Machine learning based algorithms for uncertainty quantification in numerical weather prediction models
•In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a r...
Saved in:
| Published in | Journal of computational science Vol. 50; p. 101295 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier B.V
01.03.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-7503 1877-7511 1877-7511 |
| DOI | 10.1016/j.jocs.2020.101295 |
Cover
| Abstract | •In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a realistic weather research and forecast model in operational settings.
Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions.
This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors.
Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors. |
|---|---|
| AbstractList | Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors. •In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a realistic weather research and forecast model in operational settings. Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors. |
| ArticleNumber | 101295 |
| Author | Rao, Vishwas Moosavi, Azam Sandu, Adrian |
| Author_xml | – sequence: 1 givenname: Azam surname: Moosavi fullname: Moosavi, Azam email: azmosavi@vt.edu organization: Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA – sequence: 2 givenname: Vishwas surname: Rao fullname: Rao, Vishwas email: vhebbur@anl.gov organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA – sequence: 3 givenname: Adrian surname: Sandu fullname: Sandu, Adrian email: asandu7@vt.edu organization: Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA |
| BackLink | https://www.osti.gov/servlets/purl/1774610$$D View this record in Osti.gov |
| BookMark | eNqNkU9PAyEQxYnRRK1-AU_EeysD7i5NvJjGf4nGi54JhdkuzRYqUE2_vbtd48FDI5dhhvcmLz9OyaEPHgm5ADYBBuXVcrIMJk0447sBnxYH5ARkVY2rAuDw987EMTlPacm6I6ScgjghixdtGueRtqijd35B5zqhpbpdhOhys0q0DpFuvMGYtfN5Sz822mdXO6OzC546T_1mhbHrW_qFOjcY6TqidWb3vgoW23RGjmrdJjz_qSPyfn_3NnscP78-PM1un8dGVJDHFWPIEGRdcywksLoQXLJ6LsrCVjgHxqeSWwnSFrIUHFk5NRqM1QIBOpUYETHs3fi13n7ptlXr6FY6bhUw1eNSS9XjUj0uNeDqXJeDK6TsVDIuo2lM8B5NVlBV1yWwTiQHkYkhpYi16nQ7Bjlq1-7fz_9Y_xXqZjB1-PDTYeyDYfcR1sU-lw1un_0b6UOl5w |
| CitedBy_id | crossref_primary_10_3390_atmos13020180 crossref_primary_10_3390_electronics11050743 crossref_primary_10_1016_j_ijepes_2021_107304 crossref_primary_10_1016_j_hydroa_2023_100148 crossref_primary_10_3390_electronics13050939 crossref_primary_10_5194_hess_27_1583_2023 crossref_primary_10_1016_j_jhydrol_2022_129012 crossref_primary_10_1016_j_apenergy_2022_118777 crossref_primary_10_1175_WAF_D_21_0054_1 crossref_primary_10_1007_s11356_021_17442_1 crossref_primary_10_1016_j_compscitech_2024_111030 crossref_primary_10_1016_j_scitotenv_2024_176410 crossref_primary_10_1016_j_jnnfm_2023_105154 crossref_primary_10_2166_wpt_2024_079 crossref_primary_10_1016_j_atmosres_2024_107522 crossref_primary_10_1109_MGRS_2024_3493972 crossref_primary_10_3389_fenvs_2023_1194918 crossref_primary_10_1371_journal_pone_0310446 crossref_primary_10_1038_s41598_024_76894_w crossref_primary_10_35193_bseufbd_1037563 crossref_primary_10_1016_j_heliyon_2023_e15355 crossref_primary_10_1016_j_engappai_2024_108182 crossref_primary_10_3390_su16166782 |
| Cites_doi | 10.1175/2008MWR2556.1 10.1175/1520-0434(1999)014<0405:ESOTEP>2.0.CO;2 10.1029/97JD03631 10.1175/2008MWR2387.1 10.1175/WAF-D-10-05000.1 10.5194/npg-21-971-2014 10.1016/0169-8095(94)00090-Z 10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2 10.5194/npg-8-357-2001 10.1137/140990036 10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2 10.3402/tellusa.v38i2.11706 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 10.1016/0893-6080(89)90003-8 10.1007/BF00058655 10.1023/A:1010933404324 10.1175/MWR3125.1 10.1002/nme.5624 10.1111/j.1600-0870.2008.00362.x 10.1007/3-540-45014-9_1 10.1007/s10888-011-9188-x 10.1590/S0101-82052004000200002 10.1175/2008WAF2006082.1 10.1175/1520-0493(2002)130<2373:AFMEIE>2.0.CO;2 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 10.1146/annurev.earth.33.092203.122552 10.1175/JHM630.1 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 10.1029/97JD00237 10.1002/qj.94 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 10.5465/AMBPP.2017.16300abstract 10.1186/1471-2105-9-307 10.1007/BF00116251 10.1256/qj.05.224 10.1002/2014JD021696 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
| CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1016/j.jocs.2020.101295 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Business |
| EISSN | 1877-7511 |
| ExternalDocumentID | 10.1016/j.jocs.2020.101295 1774610 10_1016_j_jocs_2020_101295 S1877750320305895 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EP3 FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q38 RIG ROL SDF SES SPC SPCBC SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AALMO ABPIF ABQIS OIOZB OTOTI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c371t-700e0e18ff2e5810f53280fb365d7eb102982d818d58632e069ca1cda3e11b363 |
| IEDL.DBID | UNPAY |
| ISSN | 1877-7503 1877-7511 |
| IngestDate | Sun Oct 26 04:17:02 EDT 2025 Fri May 19 00:39:43 EDT 2023 Wed Oct 01 04:25:08 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Fri Feb 23 02:45:01 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Physical processes Precipitation prediction Machine learning Numerical weather prediction model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c371t-700e0e18ff2e5810f53280fb365d7eb102982d818d58632e069ca1cda3e11b363 |
| Notes | AC02-06CH11357; DDDAS-15RT1037; FA9550-17-1-0205 USDOE Office of Science (SC) US Air Force Office of Scientific Research (AFOSR) |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S1877750320305895 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jocs_2020_101295 osti_scitechconnect_1774610 crossref_citationtrail_10_1016_j_jocs_2020_101295 crossref_primary_10_1016_j_jocs_2020_101295 elsevier_sciencedirect_doi_10_1016_j_jocs_2020_101295 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of computational science |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wang, Seaman (bib0300) 1997; 125 Orrell, Smith, Barkmeijer, Palmer (bib0225) 2001; 8 Kessler (bib0140) 1995; 38 Akella, Navon (bib0005) 2009; 61 Seo, Breidenbach (bib0265) 2002; 3 Trémolet (bib0290) 2007; 133 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0235) 2011; 12 Funahashi (bib0075) 1989; 2 Strobl, Boulesteix, Kneib, Augustin, Zeileis (bib0270) 2008; 9 Quinlan (bib0240) 1986; 1 Lin, Farley, Orville (bib0165) 1983; 22 Gilbert, Richman, Trafalis, Leslie (bib0090) 2010 Grell, Freitas (bib0100) 2013; 13 Moosavi, Rao, Sandu (bib0185) 2019 Cardinali, Žagar, Radnoti, Buizza (bib0030) 2014; 21 Glimm, Hou, Lee, Sharp, Ye (bib0095) 2004; 23 Rao, Sandu (bib0250) 2015; 3 Fulton, Breidenbach, Seo, Miller, O’Bannon (bib0070) 1998; 13 National Oceanic and Atmospheric Administration (NOAA). Zupanski, Zupanski (bib0315) 2006; 134 Chou, Suarez (bib0040) 1999; 10460 Segal (bib0260) 2004 Thompson, Field, Rasmussen, Hall (bib0280) 2008; 136 WRF Model Physics Options and References. Attia, Moosavi, Sandu (bib0015) 2016 Dudhia (bib0055) 1989; 46 Breiman (bib0020) 1996; 24 . Dietterich (bib0050) 2000; 1857 Ceriani, Verme (bib0035) 2012; 10 Breiman (bib0025) 2001; 45 Conley, Garcia, Kinnison, Lamarque, Marsh, Mills, Smith, Tilmes, Vitt, Morrison (bib0045) 2012 Quinlan (bib0245) 2014 Mlawer, Taubman, Brown, Iacono, Clough (bib0175) 1997; 102 Moosavi, Sandu (bib0190) 2017 Géron (bib0085) 2019 Li, Navon (bib0155) 1998; 103 Moosavi, Ştefănescu, Sandu (bib0195) 2018; 113 Tr’emolet (bib0285) 2006; 132 Liaw, Wiener (bib0160) 2002; 2 Hong, Lim (bib0120) 2006; 42 Jankov, Schultz, Anderson, Koch (bib0130) 2007; 8 Krasnopol Sky, Fox-Rabinovitz, Belochitski, Rasch, Blossey, Kogan (bib0145) 2011 Moosavi, Attia, Sandu (bib0180) 2018 Fovell (bib0065) 2010 Le Dimet, Talagrand (bib0150) 1986; 38 Hansen (bib0105) 2002; 130 Hong, Dudhia, Chen (bib0115) 2004; 132 Kain (bib0135) 2004; 43 Tao, Simpson, McCumber (bib0275) 1989; 117 Palmer, Shutts, Hagedorn, Doblas-Reyes, Jung, Leutbecher (bib0230) 2005; 33 Weather Research Forecast Model. Asgari, Bastani (bib0010) 2017 Navon, Zou, Derber, Sela (bib0215) 1992; 120 Knebl Lowrey, Yang (bib0170) 2008; 23 Murphy (bib0205) 2012 Morrison, Thompson, Tatarskii (bib0200) 2009; 137 Wang, Kotamarthi (bib0295) 2014; 119 Nasrollahi, AghaKouchak, Li, Gao, Hsu, Sorooshian (bib0210) 2012; 27 Haykin (bib0110) 2009 Gallus (bib0080) 1999; 14 Rumelhart, Hinton, Williams (bib0255) 1985 Fovell (bib0060) 2006 Janjić (bib0125) 1994; 122 Attia (10.1016/j.jocs.2020.101295_bib0015) 2016 Wang (10.1016/j.jocs.2020.101295_bib0300) 1997; 125 Jankov (10.1016/j.jocs.2020.101295_bib0130) 2007; 8 Seo (10.1016/j.jocs.2020.101295_bib0265) 2002; 3 Hong (10.1016/j.jocs.2020.101295_bib0120) 2006; 42 Li (10.1016/j.jocs.2020.101295_bib0155) 1998; 103 Tr’emolet (10.1016/j.jocs.2020.101295_bib0285) 2006; 132 Dudhia (10.1016/j.jocs.2020.101295_bib0055) 1989; 46 Liaw (10.1016/j.jocs.2020.101295_bib0160) 2002; 2 Hong (10.1016/j.jocs.2020.101295_bib0115) 2004; 132 Breiman (10.1016/j.jocs.2020.101295_bib0025) 2001; 45 Lin (10.1016/j.jocs.2020.101295_bib0165) 1983; 22 Le Dimet (10.1016/j.jocs.2020.101295_bib0150) 1986; 38 Moosavi (10.1016/j.jocs.2020.101295_bib0180) 2018 Palmer (10.1016/j.jocs.2020.101295_bib0230) 2005; 33 10.1016/j.jocs.2020.101295_bib0305 Funahashi (10.1016/j.jocs.2020.101295_bib0075) 1989; 2 Strobl (10.1016/j.jocs.2020.101295_bib0270) 2008; 9 Asgari (10.1016/j.jocs.2020.101295_bib0010) 2017 Moosavi (10.1016/j.jocs.2020.101295_bib0195) 2018; 113 Gilbert (10.1016/j.jocs.2020.101295_bib0090) 2010 Krasnopol Sky (10.1016/j.jocs.2020.101295_bib0145) 2011 10.1016/j.jocs.2020.101295_bib0220 Fulton (10.1016/j.jocs.2020.101295_bib0070) 1998; 13 Kain (10.1016/j.jocs.2020.101295_bib0135) 2004; 43 Kessler (10.1016/j.jocs.2020.101295_bib0140) 1995; 38 Quinlan (10.1016/j.jocs.2020.101295_bib0240) 1986; 1 Haykin (10.1016/j.jocs.2020.101295_bib0110) 2009 Breiman (10.1016/j.jocs.2020.101295_bib0020) 1996; 24 Conley (10.1016/j.jocs.2020.101295_bib0045) 2012 Navon (10.1016/j.jocs.2020.101295_bib0215) 1992; 120 Akella (10.1016/j.jocs.2020.101295_bib0005) 2009; 61 Morrison (10.1016/j.jocs.2020.101295_bib0200) 2009; 137 Fovell (10.1016/j.jocs.2020.101295_bib0065) 2010 Ceriani (10.1016/j.jocs.2020.101295_bib0035) 2012; 10 10.1016/j.jocs.2020.101295_bib0310 Janjić (10.1016/j.jocs.2020.101295_bib0125) 1994; 122 Tao (10.1016/j.jocs.2020.101295_bib0275) 1989; 117 Hansen (10.1016/j.jocs.2020.101295_bib0105) 2002; 130 Rao (10.1016/j.jocs.2020.101295_bib0250) 2015; 3 Wang (10.1016/j.jocs.2020.101295_bib0295) 2014; 119 Segal (10.1016/j.jocs.2020.101295_bib0260) 2004 Thompson (10.1016/j.jocs.2020.101295_bib0280) 2008; 136 Knebl Lowrey (10.1016/j.jocs.2020.101295_bib0170) 2008; 23 Mlawer (10.1016/j.jocs.2020.101295_bib0175) 1997; 102 Trémolet (10.1016/j.jocs.2020.101295_bib0290) 2007; 133 Moosavi (10.1016/j.jocs.2020.101295_bib0185) 2019 Moosavi (10.1016/j.jocs.2020.101295_bib0190) 2017 Dietterich (10.1016/j.jocs.2020.101295_bib0050) 2000; 1857 Cardinali (10.1016/j.jocs.2020.101295_bib0030) 2014; 21 Glimm (10.1016/j.jocs.2020.101295_bib0095) 2004; 23 Pedregosa (10.1016/j.jocs.2020.101295_bib0235) 2011; 12 Rumelhart (10.1016/j.jocs.2020.101295_bib0255) 1985 Orrell (10.1016/j.jocs.2020.101295_bib0225) 2001; 8 Chou (10.1016/j.jocs.2020.101295_bib0040) 1999; 10460 Fovell (10.1016/j.jocs.2020.101295_bib0060) 2006 Murphy (10.1016/j.jocs.2020.101295_bib0205) 2012 Grell (10.1016/j.jocs.2020.101295_bib0100) 2013; 13 Nasrollahi (10.1016/j.jocs.2020.101295_bib0210) 2012; 27 Quinlan (10.1016/j.jocs.2020.101295_bib0245) 2014 Géron (10.1016/j.jocs.2020.101295_bib0085) 2019 Zupanski (10.1016/j.jocs.2020.101295_bib0315) 2006; 134 Gallus (10.1016/j.jocs.2020.101295_bib0080) 1999; 14 |
| References_xml | – volume: 10 start-page: 421 year: 2012 end-page: 443 ident: bib0035 article-title: The origins of the Gini index: extracts from variabilità e mutabilità (1912) by Corrado Gini publication-title: J. Econ. Inequal. – volume: 122 start-page: 927 year: 1994 end-page: 945 ident: bib0125 article-title: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes publication-title: Mon. Weather Rev. – volume: 22 start-page: 1065 year: 1983 end-page: 1092 ident: bib0165 article-title: Bulk parameterization of the snow field in a cloud model publication-title: J. Clim. Appl. Meteorol. – year: 2018 ident: bib0180 article-title: A Machine Learning Approach to Adaptive Covariance Localization – start-page: 126 year: 2019 end-page: 140 ident: bib0185 article-title: A learning-based approach for uncertainty analysis in numerical weather prediction models publication-title: Computational Science – ICCS 2019 – volume: 10460 start-page: 48 year: 1999 ident: bib0040 article-title: A solar radiation parameterization (clirad-sw) for atmospheric studies publication-title: NASA Tech. Memo – volume: 103 start-page: 3801 year: 1998 end-page: 3814 ident: bib0155 article-title: Sensitivity analysis of outgoing radiation at the top of the atmosphere in the ncep/mrf model publication-title: J. Geophys. Res.-Atmos. – volume: 3 start-page: 93 year: 2002 end-page: 111 ident: bib0265 article-title: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements publication-title: J. Hydrometeorol. – volume: 132 start-page: 103 year: 2004 end-page: 120 ident: bib0115 article-title: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation publication-title: Mon. Weather Rev. – volume: 27 start-page: 1003 year: 2012 end-page: 1016 ident: bib0210 article-title: Assessing the impacts of different WRF precipitation physics in hurricane simulations publication-title: Weather Forecast. – start-page: 105 year: 2010 end-page: 112 ident: bib0090 article-title: Machine learning methods for data assimilation publication-title: Comput. Intell. Architect. Complex Eng. Syst. – volume: 2 start-page: 183 year: 1989 end-page: 192 ident: bib0075 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw. – volume: 38 start-page: 97 year: 1986 end-page: 110 ident: bib0150 article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects publication-title: Tellus A: Dyn. Meteorol. Oceanogr. – volume: 119 start-page: 8778 year: 2014 end-page: 8797 ident: bib0295 article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous united states publication-title: J. Geophys. Res.: Atmos. – volume: 137 start-page: 991 year: 2009 end-page: 1007 ident: bib0200 article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes publication-title: Mon. Weather Rev. – volume: 23 start-page: 109 year: 2004 end-page: 120 ident: bib0095 article-title: Sources of uncertainty and error in the simulation of flow in porous media publication-title: Comput. Appl. Math. – volume: 113 start-page: 512 year: 2018 end-page: 533 ident: bib0195 article-title: Multivariate predictions of local reduced-order-model errors and dimensions publication-title: Int. J. Numer. Methods Eng. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0025 article-title: Random forests publication-title: Mach. Learn. – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0240 article-title: Induction of decision trees publication-title: Mach. Learn. – volume: 117 start-page: 231 year: 1989 end-page: 235 ident: bib0275 article-title: An ice-water saturation adjustment publication-title: Mon. Weather Rev. – volume: 102 start-page: 16663 year: 1997 end-page: 16682 ident: bib0175 article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave publication-title: J. Geophys. Res.: Atmos. – volume: 132 start-page: 2483 year: 2006 end-page: 2504 ident: bib0285 article-title: Accounting for an imperfect model in 4D-Var publication-title: Quart. J. R. Meteorol. Soc. – volume: 120 start-page: 1433 year: 1992 end-page: 1446 ident: bib0215 article-title: Variational data assimilation with an adiabatic version of the NMC spectral model publication-title: Mon. Weather Rev. – year: 2016 ident: bib0015 article-title: Cluster Sampling Filters for Non-Gaussian Data Assimilation – volume: 13 start-page: 377 year: 1998 end-page: 395 ident: bib0070 article-title: The wsr-88d rainfall algorithm publication-title: Weather Forecast. – year: 2012 ident: bib0205 article-title: Machine Learning: A Probabilistic Perspective – volume: 136 start-page: 5095 year: 2008 end-page: 5115 ident: bib0280 article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization publication-title: Mon. Weather Rev. – year: 2011 ident: bib0145 article-title: Development of Neural Network Convection Parameterizations for Climate and NWP Models Using Cloud Resolving Model Simulations – volume: 13 year: 2013 ident: bib0100 article-title: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling publication-title: Atmos. Chem. Phys. Discuss. – year: 2010 ident: bib0065 article-title: Influence of cloud-radiative feedback on tropical cyclone motion publication-title: 29th Conference on Hurricanes and Tropical Meteorology – volume: 14 start-page: 405 year: 1999 end-page: 426 ident: bib0080 article-title: Eta simulations of three extreme rainfall events: impact of resolution and choice of convective scheme publication-title: Weather Forecast. – year: 2019 ident: bib0085 article-title: Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems – year: 2017 ident: bib0190 article-title: A state-space approach to analyze structural uncertainty in physical models publication-title: Metrologia – volume: 38 start-page: 109 year: 1995 end-page: 145 ident: bib0140 article-title: On the continuity and distribution of water substance in atmospheric circulations publication-title: Atmos. Res. – volume: 9 start-page: 307 year: 2008 ident: bib0270 article-title: Conditional variable importance for random forests publication-title: BMC Bioinformatics – year: 2014 ident: bib0245 article-title: C4.5: Programs for Machine Learning – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib0020 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 130 start-page: 2373 year: 2002 end-page: 2391 ident: bib0105 article-title: Accounting for model error in ensemble-based state estimation and forecasting publication-title: Mon. Weather Rev. – year: 2017 ident: bib0010 article-title: The utility of Hierarchical Dirichlet Process for relationship detection of latent constructs publication-title: Academy of Management Proceedings – reference: WRF Model Physics Options and References. – year: 1985 ident: bib0255 article-title: Learning Internal Representations by Error Propagation – volume: 33 start-page: 163 year: 2005 end-page: 193 ident: bib0230 article-title: Representing model uncertainty in weather and climate prediction publication-title: Annu. Rev. Earth Planet. Sci – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0235 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 46 start-page: 3077 year: 1989 end-page: 3107 ident: bib0055 article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model publication-title: J. Atmos. Sci. – volume: 43 start-page: 170 year: 2004 end-page: 181 ident: bib0135 article-title: The Kain-Fritsch convective parameterization: an update publication-title: J. Appl. Meteorol. – volume: 133 start-page: 1267 year: 2007 end-page: 1280 ident: bib0290 article-title: Model-error estimation in 4D-Var publication-title: Quart. J. R. Meteorol. Soc. – volume: 134 start-page: 1337 year: 2006 end-page: 1354 ident: bib0315 article-title: Model error estimation employing an ensemble data assimilation approach publication-title: Mon. Weather Rev. – reference: Weather Research Forecast Model. – volume: 21 start-page: 971 year: 2014 end-page: 985 ident: bib0030 article-title: Representing model error in ensemble data assimilation publication-title: Nonlinear Process. Geophys. – year: 2006 ident: bib0060 article-title: Impact of microphysics on hurricane track and intensity forecasts publication-title: Preprints, 7th WRF Users’ Workshop – volume: 8 start-page: 1141 year: 2007 end-page: 1151 ident: bib0130 article-title: The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin publication-title: J. Hydrometeorol. – volume: 61 start-page: 112 year: 2009 end-page: 128 ident: bib0005 article-title: Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes publication-title: Tellus A – volume: 1857 start-page: 1 year: 2000 end-page: 15 ident: bib0050 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Syst. – volume: 125 start-page: 252 year: 1997 end-page: 278 ident: bib0300 article-title: A comparison study of convective parameterization schemes in a mesoscale model publication-title: Mon. Weather Rev. – reference: . – year: 2012 ident: bib0045 article-title: Description of the NCAR Community Atmosphere Model (CAM 5.0) – reference: National Oceanic and Atmospheric Administration (NOAA). – volume: 8 start-page: 357 year: 2001 end-page: 371 ident: bib0225 article-title: Model error in weather forecasting publication-title: Nonlinear Process. Geophys. – volume: 3 start-page: 737 year: 2015 end-page: 761 ident: bib0250 article-title: A posteriori error estimates for the solution of variational inverse problems publication-title: SIAM/ASA J. Uncertainty Quantif. – volume: 23 start-page: 1102 year: 2008 end-page: 1126 ident: bib0170 article-title: Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas publication-title: Weather Forecast. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0160 article-title: Classification and regression by random forest publication-title: R News – volume: 42 start-page: 129 year: 2006 end-page: 151 ident: bib0120 article-title: The WRF single-moment 6-class microphysics scheme (wsm6) publication-title: J. Korean Meteor. Soc. – year: 2004 ident: bib0260 article-title: Machine Learning Benchmarks and Random Forest Regression – year: 2009 ident: bib0110 article-title: Neural Networks and Learning Machines. Number v. 10 in Neural Networks and Learning Machines – volume: 137 start-page: 991 issue: 3 year: 2009 ident: 10.1016/j.jocs.2020.101295_bib0200 article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2556.1 – start-page: 126 year: 2019 ident: 10.1016/j.jocs.2020.101295_bib0185 article-title: A learning-based approach for uncertainty analysis in numerical weather prediction models – volume: 14 start-page: 405 year: 1999 ident: 10.1016/j.jocs.2020.101295_bib0080 article-title: Eta simulations of three extreme rainfall events: impact of resolution and choice of convective scheme publication-title: Weather Forecast. doi: 10.1175/1520-0434(1999)014<0405:ESOTEP>2.0.CO;2 – volume: 103 start-page: 3801 issue: D4 year: 1998 ident: 10.1016/j.jocs.2020.101295_bib0155 article-title: Sensitivity analysis of outgoing radiation at the top of the atmosphere in the ncep/mrf model publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/97JD03631 – volume: 136 start-page: 5095 issue: 12 year: 2008 ident: 10.1016/j.jocs.2020.101295_bib0280 article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2387.1 – volume: 10460 start-page: 48 year: 1999 ident: 10.1016/j.jocs.2020.101295_bib0040 article-title: A solar radiation parameterization (clirad-sw) for atmospheric studies publication-title: NASA Tech. Memo – volume: 27 start-page: 1003 issue: 4 year: 2012 ident: 10.1016/j.jocs.2020.101295_bib0210 article-title: Assessing the impacts of different WRF precipitation physics in hurricane simulations publication-title: Weather Forecast. doi: 10.1175/WAF-D-10-05000.1 – volume: 21 start-page: 971 issue: 5 year: 2014 ident: 10.1016/j.jocs.2020.101295_bib0030 article-title: Representing model error in ensemble data assimilation publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-21-971-2014 – volume: 38 start-page: 109 issue: 1-4 year: 1995 ident: 10.1016/j.jocs.2020.101295_bib0140 article-title: On the continuity and distribution of water substance in atmospheric circulations publication-title: Atmos. Res. doi: 10.1016/0169-8095(94)00090-Z – volume: 120 start-page: 1433 issue: 7 year: 1992 ident: 10.1016/j.jocs.2020.101295_bib0215 article-title: Variational data assimilation with an adiabatic version of the NMC spectral model publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jocs.2020.101295_bib0235 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 357 year: 2001 ident: 10.1016/j.jocs.2020.101295_bib0225 article-title: Model error in weather forecasting publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-8-357-2001 – volume: 3 start-page: 737 issue: 1 year: 2015 ident: 10.1016/j.jocs.2020.101295_bib0250 article-title: A posteriori error estimates for the solution of variational inverse problems publication-title: SIAM/ASA J. Uncertainty Quantif. doi: 10.1137/140990036 – volume: 117 start-page: 231 issue: 1 year: 1989 ident: 10.1016/j.jocs.2020.101295_bib0275 article-title: An ice-water saturation adjustment publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2 – volume: 132 start-page: 103 issue: 1 year: 2004 ident: 10.1016/j.jocs.2020.101295_bib0115 article-title: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2 – volume: 3 start-page: 93 issue: 2 year: 2002 ident: 10.1016/j.jocs.2020.101295_bib0265 article-title: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements publication-title: J. Hydrometeorol. doi: 10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2 – volume: 38 start-page: 97 issue: 2 year: 1986 ident: 10.1016/j.jocs.2020.101295_bib0150 article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects publication-title: Tellus A: Dyn. Meteorol. Oceanogr. doi: 10.3402/tellusa.v38i2.11706 – volume: 13 issue: 9 year: 2013 ident: 10.1016/j.jocs.2020.101295_bib0100 article-title: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling publication-title: Atmos. Chem. Phys. Discuss. – volume: 122 start-page: 927 issue: 5 year: 1994 ident: 10.1016/j.jocs.2020.101295_bib0125 article-title: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 – year: 2010 ident: 10.1016/j.jocs.2020.101295_bib0065 article-title: Influence of cloud-radiative feedback on tropical cyclone motion publication-title: 29th Conference on Hurricanes and Tropical Meteorology – volume: 22 start-page: 1065 issue: 6 year: 1983 ident: 10.1016/j.jocs.2020.101295_bib0165 article-title: Bulk parameterization of the snow field in a cloud model publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 – volume: 42 start-page: 129 issue: 2 year: 2006 ident: 10.1016/j.jocs.2020.101295_bib0120 article-title: The WRF single-moment 6-class microphysics scheme (wsm6) publication-title: J. Korean Meteor. Soc. – year: 2018 ident: 10.1016/j.jocs.2020.101295_bib0180 – volume: 2 start-page: 183 issue: 3 year: 1989 ident: 10.1016/j.jocs.2020.101295_bib0075 article-title: On the approximate realization of continuous mappings by neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90003-8 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.jocs.2020.101295_bib0020 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jocs.2020.101295_bib0025 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 134 start-page: 1337 issue: 5 year: 2006 ident: 10.1016/j.jocs.2020.101295_bib0315 article-title: Model error estimation employing an ensemble data assimilation approach publication-title: Mon. Weather Rev. doi: 10.1175/MWR3125.1 – volume: 113 start-page: 512 issue: 3 year: 2018 ident: 10.1016/j.jocs.2020.101295_bib0195 article-title: Multivariate predictions of local reduced-order-model errors and dimensions publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5624 – volume: 61 start-page: 112 issue: 1 year: 2009 ident: 10.1016/j.jocs.2020.101295_bib0005 article-title: Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes publication-title: Tellus A doi: 10.1111/j.1600-0870.2008.00362.x – year: 2006 ident: 10.1016/j.jocs.2020.101295_bib0060 article-title: Impact of microphysics on hurricane track and intensity forecasts publication-title: Preprints, 7th WRF Users’ Workshop – volume: 1857 start-page: 1 year: 2000 ident: 10.1016/j.jocs.2020.101295_bib0050 article-title: Ensemble methods in machine learning publication-title: Multiple Classifier Syst. doi: 10.1007/3-540-45014-9_1 – year: 2012 ident: 10.1016/j.jocs.2020.101295_bib0205 – volume: 10 start-page: 421 issue: 3 year: 2012 ident: 10.1016/j.jocs.2020.101295_bib0035 article-title: The origins of the Gini index: extracts from variabilità e mutabilità (1912) by Corrado Gini publication-title: J. Econ. Inequal. doi: 10.1007/s10888-011-9188-x – volume: 23 start-page: 109 year: 2004 ident: 10.1016/j.jocs.2020.101295_bib0095 article-title: Sources of uncertainty and error in the simulation of flow in porous media publication-title: Comput. Appl. Math. doi: 10.1590/S0101-82052004000200002 – year: 2009 ident: 10.1016/j.jocs.2020.101295_bib0110 – year: 1985 ident: 10.1016/j.jocs.2020.101295_bib0255 – year: 2019 ident: 10.1016/j.jocs.2020.101295_bib0085 – volume: 23 start-page: 1102 issue: 6 year: 2008 ident: 10.1016/j.jocs.2020.101295_bib0170 article-title: Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas publication-title: Weather Forecast. doi: 10.1175/2008WAF2006082.1 – volume: 130 start-page: 2373 issue: 10 year: 2002 ident: 10.1016/j.jocs.2020.101295_bib0105 article-title: Accounting for model error in ensemble-based state estimation and forecasting publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2002)130<2373:AFMEIE>2.0.CO;2 – volume: 125 start-page: 252 issue: 2 year: 1997 ident: 10.1016/j.jocs.2020.101295_bib0300 article-title: A comparison study of convective parameterization schemes in a mesoscale model publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2 – volume: 43 start-page: 170 issue: 1 year: 2004 ident: 10.1016/j.jocs.2020.101295_bib0135 article-title: The Kain-Fritsch convective parameterization: an update publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 – ident: 10.1016/j.jocs.2020.101295_bib0310 – volume: 33 start-page: 163 year: 2005 ident: 10.1016/j.jocs.2020.101295_bib0230 article-title: Representing model uncertainty in weather and climate prediction publication-title: Annu. Rev. Earth Planet. Sci doi: 10.1146/annurev.earth.33.092203.122552 – volume: 8 start-page: 1141 issue: 5 year: 2007 ident: 10.1016/j.jocs.2020.101295_bib0130 article-title: The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin publication-title: J. Hydrometeorol. doi: 10.1175/JHM630.1 – ident: 10.1016/j.jocs.2020.101295_bib0220 – year: 2014 ident: 10.1016/j.jocs.2020.101295_bib0245 – year: 2004 ident: 10.1016/j.jocs.2020.101295_bib0260 – volume: 13 start-page: 377 issue: 2 year: 1998 ident: 10.1016/j.jocs.2020.101295_bib0070 article-title: The wsr-88d rainfall algorithm publication-title: Weather Forecast. doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2 – year: 2016 ident: 10.1016/j.jocs.2020.101295_bib0015 – year: 2012 ident: 10.1016/j.jocs.2020.101295_bib0045 – year: 2017 ident: 10.1016/j.jocs.2020.101295_bib0190 article-title: A state-space approach to analyze structural uncertainty in physical models publication-title: Metrologia – volume: 102 start-page: 16663 issue: D14 year: 1997 ident: 10.1016/j.jocs.2020.101295_bib0175 article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/97JD00237 – volume: 133 start-page: 1267 issue: 626 year: 2007 ident: 10.1016/j.jocs.2020.101295_bib0290 article-title: Model-error estimation in 4D-Var publication-title: Quart. J. R. Meteorol. Soc. doi: 10.1002/qj.94 – volume: 46 start-page: 3077 issue: 20 year: 1989 ident: 10.1016/j.jocs.2020.101295_bib0055 article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.jocs.2020.101295_bib0160 article-title: Classification and regression by random forest publication-title: R News – year: 2017 ident: 10.1016/j.jocs.2020.101295_bib0010 article-title: The utility of Hierarchical Dirichlet Process for relationship detection of latent constructs publication-title: Academy of Management Proceedings doi: 10.5465/AMBPP.2017.16300abstract – start-page: 105 year: 2010 ident: 10.1016/j.jocs.2020.101295_bib0090 article-title: Machine learning methods for data assimilation publication-title: Comput. Intell. Architect. Complex Eng. Syst. – year: 2011 ident: 10.1016/j.jocs.2020.101295_bib0145 – volume: 9 start-page: 307 issue: 1 year: 2008 ident: 10.1016/j.jocs.2020.101295_bib0270 article-title: Conditional variable importance for random forests publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-307 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.jocs.2020.101295_bib0240 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – volume: 132 start-page: 2483 issue: 621 year: 2006 ident: 10.1016/j.jocs.2020.101295_bib0285 article-title: Accounting for an imperfect model in 4D-Var publication-title: Quart. J. R. Meteorol. Soc. doi: 10.1256/qj.05.224 – ident: 10.1016/j.jocs.2020.101295_bib0305 – volume: 119 start-page: 8778 issue: 14 year: 2014 ident: 10.1016/j.jocs.2020.101295_bib0295 article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous united states publication-title: J. Geophys. Res.: Atmos. doi: 10.1002/2014JD021696 |
| SSID | ssj0000388913 |
| Score | 2.439633 |
| Snippet | •In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the... Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific... |
| SourceID | unpaywall osti crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 101295 |
| SubjectTerms | Machine learning MATHEMATICS AND COMPUTING Numerical weather prediction model Physical processes Precipitation prediction precipitation prediction physical processes |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KDz4O4hPrixw8KLo22ezzKEURQS8q9LZsdrO1sm5ru0W8-NvNJNmiIEW8ZjMQMsnMl82X-QCOc0mFysPSCYIQDygsddJYqFMKDzxBZcAzDx8n390HN0_ebd_vt6DXvIVBWqWN_Sam62htW7p2Nrvj4bD7wLCUnY8C4By18fChueeFqGJw8cnm_1mw2kmsVZKxv4MG9u2MoXm9jDKs2u3qBhdlJn7PT-2R2nKrsDyrxunHe1qW39LQ9TqsWfxILs0QN6Alq01Yaujrm7BhN-uUnNiK0qdbMLjTlElJrEbEgGDyyklaDkaTYf38OiUKuxKV4gxBoP4gb7PU0Ii058iwItXMXO6U5N3ARjKe4C2P_q4Fdabb8HR99di7cazCgpPxkNVOSKmkkkVF4Uo_YrTwuRvRQvDAz0MVxbE-u5urnJ77UcBdSYM4S1mWp1wypnrxHWhXo0ruAvFdkQnJCsqKyCt4LhBaCYWGaayCRhx3gDXzmmS2_DiqYJRJwzN7SdAXCfoiMb7owNncZmyKbyzs7TfuSn4soURlh4V2--hbtMG6uRkSjJQRU8BYYcsOnM9d_odB7P1zEPuw4iJbRrPbDqBdT2byUMGdWhzp9fwFdST7iA priority: 102 providerName: Elsevier |
| Title | Machine learning based algorithms for uncertainty quantification in numerical weather prediction models |
| URI | https://dx.doi.org/10.1016/j.jocs.2020.101295 https://www.osti.gov/servlets/purl/1774610 https://www.sciencedirect.com/science/article/am/pii/S1877750320305895 |
| UnpaywallVersion | publishedVersion |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: .~1 dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: ACRLP dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: AIKHN dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-7511 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388913 issn: 1877-7503 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9trcTHA7ABogwqP_AAgrR2XLvJY4WoCmgVElQaT1HsOKUjS0ubaBoP_O34Ymd8CE0g3iLnTopz57uf5Z_vAJ5khiqbh00g5Rg3KCwN0ljZXQqXI0WN5HqEl5OP53K2GL05ESd7MG3vwiCt0sd-F9ObaO1Hhv5vDtOz4Wa1Gr5nWM1OYA9wju3xxD50pbCYvAPdxfzd5CPutqxIgDI_nhnzt2cc0et0rbFud9gMhNho4s8ZqrO2i-4mXK_LTXpxnhbFT4loehuW7RQc_-TzoK7UQH_9rbrj_8_xDtzyWJVMnOgB7JnyEK61VPlDOPCBYUee-urVz-7C8rihZxri-1EsCSbKjKTFcr1dVZ_OdsTiZGLTqSMjVBfkS506ylLjJWRVkrJ2B0kFOXcQlWy2eKLUvG-a9-zuwWL66sPLWeC7OQSaj1kVjCk11LAoz0MjIkZzwcOI5opLkY1txsBa8GFm8UMmIslDQ2WsU6azlBvGrBS_D51yXZoHQESotDIspyyPRjnPFMI4ZZE3jW2AiuMesNaCifalzrHjRpG0nLbTBK2eoNUTZ_UePL_U2bhCH1dKi9Yxkl9MmdhMdKXeEXoR6mCNXo1kJqvELAi3OLYHLy6d6y8-4uG_iR_BjRAJOQ2B7hF0qm1tHltEVak-7A--sT50J6_fzuZ9v3i-A1aeH_M |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RrVToARXaiuXR-sChVZuuH3EeR4RA25blAkjcojhxtovS7LKbFeLS347HdlZUqhDq1fFIlsee-Rx_ng_gsNRUmTysgyiK8YDC8iBPlTmliChUVEeiCPFx8ug8Gl6FP67l9Rocd29hkFbpY7-L6TZa-5aBn83BbDIZXDAsZSdRAFygNp58AS9DyWM8gX37w1Y_WrDcSWplktEgQAv_eMbxvG6mBZbt5raBo87EvxNUb2r23GtYXzaz_P4ur-tHeej0DWx6AEmO3Bi3YE032_Cq469vw5bfrQvyyZeU_vwWxiPLmdTEi0SMCWavkuT1eDqftL9-L4gBr8TkOMcQaO_J7TJ3PCLrOjJpSLN0tzs1uXO4kczmeM1jv1tFncU7uDo9uTweBl5iIShEzNogplRTzZKq4lomjFZS8IRWSkSyjE0YxwLtvDRJvZRJJLimUVrkrChzoRkzvcR76DXTRu8AkVwVSrOKsioJK1EqxFbKwGGamqiRpn1g3bxmha8_jjIYddYRzW4y9EWGvsicL_rwZWUzc9U3nuwtO3dlf62hzKSHJ-320Ldog4VzC2QYGSNmkLEBl334unL5Mwax-5-D-Ajrw8vRWXb2_fznHmxwpM5Yqts-9Nr5Uh8Y7NOqD3ZtPwAps_6r |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NToLxMNhgottAfuABBFntuHaTx2laNSFtQoJK4ymyHafryNLSJprGXz9f7IwfQhOIt8i5k-Lc-e6z_PkO4HVuqXZ52EZSjnCDwlSkUu12KVwONbWSmyFeTj49kyeT4Ydzcb4G4-4uDNIqQ-z3Mb2N1mFkEP7mQF0NFrPZ4BPDanYCe4BzbI8nHsC6FA6T92B9cvbx8AvutpxIhDI_nhkLt2c80etybrBud9wOxNho4s8Zqjd3i-4xPGqqhbq5VmX5UyIaP4FpNwXPP_l60NT6wHz_rbrj_8_xKWwGrEoOvegWrNlqGx52VPlt2AqBYUXehOrVb5_B9LSlZ1oS-lFMCSbKnKhyOl_O6ourFXE4mbh06skI9Q351ihPWWq9hMwqUjX-IKkk1x6iksUST5Ta923zntVzmIyPPx-dRKGbQ2T4iNXRiFJLLUuKIrYiYbQQPE5oobkU-chlDKwFH-cOP-QikTy2VKZGMZMrbhlzUnwHetW8si-AiFgbbVlBWZEMC55rhHHaIW-augCVpn1gnQUzE0qdY8eNMus4bZcZWj1Dq2fe6n14d6ez8IU-7pUWnWNkv5gyc5noXr099CLUwRq9BslMTok5EO5wbB_e3znXX3zE7r-J78FGjISclkC3D7162diXDlHV-lVYLreugR1n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+algorithms+for+uncertainty+quantification+in+numerical+weather+prediction+models&rft.jtitle=Journal+of+computational+science&rft.au=Moosavi%2C+Azam&rft.au=Rao%2C+Vishwas&rft.au=Sandu%2C+Adrian&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=50&rft_id=info:doi/10.1016%2Fj.jocs.2020.101295&rft.externalDocID=1774610 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon |