Learning density functionals from noisy quantum data
The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum d...
Saved in:
Published in | Machine learning: science and technology Vol. 6; no. 2; pp. 25020 - 25034 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
30.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2632-2153 2632-2153 |
DOI | 10.1088/2632-2153/adcb89 |
Cover
Abstract | The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum devices to generate training data for classical machine learning (ML) models. In this study, we explore the use of noisy data generated by quantum algorithms in training an ML model to learn a density functional for the Fermi–Hubbard model. We benchmark various ML models against exact solutions, demonstrating that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms. The learning procedure can effectively filter out unbiased sampling noise, resulting in a trained model that outperforms any individual training data point. Conversely, when trained on data with expressibility and optimization error typical of the variational quantum eigensolver, the model replicates the biases present in the training data. The trained models can be applied to solving new problem instances in a Kohn–Sham-like density optimization scheme, benefiting from automatic differentiability and achieving reasonably accurate solutions on most problem instances. Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations, highlighting both the potential benefits and the challenges that need to be addressed for successful integration of quantum computing and ML techniques. |
---|---|
AbstractList | The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum devices to generate training data for classical machine learning (ML) models. In this study, we explore the use of noisy data generated by quantum algorithms in training an ML model to learn a density functional for the Fermi–Hubbard model. We benchmark various ML models against exact solutions, demonstrating that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms. The learning procedure can effectively filter out unbiased sampling noise, resulting in a trained model that outperforms any individual training data point. Conversely, when trained on data with expressibility and optimization error typical of the variational quantum eigensolver, the model replicates the biases present in the training data. The trained models can be applied to solving new problem instances in a Kohn–Sham-like density optimization scheme, benefiting from automatic differentiability and achieving reasonably accurate solutions on most problem instances. Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations, highlighting both the potential benefits and the challenges that need to be addressed for successful integration of quantum computing and ML techniques. |
Author | van Nieuwenburg, Evert Prehn, Eric Koridon, Emiel Tura, Jordi Polla, Stefano Frohnert, Felix |
Author_xml | – sequence: 1 givenname: Emiel orcidid: 0000-0002-7712-7638 surname: Koridon fullname: Koridon, Emiel organization: Vrije Universiteit Theoretical chemistry, Amsterdam, The Netherlands – sequence: 2 givenname: Felix orcidid: 0000-0003-3717-6352 surname: Frohnert fullname: Frohnert, Felix organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands – sequence: 3 givenname: Eric orcidid: 0009-0001-6219-3704 surname: Prehn fullname: Prehn, Eric organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands – sequence: 4 givenname: Evert orcidid: 0000-0003-0323-0031 surname: van Nieuwenburg fullname: van Nieuwenburg, Evert organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands – sequence: 5 givenname: Jordi orcidid: 0000-0002-6123-1422 surname: Tura fullname: Tura, Jordi organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands – sequence: 6 givenname: Stefano orcidid: 0000-0003-3909-0448 surname: Polla fullname: Polla, Stefano organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands |
BookMark | eNp1UD1PwzAQtVCRKKU7YyRWQs92HCcjqqBUqsQCs-X4o3LV2q2dDP33JAQVFqY7vXsfuneLJj54g9A9hicMVbUgJSU5wYwupFZNVV-h6QWa_Nlv0DylHQAQhikjMEXFxsjond9m2vjk2nNmO69aF7zcp8zGcMh8cOmcnTrp2-6QadnKO3Rt-7OZ_8wZ-nx9-Vi-5Zv31Xr5vMkV5bjNS6vBclPXFdPQaCuBEF6qglOKuaJgAeMCE0w45Uwaq6wuiWbQsEI2RBE6Q-vRVwe5E8foDjKeRZBOfAMhboWMrVN7I8A0umGgjGVNwZmuNbd9MNaGal5y03s9jF7HGE6dSa3YhS4OXwqKa1pyTOqqZ8HIUjGkFI29pGIQQ9Vi6FIMXYqx6l7yOEpcOP56_kv_AuAQgFU |
CODEN | MLSTCK |
Cites_doi | 10.1103/PhysRev.140.A1133 10.3389/fnbot.2013.00021 10.1103/PhysRevA.92.042303 10.1038/s41467-024-45014-7 10.1007/BF01331938 10.1103/PhysRevA.92.062318 10.1073/pnas.1619152114 10.1080/00031305.1992.10475879 10.1080/00268976.2011.552441 10.1103/PhysRevB.102.235122 10.1103/PhysRevA.108.012403 10.1103/PhysRevX.8.011044 10.1021/cr200107z 10.1103/PhysRevB.99.075132 10.1023/A:1010933404324 10.22331/q-2018-08-06-79 10.1038/s42254-021-00348-9 10.1002/qua.25040 10.1103/RevModPhys.92.015003 10.1021/acs.chemrev.5b00584 10.1103/PhysRevX.5.041041 10.1038/s41467-024-49877-8 10.1103/PhysRevLett.108.253002 10.1088/1367-2630/ac2cb3 10.1103/PhysRevA.107.032407 10.1002/qua.24259 10.1103/PhysRev.136.B864 10.1038/ncomms5213 10.1103/PhysRevResearch.2.043238 10.3390/a12020034 10.1145/358669.358692 10.1103/PhysRevA.100.022512 10.1021/acscentsci.8b00551 10.1103/PhysRevLett.69.2863 10.1038/s41567-020-0932-7 10.1063/5.0181037 10.1126/science.abj6511 10.1038/s41467-017-00839-3 10.1038/s41467-022-33335-4 10.1038/s42254-023-00572-5 10.1109/TKDE.2009.191 10.1021/acs.chemrev.9b00829 10.1021/acs.jctc.3c00274 10.1038/s42254-022-00470-2 10.1103/RevModPhys.95.045005 10.1038/nphys1370 10.1126/science.abk3333 10.1002/qua.21198 10.1038/s41467-021-22539-9 10.1038/s42004-022-00701-8 10.1038/s41592-019-0686-2 10.1103/PhysRevB.108.125113 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd – notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1088/2632-2153/adcb89 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2632-2153 |
ExternalDocumentID | oai_doaj_org_article_0ebdb50cef5b475d9d7f9981de3d767e 10_1088_2632_2153_adcb89 mlstadcb89 |
GrantInformation_xml | – fundername: European Research Council grantid: 01040729 funderid: http://dx.doi.org/10.13039/501100000781 – fundername: Shell Global Solutions International funderid: http://dx.doi.org/10.13039/100016773 – fundername: Netherlands organization for scientific research (NWO) grantid: NWA.1292.19.194 – fundername: Quantum Delta NL |
GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PHGZT PIMPY TSCCA AAYXX AEINN CITATION PHGZM PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c371t-6fd0f7e9985d0bdfa02276c473317c30f011412127375aefcfd62d50b54ab2c23 |
IEDL.DBID | DOA |
ISSN | 2632-2153 |
IngestDate | Wed Aug 27 01:27:57 EDT 2025 Wed Aug 13 04:45:28 EDT 2025 Wed Oct 01 08:25:26 EDT 2025 Tue Apr 29 23:33:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c371t-6fd0f7e9985d0bdfa02276c473317c30f011412127375aefcfd62d50b54ab2c23 |
Notes | MLST-103188.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7712-7638 0000-0003-3717-6352 0000-0003-3909-0448 0000-0003-0323-0031 0009-0001-6219-3704 0000-0002-6123-1422 |
OpenAccessLink | https://doaj.org/article/0ebdb50cef5b475d9d7f9981de3d767e |
PQID | 3193671298 |
PQPubID | 4916454 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1088_2632_2153_adcb89 doaj_primary_oai_doaj_org_article_0ebdb50cef5b475d9d7f9981de3d767e proquest_journals_3193671298 iop_journals_10_1088_2632_2153_adcb89 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-30 |
PublicationDateYYYYMMDD | 2025-06-30 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Machine learning: science and technology |
PublicationTitleAbbrev | MLST |
PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Fischler (mlstadcb89bib56) 1981; 24 Cerezo (mlstadcb89bib6) 2021; 3 Schuch (mlstadcb89bib13) 2009; 5 Sheridan (mlstadcb89bib24) 2024 Farhi (mlstadcb89bib46) 2014 Virtanen (mlstadcb89bib64) 2020; 17 Ioffe (mlstadcb89bib49) 2015 Breiman (mlstadcb89bib59) 2001; 45 McArdle (mlstadcb89bib4) 2020; 92 Ruth (mlstadcb89bib22) 2023; 19 Pernal (mlstadcb89bib71) 2016 Grisafi (mlstadcb89bib18) 2019; 5 Dawid (mlstadcb89bib28) 2023 Farhi (mlstadcb89bib44) 2000 LeBlanc (mlstadcb89bib32) 2015; 5 Tilly (mlstadcb89bib38) 2022; vol 986 Lewis (mlstadcb89bib27) 2024; 15 Liao (mlstadcb89bib31) 2023 Preskill (mlstadcb89bib1) 2018; 2 Hohenberg (mlstadcb89bib11) 1964; 136 Li (mlstadcb89bib16) 2016; 116 Abadi (mlstadcb89bib52) 2016 Christensen (mlstadcb89bib21) 2016; 116 Casares (mlstadcb89bib17) 2024; 160 Baker (mlstadcb89bib23) 2020; 2 Dang (mlstadcb89bib55) 2008; 2 Ryczko (mlstadcb89bib19) 2019; 100 Zhuang (mlstadcb89bib68) 2020 Brockherde (mlstadcb89bib72) 2017; 8 Whitfield (mlstadcb89bib36) 2011; 109 Natekin (mlstadcb89bib60) 2013; 7 Kohn (mlstadcb89bib12) 1965; 140 Chollet (mlstadcb89bib53) 2015 Polla (mlstadcb89bib34) 2025 Burke (mlstadcb89bib10) 2013; 113 Cade (mlstadcb89bib42) 2020; 102 Cantzler (mlstadcb89bib57) 1981 Kohavi (mlstadcb89bib50) 1995; vol 2 Anselmetti (mlstadcb89bib40) 2021; 23 Bonet-Monroig (mlstadcb89bib48) 2023; 107 Jerbi (mlstadcb89bib30) 2024; 15 Babbush (mlstadcb89bib37) 2018; 8 Huang (mlstadcb89bib26) 2022; 377 Nelson (mlstadcb89bib33) 2019; 99 Cohen (mlstadcb89bib14) 2012; 112 Drucker (mlstadcb89bib61) 1996 Kingma (mlstadcb89bib51) 2017 Pederson (mlstadcb89bib70) 2022; 4 Polla (mlstadcb89bib8) 2023; 108 Sugisaki (mlstadcb89bib45) 2022; 5 Altman (mlstadcb89bib62) 1992; 46 Wecker (mlstadcb89bib7) 2015; 92 Kirkpatrick (mlstadcb89bib20) 2021; 374 Chen (mlstadcb89bib63) 2016 Stanisic (mlstadcb89bib43) 2022; 13 Snyder (mlstadcb89bib15) 2012; 108 Bauer (mlstadcb89bib3) 2020; 120 Cai (mlstadcb89bib9) 2023; 95 Huang (mlstadcb89bib25) 2021; 12 Costa (mlstadcb89bib69) 2023; 108 Huang (mlstadcb89bib29) 2020; 16 Peruzzo (mlstadcb89bib5) 2014; 5 Wecker (mlstadcb89bib41) 2015; 92 White (mlstadcb89bib65) 1992; 69 Freund (mlstadcb89bib58) 1999 Jordan (mlstadcb89bib35) 1928; 47 Reiher (mlstadcb89bib2) 2017; 114 Taube (mlstadcb89bib39) 2006; 106 Verstraete (mlstadcb89bib66) 2023; 5 Pan (mlstadcb89bib67) 2010; 22 Owen (mlstadcb89bib54) 2007; vol 443 Hadfield (mlstadcb89bib47) 2019; 12 |
References_xml | – year: 2020 ident: mlstadcb89bib68 article-title: A comprehensive survey on transfer learning – volume: 140 start-page: A1133 year: 1965 ident: mlstadcb89bib12 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – year: 2015 ident: mlstadcb89bib49 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – start-page: pp 785 year: 2016 ident: mlstadcb89bib63 article-title: XGBoost: a scalable tree boosting system – volume: 7 year: 2013 ident: mlstadcb89bib60 article-title: Gradient boosting machines, a tutorial publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2013.00021 – volume: 92 year: 2015 ident: mlstadcb89bib7 article-title: Progress towards practical quantum variational algorithms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.042303 – year: 2014 ident: mlstadcb89bib46 article-title: A quantum approximate optimization algorithm – volume: 15 start-page: 895 year: 2024 ident: mlstadcb89bib27 article-title: Improved machine learning algorithm for predicting ground state properties publication-title: Nat. Commun. doi: 10.1038/s41467-024-45014-7 – volume: 47 start-page: 631 year: 1928 ident: mlstadcb89bib35 article-title: Über das Paulische Äquivalenzverbot publication-title: Z. Phys. doi: 10.1007/BF01331938 – volume: 92 year: 2015 ident: mlstadcb89bib41 article-title: Solving strongly correlated electron models on a quantum computer publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.062318 – volume: 114 start-page: 7555 year: 2017 ident: mlstadcb89bib2 article-title: Elucidating reaction mechanisms on quantum computers publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1619152114 – volume: 46 start-page: 175 year: 1992 ident: mlstadcb89bib62 article-title: An introduction to Kernel and Nearest-neighbor nonparametric regression publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 2 start-page: 1 year: 2008 ident: mlstadcb89bib55 article-title: Theil-sen estimators in a multiple linear regression model publication-title: Olemiss Edu – volume: 109 start-page: 735 year: 2011 ident: mlstadcb89bib36 article-title: Simulation of electronic structure hamiltonians using quantum computers publication-title: Mol. Phys. doi: 10.1080/00268976.2011.552441 – volume: 102 year: 2020 ident: mlstadcb89bib42 article-title: Strategies for solving the Fermi-Hubbard model on near-term quantum computers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.235122 – volume: 108 year: 2023 ident: mlstadcb89bib8 article-title: Optimizing the information extracted by a single qubit measurement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.108.012403 – volume: 8 year: 2018 ident: mlstadcb89bib37 article-title: Low-Depth Quantum Simulation of Materials publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.8.011044 – volume: 112 start-page: 289 year: 2012 ident: mlstadcb89bib14 article-title: Challenges for density functional theory publication-title: Chem. Rev. doi: 10.1021/cr200107z – volume: 99 year: 2019 ident: mlstadcb89bib33 article-title: Machine learning density functional theory for the Hubbard model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.075132 – year: 2015 ident: mlstadcb89bib53 article-title: Keras – start-page: pp 155 year: 1996 ident: mlstadcb89bib61 article-title: Support vector regression machines – volume: 45 start-page: 5 year: 2001 ident: mlstadcb89bib59 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 2 start-page: 79 year: 2018 ident: mlstadcb89bib1 article-title: Quantum computing in the NISQ era and beyond publication-title: Quantum doi: 10.22331/q-2018-08-06-79 – year: 1999 ident: mlstadcb89bib58 article-title: A short introduction to boosting publication-title: J. Jpn. Soc. Artif. Intell. – year: 2024 ident: mlstadcb89bib24 article-title: Enhancing density functional theory using the variational quantum eigensolver – year: 2000 ident: mlstadcb89bib44 article-title: Quantum computation by adiabatic evolution – volume: 3 start-page: 625 year: 2021 ident: mlstadcb89bib6 article-title: Variational quantum algorithms publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00348-9 – volume: 116 start-page: 819 year: 2016 ident: mlstadcb89bib16 article-title: Understanding machine-learned density functionals publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.25040 – volume: 92 year: 2020 ident: mlstadcb89bib4 article-title: Quantum computational chemistry publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.015003 – volume: 116 start-page: 5301 year: 2016 ident: mlstadcb89bib21 article-title: Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00584 – volume: 5 year: 2015 ident: mlstadcb89bib32 article-title: Solutions of the two-dimensional hubbard model: benchmarks and results from a wide range of numerical algorithms publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.041041 – volume: 15 start-page: 5676 year: 2024 ident: mlstadcb89bib30 article-title: Shadows of quantum machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-024-49877-8 – volume: 108 year: 2012 ident: mlstadcb89bib15 article-title: Finding density functionals with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.253002 – volume: 23 year: 2021 ident: mlstadcb89bib40 article-title: Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems publication-title: New J. Phys. doi: 10.1088/1367-2630/ac2cb3 – volume: 107 year: 2023 ident: mlstadcb89bib48 article-title: Performance comparison of optimization methods on variational quantum algorithms publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.107.032407 – volume: 113 start-page: 96 year: 2013 ident: mlstadcb89bib10 article-title: DFT in a nutshell publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24259 – year: 2023 ident: mlstadcb89bib31 article-title: Machine learning for practical quantum error mitigation – volume: vol 2 start-page: pp 1137 year: 1995 ident: mlstadcb89bib50 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 136 start-page: B864 year: 1964 ident: mlstadcb89bib11 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – year: 2016 ident: mlstadcb89bib52 article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems – volume: 5 start-page: 4213 year: 2014 ident: mlstadcb89bib5 article-title: A variational eigenvalue solver on a photonic quantum processor publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – volume: 2 year: 2020 ident: mlstadcb89bib23 article-title: Density functionals and Kohn-Sham potentials with minimal wavefunction preparations on a quantum computer publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043238 – volume: vol 986 start-page: 1 year: 2022 ident: mlstadcb89bib38 article-title: The variational quantum eigensolver: a review of methods and best practices – volume: 12 start-page: 34 year: 2019 ident: mlstadcb89bib47 article-title: From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz publication-title: Algorithms doi: 10.3390/a12020034 – volume: vol 443 start-page: pp 59 year: 2007 ident: mlstadcb89bib54 article-title: A robust hybrid of lasso and ridge regression – year: 2025 ident: mlstadcb89bib34 article-title: DFTQML – machine-learning hubbard density functionals from noisy quantum-generated data – volume: 24 start-page: 381 year: 1981 ident: mlstadcb89bib56 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – start-page: pp 125 year: 2016 ident: mlstadcb89bib71 article-title: Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD- RDMFT) – year: 2017 ident: mlstadcb89bib51 article-title: Adam: a method for stochastic optimization – volume: 100 year: 2019 ident: mlstadcb89bib19 article-title: Deep learning and density-functional theory publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.022512 – volume: 5 start-page: 57 year: 2019 ident: mlstadcb89bib18 article-title: Transferable machine-learning model of the electron density publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00551 – volume: 69 start-page: 2863 year: 1992 ident: mlstadcb89bib65 article-title: Density matrix formulation for quantum renormalization groups publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2863 – volume: 16 start-page: 1050 year: 2020 ident: mlstadcb89bib29 article-title: Predicting many properties of a quantum system from very few measurements publication-title: Nat. Phys. doi: 10.1038/s41567-020-0932-7 – volume: 160 year: 2024 ident: mlstadcb89bib17 article-title: GradDFT. A software library for machine learning enhanced density functional theory publication-title: J. Chem. Phys. doi: 10.1063/5.0181037 – volume: 374 start-page: 1385 year: 2021 ident: mlstadcb89bib20 article-title: Pushing the frontiers of density functionals by solving the fractional electron problem publication-title: Science doi: 10.1126/science.abj6511 – volume: 8 start-page: 872 year: 2017 ident: mlstadcb89bib72 article-title: Bypassing the Kohn-Sham equations with machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-017-00839-3 – volume: 13 start-page: 5743 year: 2022 ident: mlstadcb89bib43 article-title: Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer publication-title: Nat. Commun. doi: 10.1038/s41467-022-33335-4 – volume: 5 start-page: 273 year: 2023 ident: mlstadcb89bib66 article-title: Density matrix renormalization group, 30 years on publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-023-00572-5 – volume: 22 start-page: 1345 year: 2010 ident: mlstadcb89bib67 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 120 year: 2020 ident: mlstadcb89bib3 article-title: Quantum algorithms for quantum chemistry and quantum materials science publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00829 – volume: 19 start-page: 4912 year: 2023 ident: mlstadcb89bib22 article-title: Machine learning for bridging the gap between density functional theory and coupled cluster energies publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00274 – volume: 4 start-page: 357 year: 2022 ident: mlstadcb89bib70 article-title: Machine learning and density functional theory publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00470-2 – volume: 95 year: 2023 ident: mlstadcb89bib9 article-title: Quantum error mitigation publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.95.045005 – year: 2023 ident: mlstadcb89bib28 article-title: Modern applications of machine learning in quantum sciences – volume: 5 start-page: 732 year: 2009 ident: mlstadcb89bib13 article-title: Computational complexity of interacting electrons and fundamental limitations of density functional theory publication-title: Nat. Phys. doi: 10.1038/nphys1370 – volume: 377 start-page: eabk3333 year: 2022 ident: mlstadcb89bib26 article-title: Provably efficient machine learning for quantum many-body problems publication-title: Science doi: 10.1126/science.abk3333 – volume: 106 start-page: 3393 year: 2006 ident: mlstadcb89bib39 article-title: New perspectives on unitary coupled-cluster theory publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.21198 – volume: 12 start-page: 2631 year: 2021 ident: mlstadcb89bib25 article-title: Power of data in quantum machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-021-22539-9 – volume: 5 start-page: 1 year: 2022 ident: mlstadcb89bib45 article-title: Adiabatic state preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry wave functions publication-title: Commun. Chem. doi: 10.1038/s42004-022-00701-8 – start-page: p 3 year: 1981 ident: mlstadcb89bib57 article-title: Random sample consensus (RANSAC) – volume: 17 start-page: 261 year: 2020 ident: mlstadcb89bib64 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 108 year: 2023 ident: mlstadcb89bib69 article-title: Deep learning nonlocal and scalable energy functionals for quantum ising models publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.125113 |
SSID | ssj0002513520 |
Score | 2.2994823 |
Snippet | The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 25020 |
SubjectTerms | Algorithms Data points density functional theory Exact solutions Machine learning Neural networks NISQ Optimization quantum algorithms Quantum computing variational quantum algorithms |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9tILfVDE9oF8KAcO2TqxHSfqCSqqqlILByr1gBRlPDZCiN3CZg_tr68n8S6CVhXiFkWTOP4cz8MefwNw2OaGSiLM8kraTAejMmy1zhAts6e3OSIHiheX5dmVPr821ytwvDwLM71Jqn8cLwei4AHClBBXHTHDeBYtlTpqyWFVP4M1VcW4gk_vffy0XGCJhjs6FzJtTT724B-mqGfsjwYmtvpALfe25nQDviy-ckgx-T6edzh2d38ROP5nNzbhefJBxbtBdAtW_GQbNhb1HUSa7i9AJ_LVr4I4zb27FWwFh8XDmeCDKWIy_Ta7FT_ncXzmPwSnm-7A1emHzydnWaqykDll8y4rA8lgfQy7DEmk0DKpYOk0F3O0TsnAIVPORPDKmtYHF6gsyEg0usXCFeolrE6mE_8KRN2GOmBNWLlSByvr6NsVnkhSgXXtcQRvF4A3NwOZRtNvgldVw3A0DEczwDGC9zwiSzmmwe5vRCybhGUjPRIa6XwwqK2hmmyIHcnJK7Kl9SN4E-Fv0rScPdHY_mLEfwtH5aRKG_2havcfX7MH6wWXB-7TCfdhtfs19wfRZ-nwdf9v3gNYvOYw priority: 102 providerName: IOP Publishing – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LCy8EeUlDzAwWHUSO04mBIiCkGCiUrco57MrBpqWtgP_Hl_qUiQk1sRSlM93_s7n83eMXdaJxhwRRFJII5TXmYBaKQFgSD29TgBoo_jymj_11fNAD2LCbRrLKpdrYrtQY2MpR94NppLlJrBTcTOeCOoaRaersYXGOttM0mBJdFO89_iTYwncHeILGU8ngz91SZ1cBJbLujVaoN7uv9ioFe0PHPPejP-szC3d9HbZdowT-e1iYvfYmhvts51lDwYeXfKAqSiQOuRIpeizL05MtUjwTTldHuGj5n36xSfzgOH8g1NJ6CHr9x7e7p9E7IQgbGaSmcg9Sm9c2BpplIC-JuG_3CpquGhsJj1taxISa8-Mrp23HvMUtQStakhtmh2xjVEzcseMl7UvPZQIhc2VN7IM8VfqECWmUJYOOux6iUg1XgheVO1BdVFUhF5F6FUL9DrsjiD7GUdS1e2D5nNYRcuvpAMELa3zGpTRWKLx4UcSdBma3LgOuwqAV9F1pv987Gw5JavBK6s4-f_1KdtKqXNvW-l3xjZmn3N3HsKJGVy0NvMN6EDITw priority: 102 providerName: ProQuest |
Title | Learning density functionals from noisy quantum data |
URI | https://iopscience.iop.org/article/10.1088/2632-2153/adcb89 https://www.proquest.com/docview/3193671298 https://doaj.org/article/0ebdb50cef5b475d9d7f9981de3d767e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics (IOP) Publishing Journals customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: IOP dateStart: 20200301 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: O3W dateStart: 20200301 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2632-2153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513520 issn: 2632-2153 databaseCode: BENPR dateStart: 20200301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELZ4NDS8jtMtj5ULKK6I1ontOCkB7fKQeOh0CLook7FPFOwCu1vQ8NuZSbKwEhLX0LiILMX5Jp5vJp58I8R-GVtMESGKM-UiE6yOoDQmAnCsnl7GAJwoXlympzfm_M7ezbX64pqwRh64Aa6nPCBYVflgwTiLObpAKUKMXqNLnWfvSzQ2l0yxDybWpshCteeStJN6rEseEb_pXokVcFf3OR6q5fqJXe5Hj598ck00g3Wx2kaI8rBZ2YZY8MNNsTbrviDbzfhDmFYa9Z9ELkKfvEjmqObT3ljybyNyOLofv8inKaE3fZBcDLolbgb9v8enUdsDIaq0iydRGlAF5-mJLSrAULLkX1oZbrXoKq0CJzQxy7RrZ0sfqoBpglaBNSUkVaJ_iqXhaOh_CZmXIQ-QI2RVaoJTOUVeiUdUmECee-iI3zNEisdG6qKoj6izrGD0CkavaNDriCOG7H0ei1TXF8h0RWu64n-m64gDArxoN834i5vtzkzyMZlch04dRSvZ9nesZUesJNzZt64E3BVLk-ep36NwYwJdsZgNTrpi-ah_ef2nW79nNJ5dXdN48dqn8UrfvgETz9fe |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALUB5ioRQf6IGDtU5sx8kBIVpYtvRxaqXeTMZjVz10s-3uCu2f4jfiyaNFQuqt18RSlM_jedjj72PsY50ZLBBBZKW0QkejBNRaCwBL7Ol1BkCF4vFJMT3TP8_N-Qb7M9yFobbKwSe2jhobT3vk42QqqrApOpVf5teCVKPodHWQ0OjM4jCsf6eSbfH54Fua3908n3w_3Z-KXlVAeGWzpSgiymhDKjMMSsBYE4le4TWJF1qvZKQSISPic2VNHaKPWORoJBhdQ-6J6CC5_EdaKUVc_eXkx-2eTsoVUj4j-9PQtH7HxIYuUlRV4xo9kJb8P9GvFQlIMe2ymf8XCdrwNnnOnvZ5Kf_aGdIW2wizF-zZoPnAexfwkumekPWCI7W-L9ecImO3objgdFmFz5rLxZpfr9Kcra44taC-YmcPgtFrtjlrZuEN41UdqwgVQukLHa2sUr6XB0SJOVRVgBH7NCDi5h3BhmsPxsvSEXqO0HMdeiO2R5DdjiNq7PZBc3Ph-pXmZAAEI32IBrQ1WKGN6UcyDAptYcOI7SbAXb9UF_d8bHuYkrvBd1b49v7XH9jj6enxkTs6ODl8x57kpBrcdhlus83lzSq8T6nMEnZa--Hs10Mb7F8FlwRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAXylMsFPABDhyy68R2nBx5rVoepQcq9WYyHrtCiN2FzR7Kr8eTeIt4CCFxiyInjr-J52GPvwF41JWGaiIsykbaQkejCuy0LhAts6d3JSIHim8P6_1j_erEnOQ6p8NZmOUqq_5puhyJgkcIc0JcM2OG8SJZKjXryGPTzlYUL8Ilo4zl2g0H747OF1mS8U4Ohszbk396-CdzNLD2JyOTev5NNQ_2Zr4LH7ZfOqaZfJpuepz6b7-QOP7HUK7B1eyLiqdj8-twISxuwO62zoPI0_4m6EzCeiqI0937M8HWcFxEXAs-oCIWy4_rM_Flk-S0-Sw47fQWHM9fvn--X-RqC4VXtuyLOpKMNqTwy5BEih2TC9Zec1FH65WMHDqVTAivrOlC9JHqioxEozusfKVuw85iuQh3QLRdbCO2hI2vdbSyTT5eFYgkVdi2ASfwZAu6W42kGm7YDG8ax5A4hsSNkEzgGUvlvB3TYQ83Ep4u4-lkQEIjfYgGtTXUko1pICUFRba2YQKPkwhcnp7rv3S2t5X6j8ZJSanaJr-oufuPr3kIl49ezN2bg8PX9-BKxRWDhwzDPdjpv27C_eTG9Phg-FW_A9X-65o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+density+functionals+from+noisy+quantum+data&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Koridon%2C+Emiel&rft.au=Frohnert%2C+Felix&rft.au=Prehn%2C+Eric&rft.au=van+Nieuwenburg%2C+Evert&rft.date=2025-06-30&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=6&rft.issue=2&rft.spage=25020&rft_id=info:doi/10.1088%2F2632-2153%2Fadcb89&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_adcb89 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |