A novel interpolation strategy for estimating subsample speckle motion

Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to achieve acceptable spatial resolution and velocity quantization, interpolation of laterally sampled data is necessary. We present a novel method...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 45; no. 6; pp. 1541 - 1552
Main Authors Geiman, Beth J, Bohs, Laurence N, Anderson, Martin E, Breit, Sean M, Trahey, Gregg E
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.06.2000
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
DOI10.1088/0031-9155/45/6/310

Cover

Abstract Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to achieve acceptable spatial resolution and velocity quantization, interpolation of laterally sampled data is necessary. We present a novel method for estimating lateral subsample speckle motion and compare it with traditional interpolation methods. This method, called grid slopes, requires no a priori knowledge and can be applied to data with as few as two samples in the lateral dimension. Computer simulations were performed to compare grid slopes with two conventional interpolation schemes, parabolic fit and cubic spline. Results of computer simulations show that parabolic fit and cubic spline performed poorly at translations greater than 0.5 samples, and translations less than 0.5 samples were subject to an estimation bias. Grid slopes accurately estimated translations between 0 and 1 samples without estimation bias at high signal-to-noise ratios. Given that the grid slopes interpolation technique performs well at high signal-to-noise ratios, one pertinent clinical application might be tissue motion tracking.
AbstractList Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to achieve acceptable spatial resolution and velocity quantization, interpolation of laterally sampled data is necessary. We present a novel method for estimating lateral subsample speckle motion and compare it with traditional interpolation methods. This method, called grid slopes, requires no a priori knowledge and can be applied to data with as few as two samples in the lateral dimension. Computer simulations were performed to compare grid slopes with two conventional interpolation schemes, parabolic fit and cubic spline. Results of computer simulations show that parabolic fit and cubic spline performed poorly at translations greater than 0.5 samples, and translations less than 0.5 samples were subject to an estimation bias. Grid slopes accurately estimated translations between 0 and 1 samples without estimation bias at high signal-to-noise ratios. Given that the grid slopes interpolation technique performs well at high signal-to-noise ratios, one pertinent clinical application might be tissue motion tracking.Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to achieve acceptable spatial resolution and velocity quantization, interpolation of laterally sampled data is necessary. We present a novel method for estimating lateral subsample speckle motion and compare it with traditional interpolation methods. This method, called grid slopes, requires no a priori knowledge and can be applied to data with as few as two samples in the lateral dimension. Computer simulations were performed to compare grid slopes with two conventional interpolation schemes, parabolic fit and cubic spline. Results of computer simulations show that parabolic fit and cubic spline performed poorly at translations greater than 0.5 samples, and translations less than 0.5 samples were subject to an estimation bias. Grid slopes accurately estimated translations between 0 and 1 samples without estimation bias at high signal-to-noise ratios. Given that the grid slopes interpolation technique performs well at high signal-to-noise ratios, one pertinent clinical application might be tissue motion tracking.
Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to achieve acceptable spatial resolution and velocity quantization, interpolation of laterally sampled data is necessary. We present a novel method for estimating lateral subsample speckle motion and compare it with traditional interpolation methods. This method, called grid slopes, requires no a priori knowledge and can be applied to data with as few as two samples in the lateral dimension. Computer simulations were performed to compare grid slopes with two conventional interpolation schemes, parabolic fit and cubic spline. Results of computer simulations show that parabolic fit and cubic spline performed poorly at translations greater than 0.5 samples, and translations less than 0.5 samples were subject to an estimation bias. Grid slopes accurately estimated translations between 0 and 1 samples without estimation bias at high signal-to-noise ratios. Given that the grid slopes interpolation technique performs well at high signal-to-noise ratios, one pertinent clinical application might be tissue motion tracking.
Author Geiman, Beth J
Breit, Sean M
Bohs, Laurence N
Anderson, Martin E
Trahey, Gregg E
Author_xml – sequence: 1
  fullname: Geiman, Beth J
– sequence: 2
  fullname: Bohs, Laurence N
– sequence: 3
  fullname: Anderson, Martin E
– sequence: 4
  fullname: Breit, Sean M
– sequence: 5
  fullname: Trahey, Gregg E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10870709$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAYhoNM3A_9BzxIT4KH2nxtkqbHMZwKAy96DmmajGrb1KYT9t-bujnBwU4fhOd5yftO0aixjUboGvA9YM4jjBMIM6A0IjRiUQL4DE0gYRAyyvAITQ7AGE2de8cYgMfkAo29nuIUZxO0nAeN_dJVUDa97lpbyb60TeD6TvZ6vQ2M7QLt-rL27806cJvcybqtdOBarT78re0gXKJzIyunr_Z3ht6WD6-Lp3D18vi8mK9ClaTQhynhhPM4ToGCzGIoNJhEYkMzhgvgKjfSJEwRKrM8p0bnMjYpJYaxjOjMqGSGbne5bWc_N_5joi6d0lUlG203TqQQJyQG5sGbPbjJa12ItvMVuq34be4BvgNUZ53rtBGq7H_K--pl5cGB5WLYUAwbCkIFE35kr8b_1L_0E9LdTipte-CPOdEWxrPhMXsi-xsd4Zj3
CitedBy_id crossref_primary_10_1109_TUFFC_2008_979
crossref_primary_10_1016_j_ultrasmedbio_2007_11_020
crossref_primary_10_1109_TUFFC_2008_714
crossref_primary_10_1117_1_1666862
crossref_primary_10_1088_2057_1976_aad925
crossref_primary_10_1016_j_actbio_2008_02_010
crossref_primary_10_1109_TUFFC_2006_1632684
crossref_primary_10_1016_j_ultrasmedbio_2008_09_011
crossref_primary_10_1080_17415977_2016_1161034
crossref_primary_10_1109_TUFFC_2006_1632687
crossref_primary_10_1109_TUFFC_2009_1192
crossref_primary_10_1109_TUFFC_2019_2928184
crossref_primary_10_1177_0161734613476176
crossref_primary_10_1016_j_ultrasmedbio_2006_09_015
crossref_primary_10_1109_58_911722
crossref_primary_10_1016_j_ultrasmedbio_2014_05_010
crossref_primary_10_1088_0031_9155_57_5_1359
crossref_primary_10_1118_1_4938582
crossref_primary_10_1016_j_ultrasmedbio_2007_01_007
crossref_primary_10_1016_j_ultrasmedbio_2006_06_027
crossref_primary_10_1109_TUFFC_2010_1708
crossref_primary_10_1524_teme_2009_0936
crossref_primary_10_1016_j_ijleo_2022_169929
crossref_primary_10_1177_016173460502700102
crossref_primary_10_1016_S0041_624X_99_00182_1
crossref_primary_10_1007_s11517_016_1593_7
crossref_primary_10_1088_0031_9155_61_8_R90
crossref_primary_10_1109_TUFFC_2004_1320827
crossref_primary_10_1109_TUFFC_2010_1489
Cites_doi 10.1109/10.133210
10.1109/58.585197
10.1109/58.677757
10.1109/58.656634
10.1006/uimg.1995.1007
10.1109/58.4145
10.1109/58.55306
10.1109/58.660142
10.1016/S0301-5629(98)00109-4
10.1109/58.656635
10.1109/58.212556
10.1109/58.710557
10.1109/TBME.1987.325920
10.1109/58.677749
10.1177/016173469001200202
10.1121/1.390734
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/0031-9155/45/6/310
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
EndPage 1552
ExternalDocumentID 10870709
10_1088_0031_9155_45_6_310
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: 1R01HL50104
GroupedDBID -
02O
123
1JI
1PV
1WK
29O
3O-
53G
5RE
5VS
7.M
8RP
9BW
AAGCD
AAJIO
AALHV
AAPBV
ABFLS
ABHWH
ABPTK
ABUFD
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
DZ
EBS
EDWGO
EJD
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
T37
TN5
UCJ
UNR
X
XPP
ZA5
ZMT
---
-DZ
-~X
AAGCF
AATNI
AAYXX
ABJNI
ABLJU
ABVAM
ACAFW
ACARI
ACHIP
ADEQX
AEINN
AERVB
AGQPQ
AKPSB
AOAED
ARNYC
CITATION
CRLBU
IJHAN
PJBAE
.GJ
.HR
4.4
5B3
5ZH
5ZI
7.Q
AAJKP
ABCXL
ABQJV
ABTAH
ACWPO
AFFNX
CBCFC
CEBXE
CGR
CUY
CVF
ECM
EIF
EMSAF
EPQRW
H~9
J5H
JCGBZ
NPM
PKN
RKQ
SY9
W28
X7L
ZGI
ZXP
ZY4
7X8
ID FETCH-LOGICAL-c371t-748488227151a921de1f3a0f5960d18cbfaf36c45a9bb5feba2f754f6694e9fc3
IEDL.DBID IOP
ISSN 0031-9155
IngestDate Thu Sep 04 16:02:55 EDT 2025
Wed Feb 19 02:35:58 EST 2025
Thu Apr 24 22:52:35 EDT 2025
Wed Oct 01 01:56:03 EDT 2025
Mon May 13 14:42:45 EDT 2019
Tue Nov 10 14:22:09 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-748488227151a921de1f3a0f5960d18cbfaf36c45a9bb5feba2f754f6694e9fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10870709
PQID 71234216
PQPubID 23479
PageCount 12
ParticipantIDs crossref_citationtrail_10_1088_0031_9155_45_6_310
proquest_miscellaneous_71234216
crossref_primary_10_1088_0031_9155_45_6_310
pubmed_primary_10870709
iop_primary_10_1088_0031_9155_45_6_310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20000601
2000-06-01
2000-Jun
PublicationDateYYYYMMDD 2000-06-01
PublicationDate_xml – month: 06
  year: 2000
  text: 20000601
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAlternate Phys Med Biol
PublicationYear 2000
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
13
24
15
16
17
Newhouse V L (21) 1987; 34
19
Shattuck D P (22) 1984; 75
1
Geiman B J (14) 1996; 18
2
3
6
Chaturvedi P (7) 1997
Bonnefous O (4) 1988
8
Jensen J A (18) 1997
9
Fox M D (12) 1978; 25
Trahey G E (23) 1997; 34
Lai X (20) 1996
de Jong P G M (10) 1990; 12
Bracewell R N (5) 1986
References_xml – ident: 3
  doi: 10.1109/10.133210
– start-page: 795
  year: 1988
  ident: 4
– volume: 18
  start-page: 61
  year: 1996
  ident: 14
  publication-title: Ultrasonic Imaging
– ident: 15
  doi: 10.1109/58.585197
– ident: 1
  doi: 10.1109/58.677757
– ident: 8
  doi: 10.1109/58.656634
– ident: 6
  doi: 10.1006/uimg.1995.1007
– start-page: 1211
  year: 1996
  ident: 20
– ident: 24
  doi: 10.1109/58.4145
– start-page: 267
  year: 1986
  ident: 5
– ident: 11
  doi: 10.1109/58.55306
– ident: 13
  doi: 10.1109/58.660142
– volume: 25
  start-page: 281
  year: 1978
  ident: 12
  publication-title: IEEE Trans. Ultrason. Ferroelec. Freq. Contr.
– start-page: 1239
  year: 1997
  ident: 18
– ident: 19
  doi: 10.1016/S0301-5629(98)00109-4
– ident: 9
  doi: 10.1109/58.656635
– ident: 16
  doi: 10.1109/58.212556
– start-page: 1435
  year: 1997
  ident: 7
– ident: 2
  doi: 10.1109/58.710557
– volume: 34
  start-page: 779
  issn: 0018-9294
  year: 1987
  ident: 21
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1987.325920
– ident: 17
  doi: 10.1109/58.677749
– volume: 34
  start-page: 965
  year: 1997
  ident: 23
  publication-title: IEEE Trans. Ultrason. Ferroelec. Freq. Contr.
– volume: 12
  start-page: 84
  year: 1990
  ident: 10
  publication-title: Ultrasonic Imaging
  doi: 10.1177/016173469001200202
– volume: 75
  start-page: 1273
  issn: 0001-4966
  year: 1984
  ident: 22
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.390734
SSID ssj0011824
Score 1.8197416
Snippet Multidimensional, high-resolution ultrasonic imaging of rapidly moving tissue is primarily limited by sparse sampling in the lateral dimension. In order to...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1541
SubjectTerms Algorithms
Computer Simulation
Elasticity
Models, Statistical
Models, Theoretical
Ultrasonography - methods
Title A novel interpolation strategy for estimating subsample speckle motion
URI http://iopscience.iop.org/0031-9155/45/6/310
https://www.ncbi.nlm.nih.gov/pubmed/10870709
https://www.proquest.com/docview/71234216
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 1361-6560
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011824
  issn: 0031-9155
  databaseCode: IOP
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4xJNBeNtYxVgbDmiZeprR1YifxI0JUCKnAw5B4s2zHnqpWaUVbpPLrOdtpBWIgXpIoutiJc_Z9yd19B_C7tMKIvKQJN0wlTOBGc175YCo0zi6zzoQA2cv8_IZd3PLbDViVkhtOps3K38HD4Mn3apd4FvMu4928m4V8Km_4fbbe1fXaZYBAOVIuN-JNhgzOov808cwKfcCuXgeYwdD0P8Ngla4T40tGncVcd8zDS_bGdz3DDnxqECc5iSryBTZs3YKtWINy2YLtQeNdx5MhHNTMvkL_hNSTezsmw1iGKwbMkVmksl0SRLrE03N4uFv_IzNcfZSnGSY-cXOE-1gcaBdu-md_T8-TpuJCYrKCzgOxKELutEAcoERKK0tdpnqO43dORUujnXJZbhhXQmvurFapKzhzeS6YFc5k32CzntT2OxDDS2HSqmRUOJYWSumUp8po6qhGVOXaQFdvQJqGjtxXxRjL4BYvy8BaKv2gScZlLnHQ2vBnfc00knG8Kf0Lx38t-FJATiu8jeOnQm-1drRSEIkz0LtVVG0ni5ks0PizlOZt2It686Q1XA2Lnth_byc_4GNM9fd_eQ5gc363sIcIeub6Z1D2RxI98qA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7ioiFeGOsGBMZqTdNeprQ4sZP4EW1UZTDGwyrtzbIdGyFQWtEUCX49x3FasRtC2ksSRcd24uuXnM_fAfhQWGFEVtCYG6ZiJvCgOS89mQoXZ5daZxqC7Fk2HLGvP_mcTdjshRlP2qm_h5dBKDhUYUuIK3z4MRp7WfM-4_2sj_ikPyndMqzylAsfxOD4-_nCkYDwOQgxt2nafTN_z-eXtWkZy_837GyWn8FL0PMHD6yTq96s1j1z_5um43-92SZstOCUHIYEr2DJVh14EcJV3nVg7VvriMebDXPUTF_D4JBU41t7TS5DxK7ArSPToHp7RxAUE6_k4ZFxdUGmOFEpr0hM_B7PKzyHOEJvYDQ4-vF5GLfBGWKT5rRuNEgRnSc5QgYlElpa6lJ14Dh-EpW0MNopl2aGcSW05s5qlbicM5dlglnhTLoFK9W4sjtADC-EScqCUeFYkiulE54oo6mjGgGYi4DOm0WaVrncB9C4lo0HvSgagVPpK04yLjOJFRfBp0WaSdDteNL6PbbJwvBPA4ntEMHHx0ZP5dad9xqJg9V7YFRlx7OpzBEnsIRmEWyHzvQoN5w48wOx-9xCurB2_mUgT4_PTvZgPQgE-H9Db2GlvpnZfYRKtX7XDIYHylICnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+interpolation+strategy+for+estimating+subsample+speckle+motion&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Geiman%2C+Beth+J&rft.au=Bohs%2C+Laurence+N&rft.au=Anderson%2C+Martin+E&rft.au=Breit%2C+Sean+M&rft.date=2000-06-01&rft.pub=IOP+Publishing&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=45&rft.spage=1541&rft_id=info:doi/10.1088%2F0031-9155%2F45%2F6%2F310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0031_9155_45_6_310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon