Learning density functionals from noisy quantum data

The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum d...

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 6; no. 2; pp. 25020 - 25034
Main Authors Koridon, Emiel, Frohnert, Felix, Prehn, Eric, van Nieuwenburg, Evert, Tura, Jordi, Polla, Stefano
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 30.06.2025
Subjects
Online AccessGet full text
ISSN2632-2153
2632-2153
DOI10.1088/2632-2153/adcb89

Cover

Abstract The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum devices to generate training data for classical machine learning (ML) models. In this study, we explore the use of noisy data generated by quantum algorithms in training an ML model to learn a density functional for the Fermi–Hubbard model. We benchmark various ML models against exact solutions, demonstrating that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms. The learning procedure can effectively filter out unbiased sampling noise, resulting in a trained model that outperforms any individual training data point. Conversely, when trained on data with expressibility and optimization error typical of the variational quantum eigensolver, the model replicates the biases present in the training data. The trained models can be applied to solving new problem instances in a Kohn–Sham-like density optimization scheme, benefiting from automatic differentiability and achieving reasonably accurate solutions on most problem instances. Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations, highlighting both the potential benefits and the challenges that need to be addressed for successful integration of quantum computing and ML techniques.
AbstractList The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the high costs associated with achieving high accuracy. A promising approach to finding utility despite these challenges involves using quantum devices to generate training data for classical machine learning (ML) models. In this study, we explore the use of noisy data generated by quantum algorithms in training an ML model to learn a density functional for the Fermi–Hubbard model. We benchmark various ML models against exact solutions, demonstrating that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms. The learning procedure can effectively filter out unbiased sampling noise, resulting in a trained model that outperforms any individual training data point. Conversely, when trained on data with expressibility and optimization error typical of the variational quantum eigensolver, the model replicates the biases present in the training data. The trained models can be applied to solving new problem instances in a Kohn–Sham-like density optimization scheme, benefiting from automatic differentiability and achieving reasonably accurate solutions on most problem instances. Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations, highlighting both the potential benefits and the challenges that need to be addressed for successful integration of quantum computing and ML techniques.
Author van Nieuwenburg, Evert
Prehn, Eric
Koridon, Emiel
Tura, Jordi
Polla, Stefano
Frohnert, Felix
Author_xml – sequence: 1
  givenname: Emiel
  orcidid: 0000-0002-7712-7638
  surname: Koridon
  fullname: Koridon, Emiel
  organization: Vrije Universiteit Theoretical chemistry, Amsterdam, The Netherlands
– sequence: 2
  givenname: Felix
  orcidid: 0000-0003-3717-6352
  surname: Frohnert
  fullname: Frohnert, Felix
  organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands
– sequence: 3
  givenname: Eric
  orcidid: 0009-0001-6219-3704
  surname: Prehn
  fullname: Prehn, Eric
  organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands
– sequence: 4
  givenname: Evert
  orcidid: 0000-0003-0323-0031
  surname: van Nieuwenburg
  fullname: van Nieuwenburg, Evert
  organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands
– sequence: 5
  givenname: Jordi
  orcidid: 0000-0002-6123-1422
  surname: Tura
  fullname: Tura, Jordi
  organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands
– sequence: 6
  givenname: Stefano
  orcidid: 0000-0003-3909-0448
  surname: Polla
  fullname: Polla, Stefano
  organization: Universiteit Leiden 〈aQaL〉 Applied Quantum Algorithms — Lorentz Insitute for Theoretical physics & Leiden Institute of Advanced Computer Science, The Netherlands
BookMark eNp1UD1PwzAQtVCRKKU7YyRWQs92HCcjqqBUqsQCs-X4o3LV2q2dDP33JAQVFqY7vXsfuneLJj54g9A9hicMVbUgJSU5wYwupFZNVV-h6QWa_Nlv0DylHQAQhikjMEXFxsjond9m2vjk2nNmO69aF7zcp8zGcMh8cOmcnTrp2-6QadnKO3Rt-7OZ_8wZ-nx9-Vi-5Zv31Xr5vMkV5bjNS6vBclPXFdPQaCuBEF6qglOKuaJgAeMCE0w45Uwaq6wuiWbQsEI2RBE6Q-vRVwe5E8foDjKeRZBOfAMhboWMrVN7I8A0umGgjGVNwZmuNbd9MNaGal5y03s9jF7HGE6dSa3YhS4OXwqKa1pyTOqqZ8HIUjGkFI29pGIQQ9Vi6FIMXYqx6l7yOEpcOP56_kv_AuAQgFU
CODEN MLSTCK
Cites_doi 10.1103/PhysRev.140.A1133
10.3389/fnbot.2013.00021
10.1103/PhysRevA.92.042303
10.1038/s41467-024-45014-7
10.1007/BF01331938
10.1103/PhysRevA.92.062318
10.1073/pnas.1619152114
10.1080/00031305.1992.10475879
10.1080/00268976.2011.552441
10.1103/PhysRevB.102.235122
10.1103/PhysRevA.108.012403
10.1103/PhysRevX.8.011044
10.1021/cr200107z
10.1103/PhysRevB.99.075132
10.1023/A:1010933404324
10.22331/q-2018-08-06-79
10.1038/s42254-021-00348-9
10.1002/qua.25040
10.1103/RevModPhys.92.015003
10.1021/acs.chemrev.5b00584
10.1103/PhysRevX.5.041041
10.1038/s41467-024-49877-8
10.1103/PhysRevLett.108.253002
10.1088/1367-2630/ac2cb3
10.1103/PhysRevA.107.032407
10.1002/qua.24259
10.1103/PhysRev.136.B864
10.1038/ncomms5213
10.1103/PhysRevResearch.2.043238
10.3390/a12020034
10.1145/358669.358692
10.1103/PhysRevA.100.022512
10.1021/acscentsci.8b00551
10.1103/PhysRevLett.69.2863
10.1038/s41567-020-0932-7
10.1063/5.0181037
10.1126/science.abj6511
10.1038/s41467-017-00839-3
10.1038/s41467-022-33335-4
10.1038/s42254-023-00572-5
10.1109/TKDE.2009.191
10.1021/acs.chemrev.9b00829
10.1021/acs.jctc.3c00274
10.1038/s42254-022-00470-2
10.1103/RevModPhys.95.045005
10.1038/nphys1370
10.1126/science.abk3333
10.1002/qua.21198
10.1038/s41467-021-22539-9
10.1038/s42004-022-00701-8
10.1038/s41592-019-0686-2
10.1103/PhysRevB.108.125113
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: 2025 The Author(s). Published by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2632-2153/adcb89
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_0ebdb50cef5b475d9d7f9981de3d767e
10_1088_2632_2153_adcb89
mlstadcb89
GrantInformation_xml – fundername: European Research Council
  grantid: 01040729
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: Shell Global Solutions International
  funderid: http://dx.doi.org/10.13039/100016773
– fundername: Netherlands organization for scientific research (NWO)
  grantid: NWA.1292.19.194
– fundername: Quantum Delta NL
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PHGZT
PIMPY
TSCCA
AAYXX
AEINN
CITATION
PHGZM
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c371t-6fd0f7e9985d0bdfa02276c473317c30f011412127375aefcfd62d50b54ab2c23
IEDL.DBID DOA
ISSN 2632-2153
IngestDate Wed Aug 27 01:27:57 EDT 2025
Wed Aug 13 04:45:28 EDT 2025
Wed Oct 01 08:25:26 EDT 2025
Tue Apr 29 23:33:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-6fd0f7e9985d0bdfa02276c473317c30f011412127375aefcfd62d50b54ab2c23
Notes MLST-103188.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7712-7638
0000-0003-3717-6352
0000-0003-3909-0448
0000-0003-0323-0031
0009-0001-6219-3704
0000-0002-6123-1422
OpenAccessLink https://doaj.org/article/0ebdb50cef5b475d9d7f9981de3d767e
PQID 3193671298
PQPubID 4916454
PageCount 15
ParticipantIDs crossref_primary_10_1088_2632_2153_adcb89
doaj_primary_oai_doaj_org_article_0ebdb50cef5b475d9d7f9981de3d767e
proquest_journals_3193671298
iop_journals_10_1088_2632_2153_adcb89
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fischler (mlstadcb89bib56) 1981; 24
Cerezo (mlstadcb89bib6) 2021; 3
Schuch (mlstadcb89bib13) 2009; 5
Sheridan (mlstadcb89bib24) 2024
Farhi (mlstadcb89bib46) 2014
Virtanen (mlstadcb89bib64) 2020; 17
Ioffe (mlstadcb89bib49) 2015
Breiman (mlstadcb89bib59) 2001; 45
McArdle (mlstadcb89bib4) 2020; 92
Ruth (mlstadcb89bib22) 2023; 19
Pernal (mlstadcb89bib71) 2016
Grisafi (mlstadcb89bib18) 2019; 5
Dawid (mlstadcb89bib28) 2023
Farhi (mlstadcb89bib44) 2000
LeBlanc (mlstadcb89bib32) 2015; 5
Tilly (mlstadcb89bib38) 2022; vol 986
Lewis (mlstadcb89bib27) 2024; 15
Liao (mlstadcb89bib31) 2023
Preskill (mlstadcb89bib1) 2018; 2
Hohenberg (mlstadcb89bib11) 1964; 136
Li (mlstadcb89bib16) 2016; 116
Abadi (mlstadcb89bib52) 2016
Christensen (mlstadcb89bib21) 2016; 116
Casares (mlstadcb89bib17) 2024; 160
Baker (mlstadcb89bib23) 2020; 2
Dang (mlstadcb89bib55) 2008; 2
Ryczko (mlstadcb89bib19) 2019; 100
Zhuang (mlstadcb89bib68) 2020
Brockherde (mlstadcb89bib72) 2017; 8
Whitfield (mlstadcb89bib36) 2011; 109
Natekin (mlstadcb89bib60) 2013; 7
Kohn (mlstadcb89bib12) 1965; 140
Chollet (mlstadcb89bib53) 2015
Polla (mlstadcb89bib34) 2025
Burke (mlstadcb89bib10) 2013; 113
Cade (mlstadcb89bib42) 2020; 102
Cantzler (mlstadcb89bib57) 1981
Kohavi (mlstadcb89bib50) 1995; vol 2
Anselmetti (mlstadcb89bib40) 2021; 23
Bonet-Monroig (mlstadcb89bib48) 2023; 107
Jerbi (mlstadcb89bib30) 2024; 15
Babbush (mlstadcb89bib37) 2018; 8
Huang (mlstadcb89bib26) 2022; 377
Nelson (mlstadcb89bib33) 2019; 99
Cohen (mlstadcb89bib14) 2012; 112
Drucker (mlstadcb89bib61) 1996
Kingma (mlstadcb89bib51) 2017
Pederson (mlstadcb89bib70) 2022; 4
Polla (mlstadcb89bib8) 2023; 108
Sugisaki (mlstadcb89bib45) 2022; 5
Altman (mlstadcb89bib62) 1992; 46
Wecker (mlstadcb89bib7) 2015; 92
Kirkpatrick (mlstadcb89bib20) 2021; 374
Chen (mlstadcb89bib63) 2016
Stanisic (mlstadcb89bib43) 2022; 13
Snyder (mlstadcb89bib15) 2012; 108
Bauer (mlstadcb89bib3) 2020; 120
Cai (mlstadcb89bib9) 2023; 95
Huang (mlstadcb89bib25) 2021; 12
Costa (mlstadcb89bib69) 2023; 108
Huang (mlstadcb89bib29) 2020; 16
Peruzzo (mlstadcb89bib5) 2014; 5
Wecker (mlstadcb89bib41) 2015; 92
White (mlstadcb89bib65) 1992; 69
Freund (mlstadcb89bib58) 1999
Jordan (mlstadcb89bib35) 1928; 47
Reiher (mlstadcb89bib2) 2017; 114
Taube (mlstadcb89bib39) 2006; 106
Verstraete (mlstadcb89bib66) 2023; 5
Pan (mlstadcb89bib67) 2010; 22
Owen (mlstadcb89bib54) 2007; vol 443
Hadfield (mlstadcb89bib47) 2019; 12
References_xml – year: 2020
  ident: mlstadcb89bib68
  article-title: A comprehensive survey on transfer learning
– volume: 140
  start-page: A1133
  year: 1965
  ident: mlstadcb89bib12
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– year: 2015
  ident: mlstadcb89bib49
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– start-page: pp 785
  year: 2016
  ident: mlstadcb89bib63
  article-title: XGBoost: a scalable tree boosting system
– volume: 7
  year: 2013
  ident: mlstadcb89bib60
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2013.00021
– volume: 92
  year: 2015
  ident: mlstadcb89bib7
  article-title: Progress towards practical quantum variational algorithms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.042303
– year: 2014
  ident: mlstadcb89bib46
  article-title: A quantum approximate optimization algorithm
– volume: 15
  start-page: 895
  year: 2024
  ident: mlstadcb89bib27
  article-title: Improved machine learning algorithm for predicting ground state properties
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45014-7
– volume: 47
  start-page: 631
  year: 1928
  ident: mlstadcb89bib35
  article-title: Über das Paulische Äquivalenzverbot
  publication-title: Z. Phys.
  doi: 10.1007/BF01331938
– volume: 92
  year: 2015
  ident: mlstadcb89bib41
  article-title: Solving strongly correlated electron models on a quantum computer
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.062318
– volume: 114
  start-page: 7555
  year: 2017
  ident: mlstadcb89bib2
  article-title: Elucidating reaction mechanisms on quantum computers
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1619152114
– volume: 46
  start-page: 175
  year: 1992
  ident: mlstadcb89bib62
  article-title: An introduction to Kernel and Nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 2
  start-page: 1
  year: 2008
  ident: mlstadcb89bib55
  article-title: Theil-sen estimators in a multiple linear regression model
  publication-title: Olemiss Edu
– volume: 109
  start-page: 735
  year: 2011
  ident: mlstadcb89bib36
  article-title: Simulation of electronic structure hamiltonians using quantum computers
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2011.552441
– volume: 102
  year: 2020
  ident: mlstadcb89bib42
  article-title: Strategies for solving the Fermi-Hubbard model on near-term quantum computers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.235122
– volume: 108
  year: 2023
  ident: mlstadcb89bib8
  article-title: Optimizing the information extracted by a single qubit measurement
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.108.012403
– volume: 8
  year: 2018
  ident: mlstadcb89bib37
  article-title: Low-Depth Quantum Simulation of Materials
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.8.011044
– volume: 112
  start-page: 289
  year: 2012
  ident: mlstadcb89bib14
  article-title: Challenges for density functional theory
  publication-title: Chem. Rev.
  doi: 10.1021/cr200107z
– volume: 99
  year: 2019
  ident: mlstadcb89bib33
  article-title: Machine learning density functional theory for the Hubbard model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.075132
– year: 2015
  ident: mlstadcb89bib53
  article-title: Keras
– start-page: pp 155
  year: 1996
  ident: mlstadcb89bib61
  article-title: Support vector regression machines
– volume: 45
  start-page: 5
  year: 2001
  ident: mlstadcb89bib59
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 79
  year: 2018
  ident: mlstadcb89bib1
  article-title: Quantum computing in the NISQ era and beyond
  publication-title: Quantum
  doi: 10.22331/q-2018-08-06-79
– year: 1999
  ident: mlstadcb89bib58
  article-title: A short introduction to boosting
  publication-title: J. Jpn. Soc. Artif. Intell.
– year: 2024
  ident: mlstadcb89bib24
  article-title: Enhancing density functional theory using the variational quantum eigensolver
– year: 2000
  ident: mlstadcb89bib44
  article-title: Quantum computation by adiabatic evolution
– volume: 3
  start-page: 625
  year: 2021
  ident: mlstadcb89bib6
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– volume: 116
  start-page: 819
  year: 2016
  ident: mlstadcb89bib16
  article-title: Understanding machine-learned density functionals
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.25040
– volume: 92
  year: 2020
  ident: mlstadcb89bib4
  article-title: Quantum computational chemistry
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015003
– volume: 116
  start-page: 5301
  year: 2016
  ident: mlstadcb89bib21
  article-title: Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00584
– volume: 5
  year: 2015
  ident: mlstadcb89bib32
  article-title: Solutions of the two-dimensional hubbard model: benchmarks and results from a wide range of numerical algorithms
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.5.041041
– volume: 15
  start-page: 5676
  year: 2024
  ident: mlstadcb89bib30
  article-title: Shadows of quantum machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49877-8
– volume: 108
  year: 2012
  ident: mlstadcb89bib15
  article-title: Finding density functionals with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.253002
– volume: 23
  year: 2021
  ident: mlstadcb89bib40
  article-title: Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ac2cb3
– volume: 107
  year: 2023
  ident: mlstadcb89bib48
  article-title: Performance comparison of optimization methods on variational quantum algorithms
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.032407
– volume: 113
  start-page: 96
  year: 2013
  ident: mlstadcb89bib10
  article-title: DFT in a nutshell
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24259
– year: 2023
  ident: mlstadcb89bib31
  article-title: Machine learning for practical quantum error mitigation
– volume: vol 2
  start-page: pp 1137
  year: 1995
  ident: mlstadcb89bib50
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 136
  start-page: B864
  year: 1964
  ident: mlstadcb89bib11
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– year: 2016
  ident: mlstadcb89bib52
  article-title: TensorFlow: large-scale machine learning on heterogeneous distributed systems
– volume: 5
  start-page: 4213
  year: 2014
  ident: mlstadcb89bib5
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– volume: 2
  year: 2020
  ident: mlstadcb89bib23
  article-title: Density functionals and Kohn-Sham potentials with minimal wavefunction preparations on a quantum computer
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043238
– volume: vol 986
  start-page: 1
  year: 2022
  ident: mlstadcb89bib38
  article-title: The variational quantum eigensolver: a review of methods and best practices
– volume: 12
  start-page: 34
  year: 2019
  ident: mlstadcb89bib47
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: vol 443
  start-page: pp 59
  year: 2007
  ident: mlstadcb89bib54
  article-title: A robust hybrid of lasso and ridge regression
– year: 2025
  ident: mlstadcb89bib34
  article-title: DFTQML – machine-learning hubbard density functionals from noisy quantum-generated data
– volume: 24
  start-page: 381
  year: 1981
  ident: mlstadcb89bib56
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– start-page: pp 125
  year: 2016
  ident: mlstadcb89bib71
  article-title: Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD- RDMFT)
– year: 2017
  ident: mlstadcb89bib51
  article-title: Adam: a method for stochastic optimization
– volume: 100
  year: 2019
  ident: mlstadcb89bib19
  article-title: Deep learning and density-functional theory
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.100.022512
– volume: 5
  start-page: 57
  year: 2019
  ident: mlstadcb89bib18
  article-title: Transferable machine-learning model of the electron density
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00551
– volume: 69
  start-page: 2863
  year: 1992
  ident: mlstadcb89bib65
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 16
  start-page: 1050
  year: 2020
  ident: mlstadcb89bib29
  article-title: Predicting many properties of a quantum system from very few measurements
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– volume: 160
  year: 2024
  ident: mlstadcb89bib17
  article-title: GradDFT. A software library for machine learning enhanced density functional theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0181037
– volume: 374
  start-page: 1385
  year: 2021
  ident: mlstadcb89bib20
  article-title: Pushing the frontiers of density functionals by solving the fractional electron problem
  publication-title: Science
  doi: 10.1126/science.abj6511
– volume: 8
  start-page: 872
  year: 2017
  ident: mlstadcb89bib72
  article-title: Bypassing the Kohn-Sham equations with machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00839-3
– volume: 13
  start-page: 5743
  year: 2022
  ident: mlstadcb89bib43
  article-title: Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33335-4
– volume: 5
  start-page: 273
  year: 2023
  ident: mlstadcb89bib66
  article-title: Density matrix renormalization group, 30 years on
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00572-5
– volume: 22
  start-page: 1345
  year: 2010
  ident: mlstadcb89bib67
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 120
  year: 2020
  ident: mlstadcb89bib3
  article-title: Quantum algorithms for quantum chemistry and quantum materials science
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00829
– volume: 19
  start-page: 4912
  year: 2023
  ident: mlstadcb89bib22
  article-title: Machine learning for bridging the gap between density functional theory and coupled cluster energies
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00274
– volume: 4
  start-page: 357
  year: 2022
  ident: mlstadcb89bib70
  article-title: Machine learning and density functional theory
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-022-00470-2
– volume: 95
  year: 2023
  ident: mlstadcb89bib9
  article-title: Quantum error mitigation
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.95.045005
– year: 2023
  ident: mlstadcb89bib28
  article-title: Modern applications of machine learning in quantum sciences
– volume: 5
  start-page: 732
  year: 2009
  ident: mlstadcb89bib13
  article-title: Computational complexity of interacting electrons and fundamental limitations of density functional theory
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1370
– volume: 377
  start-page: eabk3333
  year: 2022
  ident: mlstadcb89bib26
  article-title: Provably efficient machine learning for quantum many-body problems
  publication-title: Science
  doi: 10.1126/science.abk3333
– volume: 106
  start-page: 3393
  year: 2006
  ident: mlstadcb89bib39
  article-title: New perspectives on unitary coupled-cluster theory
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21198
– volume: 12
  start-page: 2631
  year: 2021
  ident: mlstadcb89bib25
  article-title: Power of data in quantum machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22539-9
– volume: 5
  start-page: 1
  year: 2022
  ident: mlstadcb89bib45
  article-title: Adiabatic state preparation of correlated wave functions with nonlinear scheduling functions and broken-symmetry wave functions
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-022-00701-8
– start-page: p 3
  year: 1981
  ident: mlstadcb89bib57
  article-title: Random sample consensus (RANSAC)
– volume: 17
  start-page: 261
  year: 2020
  ident: mlstadcb89bib64
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 108
  year: 2023
  ident: mlstadcb89bib69
  article-title: Deep learning nonlocal and scalable energy functionals for quantum ising models
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.125113
SSID ssj0002513520
Score 2.2994823
Snippet The search for useful applications of noisy intermediate-scale quantum (NISQ) devices in quantum simulation has been hindered by their intrinsic noise and the...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 25020
SubjectTerms Algorithms
Data points
density functional theory
Exact solutions
Machine learning
Neural networks
NISQ
Optimization
quantum algorithms
Quantum computing
variational quantum algorithms
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9tILfVDE9oF8KAcO2TqxHSfqCSqqqlILByr1gBRlPDZCiN3CZg_tr68n8S6CVhXiFkWTOP4cz8MefwNw2OaGSiLM8kraTAejMmy1zhAts6e3OSIHiheX5dmVPr821ytwvDwLM71Jqn8cLwei4AHClBBXHTHDeBYtlTpqyWFVP4M1VcW4gk_vffy0XGCJhjs6FzJtTT724B-mqGfsjwYmtvpALfe25nQDviy-ckgx-T6edzh2d38ROP5nNzbhefJBxbtBdAtW_GQbNhb1HUSa7i9AJ_LVr4I4zb27FWwFh8XDmeCDKWIy_Ta7FT_ncXzmPwSnm-7A1emHzydnWaqykDll8y4rA8lgfQy7DEmk0DKpYOk0F3O0TsnAIVPORPDKmtYHF6gsyEg0usXCFeolrE6mE_8KRN2GOmBNWLlSByvr6NsVnkhSgXXtcQRvF4A3NwOZRtNvgldVw3A0DEczwDGC9zwiSzmmwe5vRCybhGUjPRIa6XwwqK2hmmyIHcnJK7Kl9SN4E-Fv0rScPdHY_mLEfwtH5aRKG_2havcfX7MH6wWXB-7TCfdhtfs19wfRZ-nwdf9v3gNYvOYw
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LCy8EeUlDzAwWHUSO04mBIiCkGCiUrco57MrBpqWtgP_Hl_qUiQk1sRSlM93_s7n83eMXdaJxhwRRFJII5TXmYBaKQFgSD29TgBoo_jymj_11fNAD2LCbRrLKpdrYrtQY2MpR94NppLlJrBTcTOeCOoaRaersYXGOttM0mBJdFO89_iTYwncHeILGU8ngz91SZ1cBJbLujVaoN7uv9ioFe0PHPPejP-szC3d9HbZdowT-e1iYvfYmhvts51lDwYeXfKAqSiQOuRIpeizL05MtUjwTTldHuGj5n36xSfzgOH8g1NJ6CHr9x7e7p9E7IQgbGaSmcg9Sm9c2BpplIC-JuG_3CpquGhsJj1taxISa8-Mrp23HvMUtQStakhtmh2xjVEzcseMl7UvPZQIhc2VN7IM8VfqECWmUJYOOux6iUg1XgheVO1BdVFUhF5F6FUL9DrsjiD7GUdS1e2D5nNYRcuvpAMELa3zGpTRWKLx4UcSdBma3LgOuwqAV9F1pv987Gw5JavBK6s4-f_1KdtKqXNvW-l3xjZmn3N3HsKJGVy0NvMN6EDITw
  priority: 102
  providerName: ProQuest
Title Learning density functionals from noisy quantum data
URI https://iopscience.iop.org/article/10.1088/2632-2153/adcb89
https://www.proquest.com/docview/3193671298
https://doaj.org/article/0ebdb50cef5b475d9d7f9981de3d767e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) Publishing Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: IOP
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELZ4NDS8jtMtj5ULKK6I1ontOCkB7fKQeOh0CLook7FPFOwCu1vQ8NuZSbKwEhLX0LiILMX5Jp5vJp58I8R-GVtMESGKM-UiE6yOoDQmAnCsnl7GAJwoXlympzfm_M7ezbX64pqwRh64Aa6nPCBYVflgwTiLObpAKUKMXqNLnWfvSzQ2l0yxDybWpshCteeStJN6rEseEb_pXokVcFf3OR6q5fqJXe5Hj598ck00g3Wx2kaI8rBZ2YZY8MNNsTbrviDbzfhDmFYa9Z9ELkKfvEjmqObT3ljybyNyOLofv8inKaE3fZBcDLolbgb9v8enUdsDIaq0iydRGlAF5-mJLSrAULLkX1oZbrXoKq0CJzQxy7RrZ0sfqoBpglaBNSUkVaJ_iqXhaOh_CZmXIQ-QI2RVaoJTOUVeiUdUmECee-iI3zNEisdG6qKoj6izrGD0CkavaNDriCOG7H0ei1TXF8h0RWu64n-m64gDArxoN834i5vtzkzyMZlch04dRSvZ9nesZUesJNzZt64E3BVLk-ep36NwYwJdsZgNTrpi-ah_ef2nW79nNJ5dXdN48dqn8UrfvgETz9fe
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoALUB5ioRQf6IGDtU5sx8kBIVpYtvRxaqXeTMZjVz10s-3uCu2f4jfiyaNFQuqt18RSlM_jedjj72PsY50ZLBBBZKW0QkejBNRaCwBL7Ol1BkCF4vFJMT3TP8_N-Qb7M9yFobbKwSe2jhobT3vk42QqqrApOpVf5teCVKPodHWQ0OjM4jCsf6eSbfH54Fua3908n3w_3Z-KXlVAeGWzpSgiymhDKjMMSsBYE4le4TWJF1qvZKQSISPic2VNHaKPWORoJBhdQ-6J6CC5_EdaKUVc_eXkx-2eTsoVUj4j-9PQtH7HxIYuUlRV4xo9kJb8P9GvFQlIMe2ymf8XCdrwNnnOnvZ5Kf_aGdIW2wizF-zZoPnAexfwkumekPWCI7W-L9ecImO3objgdFmFz5rLxZpfr9Kcra44taC-YmcPgtFrtjlrZuEN41UdqwgVQukLHa2sUr6XB0SJOVRVgBH7NCDi5h3BhmsPxsvSEXqO0HMdeiO2R5DdjiNq7PZBc3Ph-pXmZAAEI32IBrQ1WKGN6UcyDAptYcOI7SbAXb9UF_d8bHuYkrvBd1b49v7XH9jj6enxkTs6ODl8x57kpBrcdhlus83lzSq8T6nMEnZa--Hs10Mb7F8FlwRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAXylMsFPABDhyy68R2nBx5rVoepQcq9WYyHrtCiN2FzR7Kr8eTeIt4CCFxiyInjr-J52GPvwF41JWGaiIsykbaQkejCuy0LhAts6d3JSIHim8P6_1j_erEnOQ6p8NZmOUqq_5puhyJgkcIc0JcM2OG8SJZKjXryGPTzlYUL8Ilo4zl2g0H747OF1mS8U4Ohszbk396-CdzNLD2JyOTev5NNQ_2Zr4LH7ZfOqaZfJpuepz6b7-QOP7HUK7B1eyLiqdj8-twISxuwO62zoPI0_4m6EzCeiqI0937M8HWcFxEXAs-oCIWy4_rM_Flk-S0-Sw47fQWHM9fvn--X-RqC4VXtuyLOpKMNqTwy5BEih2TC9Zec1FH65WMHDqVTAivrOlC9JHqioxEozusfKVuw85iuQh3QLRdbCO2hI2vdbSyTT5eFYgkVdi2ASfwZAu6W42kGm7YDG8ax5A4hsSNkEzgGUvlvB3TYQ83Ep4u4-lkQEIjfYgGtTXUko1pICUFRba2YQKPkwhcnp7rv3S2t5X6j8ZJSanaJr-oufuPr3kIl49ezN2bg8PX9-BKxRWDhwzDPdjpv27C_eTG9Phg-FW_A9X-65o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+density+functionals+from+noisy+quantum+data&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Koridon%2C+Emiel&rft.au=Frohnert%2C+Felix&rft.au=Prehn%2C+Eric&rft.au=van+Nieuwenburg%2C+Evert&rft.date=2025-06-30&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=6&rft.issue=2&rft.spage=25020&rft_id=info:doi/10.1088%2F2632-2153%2Fadcb89&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_adcb89
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon