polytechnic Institute and State University – sequence: 2 givenname: Yuefeng surname: Wu fullname: Wu, Yuefeng email: wuyue@umsl.edu organization: Department of Mathematics and Computer Science, University of Missouri Saint Louis – sequence: 3 givenname: Lulu surname: Cheng fullname: Cheng, Lulu organization: Department of Statistics, Virginia Polytechnic Institute and State University – sequence: 4 givenname: Inyoung surname: Kim fullname: Kim, Inyoung organization: Department of Statistics, Virginia Polytechnic Institute and State University  | 
    
| BookMark | eNqFkMtKxDAUhoMoOI4-ghBw46aatLkY3SjiDRTBy8ZNSNNUM7RJTTKKb2_qjCAulCxOOHzf4Zx_A6w67wwA2xjtYXSA9hESRDBK90qEaW4RhjhZARNMWVVQzKpVMBmZYoTWwUaMM4QQxrScgKdLm6ByDQxzB0_ubu4PoWrUkOybgcHMjE7WO3hjUvCD72yEUfVDZ90zfLfpBb78sEP--B42NiysTbDWqi6arWWdgsfzs4fTy-L69uLq9OS60BXHqRANI6xRLeNacFaJmiDNayoIwS3hnJqyJrqqcSXya7igWDClciEIs5rqagp2F3OH4F_nJibZ26hN1yln_DxKzA8Y5qwsUUZ3fqEzPw8ub5cpSrlg4os6WlA6-BiDaaW2SY0npaBsJzGSY-7yO3c55i6XuWeb_rKHYHsVPv71jheeda0PvXr3oWtkUh-dD23OVtsoq79HfAJ9m5mM | 
    
| CitedBy_id | crossref_primary_10_1186_s13634_017_0524_6 crossref_primary_10_1016_j_dsp_2017_11_012  | 
    
| Cites_doi | 10.1111/1467-9868.00128 10.1002/sim.1211 10.1080/01621459.1990.10476213 10.1137/0715022 10.1080/03610918208812251 10.1080/00949655.2011.647317 10.1007/s001800000047 10.1080/00401706.1989.10488470 10.1103/PhysRevE.62.3535 10.2307/2986138 10.1016/S0167-9473(02)00066-X 10.1080/00401706.1974.10489142 10.2307/1390645 10.2307/2347565 10.1002/9780470316726 10.1214/aos/1031594728 10.1093/biomet/57.1.97 10.1111/biom.12085 10.1093/biomet/88.4.1055 10.1016/0377-2217(82)90161-8 10.1016/0304-4076(95)01763-1 10.1006/jmva.1994.1028 10.1063/1.1699114 10.1080/00031305.1979.10482661 10.1017/CBO9780511755453  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Taylor & Francis 2015 Copyright Taylor & Francis Ltd. 2016  | 
    
| Copyright_xml | – notice: 2015 Taylor & Francis 2015 – notice: Copyright Taylor & Francis Ltd. 2016  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1080/00949655.2015.1046074 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics Computer Science  | 
    
| EISSN | 1563-5163 | 
    
| EndPage | 985 | 
    
| ExternalDocumentID | 3917686961 10_1080_00949655_2015_1046074 1046074  | 
    
| Genre | Article Feature  | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD ADYSH JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c371t-9d646daf67c97639b40c7b59441f4775e2b4c3b139393d795196aa9514016b5c3 | 
    
| ISSN | 0094-9655 | 
    
| IngestDate | Sun Sep 28 01:22:35 EDT 2025 Fri Jul 25 06:52:25 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Oct 01 04:58:51 EDT 2025 Mon Oct 20 23:45:09 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c371t-9d646daf67c97639b40c7b59441f4775e2b4c3b139393d795196aa9514016b5c3 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1755796920 | 
    
| PQPubID | 53118 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_00949655_2015_1046074 proquest_miscellaneous_1786176220 crossref_primary_10_1080_00949655_2015_1046074 informaworld_taylorfrancis_310_1080_00949655_2015_1046074 proquest_journals_1755796920  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-03-23 | 
    
| PublicationDateYYYYMMDD | 2016-03-23 | 
    
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-23 day: 23  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | Journal of statistical computation and simulation | 
    
| PublicationYear | 2016 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0030 CIT0010 CIT0031 Rice J.R (CIT0015) 1969 CIT0014 CIT0013 CIT0016 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Andersen HC (CIT0011) 2007; 148 Meyer R (CIT0004) 1999; 56 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028  | 
    
| References_xml | – ident: CIT0024 doi: 10.1111/1467-9868.00128 – ident: CIT0006 doi: 10.1002/sim.1211 – ident: CIT0028 doi: 10.1080/01621459.1990.10476213 – ident: CIT0031 doi: 10.1137/0715022 – ident: CIT0019 doi: 10.1080/03610918208812251 – ident: CIT0022 doi: 10.1080/00949655.2011.647317 – ident: CIT0027 doi: 10.1007/s001800000047 – ident: CIT0020 doi: 10.1080/00401706.1989.10488470 – ident: CIT0005 doi: 10.1103/PhysRevE.62.3535 – ident: CIT0003 doi: 10.2307/2986138 – volume: 148 start-page: 5 issue: 5 year: 2007 ident: CIT0011 publication-title: J Soc Franç Stat – ident: CIT0026 doi: 10.1016/S0167-9473(02)00066-X – ident: CIT0018 doi: 10.1080/00401706.1974.10489142 – ident: CIT0013 doi: 10.2307/1390645 – ident: CIT0001 doi: 10.2307/2347565 – ident: CIT0029 doi: 10.1002/9780470316726 – ident: CIT0021 doi: 10.1214/aos/1031594728 – ident: CIT0002 doi: 10.1093/biomet/57.1.97 – ident: CIT0007 doi: 10.1111/biom.12085 – ident: CIT0025 doi: 10.1093/biomet/88.4.1055 – ident: CIT0010 doi: 10.1016/0377-2217(82)90161-8 – volume: 56 start-page: 37 issue: 1 year: 1999 ident: CIT0004 publication-title: Can J Fish Aquat Sci – ident: CIT0023 doi: 10.1016/0304-4076(95)01763-1 – ident: CIT0014 doi: 10.1006/jmva.1994.1028 – ident: CIT0030 doi: 10.1063/1.1699114 – ident: CIT0016 doi: 10.1080/00031305.1979.10482661 – volume-title: The approximation of functions, vol. 2 year: 1969 ident: CIT0015 – ident: CIT0017 doi: 10.1017/CBO9780511755453  | 
    
| SSID | ssj0001152 | 
    
| Score | 2.0599084 | 
    
| Snippet | An algorithm for sampling from non-log-concave multivariate distributions is proposed, which improves the adaptive rejection Metropolis sampling (ARMS)... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 973 | 
    
| SubjectTerms | adaptive rejection metropolis sampling Algorithms Bayesian analysis empirical Bayesian method free-knot splines hit and run algorithm Multivariate analysis Probability distribution Regression regression splines Rejection Samples Sampling Sampling techniques Statistical analysis Statistical methods Subspaces  | 
    
| Title | Hit and run ARMS: adaptive rejection Metropolis sampling with hit and run random direction | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2015.1046074 https://www.proquest.com/docview/1755796920 https://www.proquest.com/docview/1786176220  | 
    
| Volume | 86 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9FIOPAKIQEGLxC1yZHvtdZZbxEMWIhxoK6perPV6oxo1TlTbh_KH-JvMvhyHVJSiSI7leFZO5svM7O43Mwi9FZL4LIm5x2Wce5GAOWsuSeLFwYz5nBZBqEk0i680PY0-n8Vng8GvHmupbfKp-HljXsn_aBWugV5VluwdNNsNChfgHPQLR9AwHP9Jx2lp-eFtNZl_WxzrzOWCbzQd6Er-kKYP-EI2uhdCWU9qrhjkbv31oicPPqtYrybGxTll7UetKgFJ13bWdUVURwiDIL3-Xq5sM7C95ei05eX1dhuo1Za_lUtpHacmGEhz75f2st1SA1bGil0rq9Rfogio4miZLGJndlnkMWrq8U6ltbSUACKsdbOm2FbFLvub3RvD4SU9F81Ml5896-_okkwVwY8Vby_We9i-aQS0W237Dy_YcRODrmiqGSZTw2R2mHvoIAT34Q_RwTz9cP69c_qBae7UfVOXLKbKuN_0PDth0E6R3L2gQEc6J4_QA6tsPDd4e4wGshqhh679B7beYITuL7qSv_UIHR47ZNRP0DkgEwMkMCALK2S-ww6XuMMl3uISO1xihUt80ZM2uMQdLp-i008fT96nnu3i4QmSBI3HChrRgi9pIiD0JSyPfJHkMYM4fBklSSzDPBIkh5kIvIoEIn5GOYc3mPnTPBbkGRpW60o-R3gm_ChQ1ALKWBSCr_U5CWFQWVAeSEbGKHI_aiZsiXvVaeUy-6tSx2jaiW1MjZfbBFhfY1mjF9eWphNORm6RPXLqzawpqTOI4VVOOAv9MXrTfQyGXu3e8UquW3XPDGYbNAz9F3d93pfocPu3PELD5qqVryCWbvLXFse_AbixviI | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BOdAeKCygLhQwEtcsSfyRNbcKUS3Q7AFaqeJi2Y4Xyke22s1e-PXMxEm0BaEeqhxySCZxHHvm2X5-A_DKB57qQtrEBukS4XHM6gIvEplNdWpVleUtiaacq9mZ-HAuz7f2whCtksbQiygU0fpq6tw0Gd1T4l4THU4rKYmZJdtVSgyEt-GORLBPWQx4Oh-8cRaz7pBJQjb9Lp7_PeZKfLqiXvqPt25D0PE--L7wkXnyY7Jp3MT__kvX8WZfdx_udQiVHcUm9QBuhXoE-332B9Y5gxHslYPi63oEu4Rao-jzQ_gyu2gYFoCtNjU7-lR-fsNsZS_Js7JV-N6yv2pWhqZN0XCxZmtLxPb6K6NpYfZtyxpDabX8xWLkRatHcHb87vTtLOmSOCSeF1mT6EoJVdmFKjwiH66dSH3hpEYYthBFIUPuhOcOgSgeVYGATytr8YQDP-Wk549hp17W4QDY1Kcio5VlpbXI0dWmluf40FApmwXNxyD6X2d8p3BOiTZ-mmwQQo1Va6hqTVe1Y5gMZpdR4uM6A73dLkzTzq0sYiIUw6-xPewbkem8xdoghKMtwTpPx_ByuIz9nBZvbB2WG7pnimBT5Xn65AavfwF3Z6fliTl5P__4FHbxkiJCXc4PYadZbcIzRFiNe952oT9nwxNI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA5tLBQsaUFI3HNksSPrLlV0NXy2BUCKiEuke04UB7Z1SZ74dczEydRC0I9VDnk4IydOPbMZ8_nGYBnzvNYZ9JExksbCYdrVut5FslkqmOjiiRtSTSLpZqfiTefZc8mrDtaJa2hyxAootXVNLnXRdkz4p4TG04rKYmYJVsnJdrBm3BLkVeMTnHEy0EZJyHpDolEJNMf4vlfNZfM06Xgpf8o69YCzfbB9u8eiCc_JtvGTtzvv8I6Xuvj7sJeh0_ZSRhQ9-CGr0aw3-d-YJ0qGMGdxRDvtR7BLmHWEPL5PnyZnzcM22ebbcVOPiw-vmCmMGvSq2zjv7fcr4otfNMmaDivWW2I1l59ZbQpzL5dkEZDWqx-sWB3UeoBnM1OP72cR10Kh8jxLGkiXSihClOqzCHu4dqK2GVWagRhpcgy6VMrHLcIQ_EqMoR7WhmDN1z2KSsdP4CdalX5h8CmLhYJ-ZWV1iJFRRsbnmKlvlAm8ZqPQfR_LnddfHNKs_EzT4YwqKFrc-ravOvaMUwGsXUI8HGVgL44LPKm3VkpQxqUnF8he9SPobzTFXWOAI4OBOs0HsPToRhnObluTOVXW3pmilBTpWl8eI3mn8Dt969m-bvXy7ePYBdLFLHpUn4EO81m648RXjX2cTuB_gDeHhHs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hit+and+run+ARMS%3A+adaptive+rejection+Metropolis+sampling+with+hit+and+run+random+direction&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Zhang%2C+Huaiye&rft.au=Wu%2C+Yuefeng&rft.au=Cheng%2C+Lulu&rft.au=Kim%2C+Inyoung&rft.date=2016-03-23&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=86&rft.issue=5&rft.spage=973&rft.epage=985&rft_id=info:doi/10.1080%2F00949655.2015.1046074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2015_1046074 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |