Machine learning based algorithms for uncertainty quantification in numerical weather prediction models

•In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a r...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational science Vol. 50; p. 101295
Main Authors Moosavi, Azam, Rao, Vishwas, Sandu, Adrian
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.03.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1877-7503
1877-7511
1877-7511
DOI10.1016/j.jocs.2020.101295

Cover

Abstract •In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a realistic weather research and forecast model in operational settings. Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.
AbstractList Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.
•In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the machine learning algorithms to estimate and predict the model errors associated with forecasting precipitation.•This has been tested with a realistic weather research and forecast model in operational settings. Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.
ArticleNumber 101295
Author Rao, Vishwas
Moosavi, Azam
Sandu, Adrian
Author_xml – sequence: 1
  givenname: Azam
  surname: Moosavi
  fullname: Moosavi, Azam
  email: azmosavi@vt.edu
  organization: Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
– sequence: 2
  givenname: Vishwas
  surname: Rao
  fullname: Rao, Vishwas
  email: vhebbur@anl.gov
  organization: Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
– sequence: 3
  givenname: Adrian
  surname: Sandu
  fullname: Sandu, Adrian
  email: asandu7@vt.edu
  organization: Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
BackLink https://www.osti.gov/servlets/purl/1774610$$D View this record in Osti.gov
BookMark eNqNkU9PAyEQxYnRRK1-AU_EeysD7i5NvJjGf4nGi54JhdkuzRYqUE2_vbtd48FDI5dhhvcmLz9OyaEPHgm5ADYBBuXVcrIMJk0447sBnxYH5ARkVY2rAuDw987EMTlPacm6I6ScgjghixdtGueRtqijd35B5zqhpbpdhOhys0q0DpFuvMGYtfN5Sz822mdXO6OzC546T_1mhbHrW_qFOjcY6TqidWb3vgoW23RGjmrdJjz_qSPyfn_3NnscP78-PM1un8dGVJDHFWPIEGRdcywksLoQXLJ6LsrCVjgHxqeSWwnSFrIUHFk5NRqM1QIBOpUYETHs3fi13n7ptlXr6FY6bhUw1eNSS9XjUj0uNeDqXJeDK6TsVDIuo2lM8B5NVlBV1yWwTiQHkYkhpYi16nQ7Bjlq1-7fz_9Y_xXqZjB1-PDTYeyDYfcR1sU-lw1un_0b6UOl5w
CitedBy_id crossref_primary_10_3390_atmos13020180
crossref_primary_10_3390_electronics11050743
crossref_primary_10_1016_j_ijepes_2021_107304
crossref_primary_10_1016_j_hydroa_2023_100148
crossref_primary_10_3390_electronics13050939
crossref_primary_10_5194_hess_27_1583_2023
crossref_primary_10_1016_j_jhydrol_2022_129012
crossref_primary_10_1016_j_apenergy_2022_118777
crossref_primary_10_1175_WAF_D_21_0054_1
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_1016_j_compscitech_2024_111030
crossref_primary_10_1016_j_scitotenv_2024_176410
crossref_primary_10_1016_j_jnnfm_2023_105154
crossref_primary_10_2166_wpt_2024_079
crossref_primary_10_1016_j_atmosres_2024_107522
crossref_primary_10_1109_MGRS_2024_3493972
crossref_primary_10_3389_fenvs_2023_1194918
crossref_primary_10_1371_journal_pone_0310446
crossref_primary_10_1038_s41598_024_76894_w
crossref_primary_10_35193_bseufbd_1037563
crossref_primary_10_1016_j_heliyon_2023_e15355
crossref_primary_10_1016_j_engappai_2024_108182
crossref_primary_10_3390_su16166782
Cites_doi 10.1175/2008MWR2556.1
10.1175/1520-0434(1999)014<0405:ESOTEP>2.0.CO;2
10.1029/97JD03631
10.1175/2008MWR2387.1
10.1175/WAF-D-10-05000.1
10.5194/npg-21-971-2014
10.1016/0169-8095(94)00090-Z
10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2
10.5194/npg-8-357-2001
10.1137/140990036
10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2
10.3402/tellusa.v38i2.11706
10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
10.1016/0893-6080(89)90003-8
10.1007/BF00058655
10.1023/A:1010933404324
10.1175/MWR3125.1
10.1002/nme.5624
10.1111/j.1600-0870.2008.00362.x
10.1007/3-540-45014-9_1
10.1007/s10888-011-9188-x
10.1590/S0101-82052004000200002
10.1175/2008WAF2006082.1
10.1175/1520-0493(2002)130<2373:AFMEIE>2.0.CO;2
10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
10.1146/annurev.earth.33.092203.122552
10.1175/JHM630.1
10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
10.1029/97JD00237
10.1002/qj.94
10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
10.5465/AMBPP.2017.16300abstract
10.1186/1471-2105-9-307
10.1007/BF00116251
10.1256/qj.05.224
10.1002/2014JD021696
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.jocs.2020.101295
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
EISSN 1877-7511
ExternalDocumentID 10.1016/j.jocs.2020.101295
1774610
10_1016_j_jocs_2020_101295
S1877750320305895
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AALMO
ABPIF
ABQIS
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c371t-700e0e18ff2e5810f53280fb365d7eb102982d818d58632e069ca1cda3e11b363
IEDL.DBID UNPAY
ISSN 1877-7503
1877-7511
IngestDate Sun Oct 26 04:17:02 EDT 2025
Fri May 19 00:39:43 EDT 2023
Wed Oct 01 04:25:08 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Fri Feb 23 02:45:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physical processes
Precipitation prediction
Machine learning
Numerical weather prediction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-700e0e18ff2e5810f53280fb365d7eb102982d818d58632e069ca1cda3e11b363
Notes AC02-06CH11357; DDDAS-15RT1037; FA9550-17-1-0205
USDOE Office of Science (SC)
US Air Force Office of Scientific Research (AFOSR)
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S1877750320305895
ParticipantIDs unpaywall_primary_10_1016_j_jocs_2020_101295
osti_scitechconnect_1774610
crossref_citationtrail_10_1016_j_jocs_2020_101295
crossref_primary_10_1016_j_jocs_2020_101295
elsevier_sciencedirect_doi_10_1016_j_jocs_2020_101295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational science
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Seaman (bib0300) 1997; 125
Orrell, Smith, Barkmeijer, Palmer (bib0225) 2001; 8
Kessler (bib0140) 1995; 38
Akella, Navon (bib0005) 2009; 61
Seo, Breidenbach (bib0265) 2002; 3
Trémolet (bib0290) 2007; 133
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0235) 2011; 12
Funahashi (bib0075) 1989; 2
Strobl, Boulesteix, Kneib, Augustin, Zeileis (bib0270) 2008; 9
Quinlan (bib0240) 1986; 1
Lin, Farley, Orville (bib0165) 1983; 22
Gilbert, Richman, Trafalis, Leslie (bib0090) 2010
Grell, Freitas (bib0100) 2013; 13
Moosavi, Rao, Sandu (bib0185) 2019
Cardinali, Žagar, Radnoti, Buizza (bib0030) 2014; 21
Glimm, Hou, Lee, Sharp, Ye (bib0095) 2004; 23
Rao, Sandu (bib0250) 2015; 3
Fulton, Breidenbach, Seo, Miller, O’Bannon (bib0070) 1998; 13
National Oceanic and Atmospheric Administration (NOAA).
Zupanski, Zupanski (bib0315) 2006; 134
Chou, Suarez (bib0040) 1999; 10460
Segal (bib0260) 2004
Thompson, Field, Rasmussen, Hall (bib0280) 2008; 136
WRF Model Physics Options and References.
Attia, Moosavi, Sandu (bib0015) 2016
Dudhia (bib0055) 1989; 46
Breiman (bib0020) 1996; 24
.
Dietterich (bib0050) 2000; 1857
Ceriani, Verme (bib0035) 2012; 10
Breiman (bib0025) 2001; 45
Conley, Garcia, Kinnison, Lamarque, Marsh, Mills, Smith, Tilmes, Vitt, Morrison (bib0045) 2012
Quinlan (bib0245) 2014
Mlawer, Taubman, Brown, Iacono, Clough (bib0175) 1997; 102
Moosavi, Sandu (bib0190) 2017
Géron (bib0085) 2019
Li, Navon (bib0155) 1998; 103
Moosavi, Ştefănescu, Sandu (bib0195) 2018; 113
Tr’emolet (bib0285) 2006; 132
Liaw, Wiener (bib0160) 2002; 2
Hong, Lim (bib0120) 2006; 42
Jankov, Schultz, Anderson, Koch (bib0130) 2007; 8
Krasnopol Sky, Fox-Rabinovitz, Belochitski, Rasch, Blossey, Kogan (bib0145) 2011
Moosavi, Attia, Sandu (bib0180) 2018
Fovell (bib0065) 2010
Le Dimet, Talagrand (bib0150) 1986; 38
Hansen (bib0105) 2002; 130
Hong, Dudhia, Chen (bib0115) 2004; 132
Kain (bib0135) 2004; 43
Tao, Simpson, McCumber (bib0275) 1989; 117
Palmer, Shutts, Hagedorn, Doblas-Reyes, Jung, Leutbecher (bib0230) 2005; 33
Weather Research Forecast Model.
Asgari, Bastani (bib0010) 2017
Navon, Zou, Derber, Sela (bib0215) 1992; 120
Knebl Lowrey, Yang (bib0170) 2008; 23
Murphy (bib0205) 2012
Morrison, Thompson, Tatarskii (bib0200) 2009; 137
Wang, Kotamarthi (bib0295) 2014; 119
Nasrollahi, AghaKouchak, Li, Gao, Hsu, Sorooshian (bib0210) 2012; 27
Haykin (bib0110) 2009
Gallus (bib0080) 1999; 14
Rumelhart, Hinton, Williams (bib0255) 1985
Fovell (bib0060) 2006
Janjić (bib0125) 1994; 122
Attia (10.1016/j.jocs.2020.101295_bib0015) 2016
Wang (10.1016/j.jocs.2020.101295_bib0300) 1997; 125
Jankov (10.1016/j.jocs.2020.101295_bib0130) 2007; 8
Seo (10.1016/j.jocs.2020.101295_bib0265) 2002; 3
Hong (10.1016/j.jocs.2020.101295_bib0120) 2006; 42
Li (10.1016/j.jocs.2020.101295_bib0155) 1998; 103
Tr’emolet (10.1016/j.jocs.2020.101295_bib0285) 2006; 132
Dudhia (10.1016/j.jocs.2020.101295_bib0055) 1989; 46
Liaw (10.1016/j.jocs.2020.101295_bib0160) 2002; 2
Hong (10.1016/j.jocs.2020.101295_bib0115) 2004; 132
Breiman (10.1016/j.jocs.2020.101295_bib0025) 2001; 45
Lin (10.1016/j.jocs.2020.101295_bib0165) 1983; 22
Le Dimet (10.1016/j.jocs.2020.101295_bib0150) 1986; 38
Moosavi (10.1016/j.jocs.2020.101295_bib0180) 2018
Palmer (10.1016/j.jocs.2020.101295_bib0230) 2005; 33
10.1016/j.jocs.2020.101295_bib0305
Funahashi (10.1016/j.jocs.2020.101295_bib0075) 1989; 2
Strobl (10.1016/j.jocs.2020.101295_bib0270) 2008; 9
Asgari (10.1016/j.jocs.2020.101295_bib0010) 2017
Moosavi (10.1016/j.jocs.2020.101295_bib0195) 2018; 113
Gilbert (10.1016/j.jocs.2020.101295_bib0090) 2010
Krasnopol Sky (10.1016/j.jocs.2020.101295_bib0145) 2011
10.1016/j.jocs.2020.101295_bib0220
Fulton (10.1016/j.jocs.2020.101295_bib0070) 1998; 13
Kain (10.1016/j.jocs.2020.101295_bib0135) 2004; 43
Kessler (10.1016/j.jocs.2020.101295_bib0140) 1995; 38
Quinlan (10.1016/j.jocs.2020.101295_bib0240) 1986; 1
Haykin (10.1016/j.jocs.2020.101295_bib0110) 2009
Breiman (10.1016/j.jocs.2020.101295_bib0020) 1996; 24
Conley (10.1016/j.jocs.2020.101295_bib0045) 2012
Navon (10.1016/j.jocs.2020.101295_bib0215) 1992; 120
Akella (10.1016/j.jocs.2020.101295_bib0005) 2009; 61
Morrison (10.1016/j.jocs.2020.101295_bib0200) 2009; 137
Fovell (10.1016/j.jocs.2020.101295_bib0065) 2010
Ceriani (10.1016/j.jocs.2020.101295_bib0035) 2012; 10
10.1016/j.jocs.2020.101295_bib0310
Janjić (10.1016/j.jocs.2020.101295_bib0125) 1994; 122
Tao (10.1016/j.jocs.2020.101295_bib0275) 1989; 117
Hansen (10.1016/j.jocs.2020.101295_bib0105) 2002; 130
Rao (10.1016/j.jocs.2020.101295_bib0250) 2015; 3
Wang (10.1016/j.jocs.2020.101295_bib0295) 2014; 119
Segal (10.1016/j.jocs.2020.101295_bib0260) 2004
Thompson (10.1016/j.jocs.2020.101295_bib0280) 2008; 136
Knebl Lowrey (10.1016/j.jocs.2020.101295_bib0170) 2008; 23
Mlawer (10.1016/j.jocs.2020.101295_bib0175) 1997; 102
Trémolet (10.1016/j.jocs.2020.101295_bib0290) 2007; 133
Moosavi (10.1016/j.jocs.2020.101295_bib0185) 2019
Moosavi (10.1016/j.jocs.2020.101295_bib0190) 2017
Dietterich (10.1016/j.jocs.2020.101295_bib0050) 2000; 1857
Cardinali (10.1016/j.jocs.2020.101295_bib0030) 2014; 21
Glimm (10.1016/j.jocs.2020.101295_bib0095) 2004; 23
Pedregosa (10.1016/j.jocs.2020.101295_bib0235) 2011; 12
Rumelhart (10.1016/j.jocs.2020.101295_bib0255) 1985
Orrell (10.1016/j.jocs.2020.101295_bib0225) 2001; 8
Chou (10.1016/j.jocs.2020.101295_bib0040) 1999; 10460
Fovell (10.1016/j.jocs.2020.101295_bib0060) 2006
Murphy (10.1016/j.jocs.2020.101295_bib0205) 2012
Grell (10.1016/j.jocs.2020.101295_bib0100) 2013; 13
Nasrollahi (10.1016/j.jocs.2020.101295_bib0210) 2012; 27
Quinlan (10.1016/j.jocs.2020.101295_bib0245) 2014
Géron (10.1016/j.jocs.2020.101295_bib0085) 2019
Zupanski (10.1016/j.jocs.2020.101295_bib0315) 2006; 134
Gallus (10.1016/j.jocs.2020.101295_bib0080) 1999; 14
References_xml – volume: 10
  start-page: 421
  year: 2012
  end-page: 443
  ident: bib0035
  article-title: The origins of the Gini index: extracts from variabilità e mutabilità (1912) by Corrado Gini
  publication-title: J. Econ. Inequal.
– volume: 122
  start-page: 927
  year: 1994
  end-page: 945
  ident: bib0125
  article-title: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes
  publication-title: Mon. Weather Rev.
– volume: 22
  start-page: 1065
  year: 1983
  end-page: 1092
  ident: bib0165
  article-title: Bulk parameterization of the snow field in a cloud model
  publication-title: J. Clim. Appl. Meteorol.
– year: 2018
  ident: bib0180
  article-title: A Machine Learning Approach to Adaptive Covariance Localization
– start-page: 126
  year: 2019
  end-page: 140
  ident: bib0185
  article-title: A learning-based approach for uncertainty analysis in numerical weather prediction models
  publication-title: Computational Science – ICCS 2019
– volume: 10460
  start-page: 48
  year: 1999
  ident: bib0040
  article-title: A solar radiation parameterization (clirad-sw) for atmospheric studies
  publication-title: NASA Tech. Memo
– volume: 103
  start-page: 3801
  year: 1998
  end-page: 3814
  ident: bib0155
  article-title: Sensitivity analysis of outgoing radiation at the top of the atmosphere in the ncep/mrf model
  publication-title: J. Geophys. Res.-Atmos.
– volume: 3
  start-page: 93
  year: 2002
  end-page: 111
  ident: bib0265
  article-title: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements
  publication-title: J. Hydrometeorol.
– volume: 132
  start-page: 103
  year: 2004
  end-page: 120
  ident: bib0115
  article-title: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation
  publication-title: Mon. Weather Rev.
– volume: 27
  start-page: 1003
  year: 2012
  end-page: 1016
  ident: bib0210
  article-title: Assessing the impacts of different WRF precipitation physics in hurricane simulations
  publication-title: Weather Forecast.
– start-page: 105
  year: 2010
  end-page: 112
  ident: bib0090
  article-title: Machine learning methods for data assimilation
  publication-title: Comput. Intell. Architect. Complex Eng. Syst.
– volume: 2
  start-page: 183
  year: 1989
  end-page: 192
  ident: bib0075
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
– volume: 38
  start-page: 97
  year: 1986
  end-page: 110
  ident: bib0150
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects
  publication-title: Tellus A: Dyn. Meteorol. Oceanogr.
– volume: 119
  start-page: 8778
  year: 2014
  end-page: 8797
  ident: bib0295
  article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous united states
  publication-title: J. Geophys. Res.: Atmos.
– volume: 137
  start-page: 991
  year: 2009
  end-page: 1007
  ident: bib0200
  article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes
  publication-title: Mon. Weather Rev.
– volume: 23
  start-page: 109
  year: 2004
  end-page: 120
  ident: bib0095
  article-title: Sources of uncertainty and error in the simulation of flow in porous media
  publication-title: Comput. Appl. Math.
– volume: 113
  start-page: 512
  year: 2018
  end-page: 533
  ident: bib0195
  article-title: Multivariate predictions of local reduced-order-model errors and dimensions
  publication-title: Int. J. Numer. Methods Eng.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0025
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0240
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 117
  start-page: 231
  year: 1989
  end-page: 235
  ident: bib0275
  article-title: An ice-water saturation adjustment
  publication-title: Mon. Weather Rev.
– volume: 102
  start-page: 16663
  year: 1997
  end-page: 16682
  ident: bib0175
  article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
  publication-title: J. Geophys. Res.: Atmos.
– volume: 132
  start-page: 2483
  year: 2006
  end-page: 2504
  ident: bib0285
  article-title: Accounting for an imperfect model in 4D-Var
  publication-title: Quart. J. R. Meteorol. Soc.
– volume: 120
  start-page: 1433
  year: 1992
  end-page: 1446
  ident: bib0215
  article-title: Variational data assimilation with an adiabatic version of the NMC spectral model
  publication-title: Mon. Weather Rev.
– year: 2016
  ident: bib0015
  article-title: Cluster Sampling Filters for Non-Gaussian Data Assimilation
– volume: 13
  start-page: 377
  year: 1998
  end-page: 395
  ident: bib0070
  article-title: The wsr-88d rainfall algorithm
  publication-title: Weather Forecast.
– year: 2012
  ident: bib0205
  article-title: Machine Learning: A Probabilistic Perspective
– volume: 136
  start-page: 5095
  year: 2008
  end-page: 5115
  ident: bib0280
  article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization
  publication-title: Mon. Weather Rev.
– year: 2011
  ident: bib0145
  article-title: Development of Neural Network Convection Parameterizations for Climate and NWP Models Using Cloud Resolving Model Simulations
– volume: 13
  year: 2013
  ident: bib0100
  article-title: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling
  publication-title: Atmos. Chem. Phys. Discuss.
– year: 2010
  ident: bib0065
  article-title: Influence of cloud-radiative feedback on tropical cyclone motion
  publication-title: 29th Conference on Hurricanes and Tropical Meteorology
– volume: 14
  start-page: 405
  year: 1999
  end-page: 426
  ident: bib0080
  article-title: Eta simulations of three extreme rainfall events: impact of resolution and choice of convective scheme
  publication-title: Weather Forecast.
– year: 2019
  ident: bib0085
  article-title: Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
– year: 2017
  ident: bib0190
  article-title: A state-space approach to analyze structural uncertainty in physical models
  publication-title: Metrologia
– volume: 38
  start-page: 109
  year: 1995
  end-page: 145
  ident: bib0140
  article-title: On the continuity and distribution of water substance in atmospheric circulations
  publication-title: Atmos. Res.
– volume: 9
  start-page: 307
  year: 2008
  ident: bib0270
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinformatics
– year: 2014
  ident: bib0245
  article-title: C4.5: Programs for Machine Learning
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib0020
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 130
  start-page: 2373
  year: 2002
  end-page: 2391
  ident: bib0105
  article-title: Accounting for model error in ensemble-based state estimation and forecasting
  publication-title: Mon. Weather Rev.
– year: 2017
  ident: bib0010
  article-title: The utility of Hierarchical Dirichlet Process for relationship detection of latent constructs
  publication-title: Academy of Management Proceedings
– reference: WRF Model Physics Options and References.
– year: 1985
  ident: bib0255
  article-title: Learning Internal Representations by Error Propagation
– volume: 33
  start-page: 163
  year: 2005
  end-page: 193
  ident: bib0230
  article-title: Representing model uncertainty in weather and climate prediction
  publication-title: Annu. Rev. Earth Planet. Sci
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0235
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 3077
  year: 1989
  end-page: 3107
  ident: bib0055
  article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model
  publication-title: J. Atmos. Sci.
– volume: 43
  start-page: 170
  year: 2004
  end-page: 181
  ident: bib0135
  article-title: The Kain-Fritsch convective parameterization: an update
  publication-title: J. Appl. Meteorol.
– volume: 133
  start-page: 1267
  year: 2007
  end-page: 1280
  ident: bib0290
  article-title: Model-error estimation in 4D-Var
  publication-title: Quart. J. R. Meteorol. Soc.
– volume: 134
  start-page: 1337
  year: 2006
  end-page: 1354
  ident: bib0315
  article-title: Model error estimation employing an ensemble data assimilation approach
  publication-title: Mon. Weather Rev.
– reference: Weather Research Forecast Model.
– volume: 21
  start-page: 971
  year: 2014
  end-page: 985
  ident: bib0030
  article-title: Representing model error in ensemble data assimilation
  publication-title: Nonlinear Process. Geophys.
– year: 2006
  ident: bib0060
  article-title: Impact of microphysics on hurricane track and intensity forecasts
  publication-title: Preprints, 7th WRF Users’ Workshop
– volume: 8
  start-page: 1141
  year: 2007
  end-page: 1151
  ident: bib0130
  article-title: The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin
  publication-title: J. Hydrometeorol.
– volume: 61
  start-page: 112
  year: 2009
  end-page: 128
  ident: bib0005
  article-title: Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes
  publication-title: Tellus A
– volume: 1857
  start-page: 1
  year: 2000
  end-page: 15
  ident: bib0050
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Syst.
– volume: 125
  start-page: 252
  year: 1997
  end-page: 278
  ident: bib0300
  article-title: A comparison study of convective parameterization schemes in a mesoscale model
  publication-title: Mon. Weather Rev.
– reference: .
– year: 2012
  ident: bib0045
  article-title: Description of the NCAR Community Atmosphere Model (CAM 5.0)
– reference: National Oceanic and Atmospheric Administration (NOAA).
– volume: 8
  start-page: 357
  year: 2001
  end-page: 371
  ident: bib0225
  article-title: Model error in weather forecasting
  publication-title: Nonlinear Process. Geophys.
– volume: 3
  start-page: 737
  year: 2015
  end-page: 761
  ident: bib0250
  article-title: A posteriori error estimates for the solution of variational inverse problems
  publication-title: SIAM/ASA J. Uncertainty Quantif.
– volume: 23
  start-page: 1102
  year: 2008
  end-page: 1126
  ident: bib0170
  article-title: Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas
  publication-title: Weather Forecast.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0160
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 42
  start-page: 129
  year: 2006
  end-page: 151
  ident: bib0120
  article-title: The WRF single-moment 6-class microphysics scheme (wsm6)
  publication-title: J. Korean Meteor. Soc.
– year: 2004
  ident: bib0260
  article-title: Machine Learning Benchmarks and Random Forest Regression
– year: 2009
  ident: bib0110
  article-title: Neural Networks and Learning Machines. Number v. 10 in Neural Networks and Learning Machines
– volume: 137
  start-page: 991
  issue: 3
  year: 2009
  ident: 10.1016/j.jocs.2020.101295_bib0200
  article-title: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2008MWR2556.1
– start-page: 126
  year: 2019
  ident: 10.1016/j.jocs.2020.101295_bib0185
  article-title: A learning-based approach for uncertainty analysis in numerical weather prediction models
– volume: 14
  start-page: 405
  year: 1999
  ident: 10.1016/j.jocs.2020.101295_bib0080
  article-title: Eta simulations of three extreme rainfall events: impact of resolution and choice of convective scheme
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1999)014<0405:ESOTEP>2.0.CO;2
– volume: 103
  start-page: 3801
  issue: D4
  year: 1998
  ident: 10.1016/j.jocs.2020.101295_bib0155
  article-title: Sensitivity analysis of outgoing radiation at the top of the atmosphere in the ncep/mrf model
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/97JD03631
– volume: 136
  start-page: 5095
  issue: 12
  year: 2008
  ident: 10.1016/j.jocs.2020.101295_bib0280
  article-title: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2008MWR2387.1
– volume: 10460
  start-page: 48
  year: 1999
  ident: 10.1016/j.jocs.2020.101295_bib0040
  article-title: A solar radiation parameterization (clirad-sw) for atmospheric studies
  publication-title: NASA Tech. Memo
– volume: 27
  start-page: 1003
  issue: 4
  year: 2012
  ident: 10.1016/j.jocs.2020.101295_bib0210
  article-title: Assessing the impacts of different WRF precipitation physics in hurricane simulations
  publication-title: Weather Forecast.
  doi: 10.1175/WAF-D-10-05000.1
– volume: 21
  start-page: 971
  issue: 5
  year: 2014
  ident: 10.1016/j.jocs.2020.101295_bib0030
  article-title: Representing model error in ensemble data assimilation
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-21-971-2014
– volume: 38
  start-page: 109
  issue: 1-4
  year: 1995
  ident: 10.1016/j.jocs.2020.101295_bib0140
  article-title: On the continuity and distribution of water substance in atmospheric circulations
  publication-title: Atmos. Res.
  doi: 10.1016/0169-8095(94)00090-Z
– volume: 120
  start-page: 1433
  issue: 7
  year: 1992
  ident: 10.1016/j.jocs.2020.101295_bib0215
  article-title: Variational data assimilation with an adiabatic version of the NMC spectral model
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jocs.2020.101295_bib0235
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 357
  year: 2001
  ident: 10.1016/j.jocs.2020.101295_bib0225
  article-title: Model error in weather forecasting
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-8-357-2001
– volume: 3
  start-page: 737
  issue: 1
  year: 2015
  ident: 10.1016/j.jocs.2020.101295_bib0250
  article-title: A posteriori error estimates for the solution of variational inverse problems
  publication-title: SIAM/ASA J. Uncertainty Quantif.
  doi: 10.1137/140990036
– volume: 117
  start-page: 231
  issue: 1
  year: 1989
  ident: 10.1016/j.jocs.2020.101295_bib0275
  article-title: An ice-water saturation adjustment
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
– volume: 132
  start-page: 103
  issue: 1
  year: 2004
  ident: 10.1016/j.jocs.2020.101295_bib0115
  article-title: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
– volume: 3
  start-page: 93
  issue: 2
  year: 2002
  ident: 10.1016/j.jocs.2020.101295_bib0265
  article-title: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements
  publication-title: J. Hydrometeorol.
  doi: 10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2
– volume: 38
  start-page: 97
  issue: 2
  year: 1986
  ident: 10.1016/j.jocs.2020.101295_bib0150
  article-title: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects
  publication-title: Tellus A: Dyn. Meteorol. Oceanogr.
  doi: 10.3402/tellusa.v38i2.11706
– volume: 13
  issue: 9
  year: 2013
  ident: 10.1016/j.jocs.2020.101295_bib0100
  article-title: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 122
  start-page: 927
  issue: 5
  year: 1994
  ident: 10.1016/j.jocs.2020.101295_bib0125
  article-title: The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
– year: 2010
  ident: 10.1016/j.jocs.2020.101295_bib0065
  article-title: Influence of cloud-radiative feedback on tropical cyclone motion
  publication-title: 29th Conference on Hurricanes and Tropical Meteorology
– volume: 22
  start-page: 1065
  issue: 6
  year: 1983
  ident: 10.1016/j.jocs.2020.101295_bib0165
  article-title: Bulk parameterization of the snow field in a cloud model
  publication-title: J. Clim. Appl. Meteorol.
  doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
– volume: 42
  start-page: 129
  issue: 2
  year: 2006
  ident: 10.1016/j.jocs.2020.101295_bib0120
  article-title: The WRF single-moment 6-class microphysics scheme (wsm6)
  publication-title: J. Korean Meteor. Soc.
– year: 2018
  ident: 10.1016/j.jocs.2020.101295_bib0180
– volume: 2
  start-page: 183
  issue: 3
  year: 1989
  ident: 10.1016/j.jocs.2020.101295_bib0075
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90003-8
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.jocs.2020.101295_bib0020
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jocs.2020.101295_bib0025
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 134
  start-page: 1337
  issue: 5
  year: 2006
  ident: 10.1016/j.jocs.2020.101295_bib0315
  article-title: Model error estimation employing an ensemble data assimilation approach
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR3125.1
– volume: 113
  start-page: 512
  issue: 3
  year: 2018
  ident: 10.1016/j.jocs.2020.101295_bib0195
  article-title: Multivariate predictions of local reduced-order-model errors and dimensions
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5624
– volume: 61
  start-page: 112
  issue: 1
  year: 2009
  ident: 10.1016/j.jocs.2020.101295_bib0005
  article-title: Different approaches to model error formulation in 4D-Var: a study with high-resolution advection schemes
  publication-title: Tellus A
  doi: 10.1111/j.1600-0870.2008.00362.x
– year: 2006
  ident: 10.1016/j.jocs.2020.101295_bib0060
  article-title: Impact of microphysics on hurricane track and intensity forecasts
  publication-title: Preprints, 7th WRF Users’ Workshop
– volume: 1857
  start-page: 1
  year: 2000
  ident: 10.1016/j.jocs.2020.101295_bib0050
  article-title: Ensemble methods in machine learning
  publication-title: Multiple Classifier Syst.
  doi: 10.1007/3-540-45014-9_1
– year: 2012
  ident: 10.1016/j.jocs.2020.101295_bib0205
– volume: 10
  start-page: 421
  issue: 3
  year: 2012
  ident: 10.1016/j.jocs.2020.101295_bib0035
  article-title: The origins of the Gini index: extracts from variabilità e mutabilità (1912) by Corrado Gini
  publication-title: J. Econ. Inequal.
  doi: 10.1007/s10888-011-9188-x
– volume: 23
  start-page: 109
  year: 2004
  ident: 10.1016/j.jocs.2020.101295_bib0095
  article-title: Sources of uncertainty and error in the simulation of flow in porous media
  publication-title: Comput. Appl. Math.
  doi: 10.1590/S0101-82052004000200002
– year: 2009
  ident: 10.1016/j.jocs.2020.101295_bib0110
– year: 1985
  ident: 10.1016/j.jocs.2020.101295_bib0255
– year: 2019
  ident: 10.1016/j.jocs.2020.101295_bib0085
– volume: 23
  start-page: 1102
  issue: 6
  year: 2008
  ident: 10.1016/j.jocs.2020.101295_bib0170
  article-title: Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas
  publication-title: Weather Forecast.
  doi: 10.1175/2008WAF2006082.1
– volume: 130
  start-page: 2373
  issue: 10
  year: 2002
  ident: 10.1016/j.jocs.2020.101295_bib0105
  article-title: Accounting for model error in ensemble-based state estimation and forecasting
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2002)130<2373:AFMEIE>2.0.CO;2
– volume: 125
  start-page: 252
  issue: 2
  year: 1997
  ident: 10.1016/j.jocs.2020.101295_bib0300
  article-title: A comparison study of convective parameterization schemes in a mesoscale model
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
– volume: 43
  start-page: 170
  issue: 1
  year: 2004
  ident: 10.1016/j.jocs.2020.101295_bib0135
  article-title: The Kain-Fritsch convective parameterization: an update
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
– ident: 10.1016/j.jocs.2020.101295_bib0310
– volume: 33
  start-page: 163
  year: 2005
  ident: 10.1016/j.jocs.2020.101295_bib0230
  article-title: Representing model uncertainty in weather and climate prediction
  publication-title: Annu. Rev. Earth Planet. Sci
  doi: 10.1146/annurev.earth.33.092203.122552
– volume: 8
  start-page: 1141
  issue: 5
  year: 2007
  ident: 10.1016/j.jocs.2020.101295_bib0130
  article-title: The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM630.1
– ident: 10.1016/j.jocs.2020.101295_bib0220
– year: 2014
  ident: 10.1016/j.jocs.2020.101295_bib0245
– year: 2004
  ident: 10.1016/j.jocs.2020.101295_bib0260
– volume: 13
  start-page: 377
  issue: 2
  year: 1998
  ident: 10.1016/j.jocs.2020.101295_bib0070
  article-title: The wsr-88d rainfall algorithm
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
– year: 2016
  ident: 10.1016/j.jocs.2020.101295_bib0015
– year: 2012
  ident: 10.1016/j.jocs.2020.101295_bib0045
– year: 2017
  ident: 10.1016/j.jocs.2020.101295_bib0190
  article-title: A state-space approach to analyze structural uncertainty in physical models
  publication-title: Metrologia
– volume: 102
  start-page: 16663
  issue: D14
  year: 1997
  ident: 10.1016/j.jocs.2020.101295_bib0175
  article-title: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/97JD00237
– volume: 133
  start-page: 1267
  issue: 626
  year: 2007
  ident: 10.1016/j.jocs.2020.101295_bib0290
  article-title: Model-error estimation in 4D-Var
  publication-title: Quart. J. R. Meteorol. Soc.
  doi: 10.1002/qj.94
– volume: 46
  start-page: 3077
  issue: 20
  year: 1989
  ident: 10.1016/j.jocs.2020.101295_bib0055
  article-title: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.jocs.2020.101295_bib0160
  article-title: Classification and regression by random forest
  publication-title: R News
– year: 2017
  ident: 10.1016/j.jocs.2020.101295_bib0010
  article-title: The utility of Hierarchical Dirichlet Process for relationship detection of latent constructs
  publication-title: Academy of Management Proceedings
  doi: 10.5465/AMBPP.2017.16300abstract
– start-page: 105
  year: 2010
  ident: 10.1016/j.jocs.2020.101295_bib0090
  article-title: Machine learning methods for data assimilation
  publication-title: Comput. Intell. Architect. Complex Eng. Syst.
– year: 2011
  ident: 10.1016/j.jocs.2020.101295_bib0145
– volume: 9
  start-page: 307
  issue: 1
  year: 2008
  ident: 10.1016/j.jocs.2020.101295_bib0270
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-307
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.jocs.2020.101295_bib0240
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– volume: 132
  start-page: 2483
  issue: 621
  year: 2006
  ident: 10.1016/j.jocs.2020.101295_bib0285
  article-title: Accounting for an imperfect model in 4D-Var
  publication-title: Quart. J. R. Meteorol. Soc.
  doi: 10.1256/qj.05.224
– ident: 10.1016/j.jocs.2020.101295_bib0305
– volume: 119
  start-page: 8778
  issue: 14
  year: 2014
  ident: 10.1016/j.jocs.2020.101295_bib0295
  article-title: Downscaling with a nested regional climate model in near-surface fields over the contiguous united states
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1002/2014JD021696
SSID ssj0000388913
Score 2.439633
Snippet •In this work, we have deployed machine learning strategies to quantify the uncertainties in numerical weather prediction.•Specifically, we have leveraged the...
Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific...
SourceID unpaywall
osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101295
SubjectTerms Machine learning
MATHEMATICS AND COMPUTING
Numerical weather prediction model
Physical processes
Precipitation prediction
precipitation prediction physical processes
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KDz4O4hPrixw8KLo22ezzKEURQS8q9LZsdrO1sm5ru0W8-NvNJNmiIEW8ZjMQMsnMl82X-QCOc0mFysPSCYIQDygsddJYqFMKDzxBZcAzDx8n390HN0_ebd_vt6DXvIVBWqWN_Sam62htW7p2Nrvj4bD7wLCUnY8C4By18fChueeFqGJw8cnm_1mw2kmsVZKxv4MG9u2MoXm9jDKs2u3qBhdlJn7PT-2R2nKrsDyrxunHe1qW39LQ9TqsWfxILs0QN6Alq01Yaujrm7BhN-uUnNiK0qdbMLjTlElJrEbEgGDyyklaDkaTYf38OiUKuxKV4gxBoP4gb7PU0Ii058iwItXMXO6U5N3ARjKe4C2P_q4Fdabb8HR99di7cazCgpPxkNVOSKmkkkVF4Uo_YrTwuRvRQvDAz0MVxbE-u5urnJ77UcBdSYM4S1mWp1wypnrxHWhXo0ruAvFdkQnJCsqKyCt4LhBaCYWGaayCRhx3gDXzmmS2_DiqYJRJwzN7SdAXCfoiMb7owNncZmyKbyzs7TfuSn4soURlh4V2--hbtMG6uRkSjJQRU8BYYcsOnM9d_odB7P1zEPuw4iJbRrPbDqBdT2byUMGdWhzp9fwFdST7iA
  priority: 102
  providerName: Elsevier
Title Machine learning based algorithms for uncertainty quantification in numerical weather prediction models
URI https://dx.doi.org/10.1016/j.jocs.2020.101295
https://www.osti.gov/servlets/purl/1774610
https://www.sciencedirect.com/science/article/am/pii/S1877750320305895
UnpaywallVersion publishedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: .~1
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: ACRLP
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AIKHN
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-7511
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388913
  issn: 1877-7503
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9trcTHA7ABogwqP_AAgrR2XLvJY4WoCmgVElQaT1HsOKUjS0ubaBoP_O34Ymd8CE0g3iLnTopz57uf5Z_vAJ5khiqbh00g5Rg3KCwN0ljZXQqXI0WN5HqEl5OP53K2GL05ESd7MG3vwiCt0sd-F9ObaO1Hhv5vDtOz4Wa1Gr5nWM1OYA9wju3xxD50pbCYvAPdxfzd5CPutqxIgDI_nhnzt2cc0et0rbFud9gMhNho4s8ZqrO2i-4mXK_LTXpxnhbFT4loehuW7RQc_-TzoK7UQH_9rbrj_8_xDtzyWJVMnOgB7JnyEK61VPlDOPCBYUee-urVz-7C8rihZxri-1EsCSbKjKTFcr1dVZ_OdsTiZGLTqSMjVBfkS506ylLjJWRVkrJ2B0kFOXcQlWy2eKLUvG-a9-zuwWL66sPLWeC7OQSaj1kVjCk11LAoz0MjIkZzwcOI5opLkY1txsBa8GFm8UMmIslDQ2WsU6azlBvGrBS_D51yXZoHQESotDIspyyPRjnPFMI4ZZE3jW2AiuMesNaCifalzrHjRpG0nLbTBK2eoNUTZ_UePL_U2bhCH1dKi9Yxkl9MmdhMdKXeEXoR6mCNXo1kJqvELAi3OLYHLy6d6y8-4uG_iR_BjRAJOQ2B7hF0qm1tHltEVak-7A--sT50J6_fzuZ9v3i-A1aeH_M
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RrVToARXaiuXR-sChVZuuH3EeR4RA25blAkjcojhxtovS7LKbFeLS347HdlZUqhDq1fFIlsee-Rx_ng_gsNRUmTysgyiK8YDC8iBPlTmliChUVEeiCPFx8ug8Gl6FP67l9Rocd29hkFbpY7-L6TZa-5aBn83BbDIZXDAsZSdRAFygNp58AS9DyWM8gX37w1Y_WrDcSWplktEgQAv_eMbxvG6mBZbt5raBo87EvxNUb2r23GtYXzaz_P4ur-tHeej0DWx6AEmO3Bi3YE032_Cq469vw5bfrQvyyZeU_vwWxiPLmdTEi0SMCWavkuT1eDqftL9-L4gBr8TkOMcQaO_J7TJ3PCLrOjJpSLN0tzs1uXO4kczmeM1jv1tFncU7uDo9uTweBl5iIShEzNogplRTzZKq4lomjFZS8IRWSkSyjE0YxwLtvDRJvZRJJLimUVrkrChzoRkzvcR76DXTRu8AkVwVSrOKsioJK1EqxFbKwGGamqiRpn1g3bxmha8_jjIYddYRzW4y9EWGvsicL_rwZWUzc9U3nuwtO3dlf62hzKSHJ-320Ldog4VzC2QYGSNmkLEBl334unL5Mwax-5-D-Ajrw8vRWXb2_fznHmxwpM5Yqts-9Nr5Uh8Y7NOqD3ZtPwAps_6r
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NToLxMNhgottAfuABBFntuHaTx2laNSFtQoJK4ymyHafryNLSJprGXz9f7IwfQhOIt8i5k-Lc-e6z_PkO4HVuqXZ52EZSjnCDwlSkUu12KVwONbWSmyFeTj49kyeT4Ydzcb4G4-4uDNIqQ-z3Mb2N1mFkEP7mQF0NFrPZ4BPDanYCe4BzbI8nHsC6FA6T92B9cvbx8AvutpxIhDI_nhkLt2c80etybrBud9wOxNho4s8Zqjd3i-4xPGqqhbq5VmX5UyIaP4FpNwXPP_l60NT6wHz_rbrj_8_xKWwGrEoOvegWrNlqGx52VPlt2AqBYUXehOrVb5_B9LSlZ1oS-lFMCSbKnKhyOl_O6ourFXE4mbh06skI9Q351ihPWWq9hMwqUjX-IKkk1x6iksUST5Ta923zntVzmIyPPx-dRKGbQ2T4iNXRiFJLLUuKIrYiYbQQPE5oobkU-chlDKwFH-cOP-QikTy2VKZGMZMrbhlzUnwHetW8si-AiFgbbVlBWZEMC55rhHHaIW-augCVpn1gnQUzE0qdY8eNMus4bZcZWj1Dq2fe6n14d6ez8IU-7pUWnWNkv5gyc5noXr099CLUwRq9BslMTok5EO5wbB_e3znXX3zE7r-J78FGjISclkC3D7162diXDlHV-lVYLreugR1n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+algorithms+for+uncertainty+quantification+in+numerical+weather+prediction+models&rft.jtitle=Journal+of+computational+science&rft.au=Moosavi%2C+Azam&rft.au=Rao%2C+Vishwas&rft.au=Sandu%2C+Adrian&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=1877-7503&rft.eissn=1877-7511&rft.volume=50&rft_id=info:doi/10.1016%2Fj.jocs.2020.101295&rft.externalDocID=1774610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon