Efficient algorithms for online tracking of set points in robust model predictive control

This paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of systems science Vol. 48; no. 8; pp. 1635 - 1645
Main Authors Razi, M., Haeri, M.
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 11.06.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0020-7721
1464-5319
DOI10.1080/00207721.2017.1280551

Cover

More Information
Summary:This paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz. As an unstructured uncertainty, this term is replaced in the robust stability constraint by its Lipschitz coefficient. A scheduled control technique is employed to transfer the system to desired set points, given online, by designing local robust model predictive controllers. This scheme includes estimating the regions of feasibility and stability of the related equilibriums and online switching among the local controllers. The proposed optimisation problems for calculating the regions of feasibility and stability are defined as linear matrix inequalities that can be solved in polynomial time. The effectiveness of the proposed algorithms is illustrated by an example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0020-7721
1464-5319
DOI:10.1080/00207721.2017.1280551