Integrated Reactive Power Optimisation for Power Grids Containing Large-Scale Wind Power Based on Improved HHO Algorithm
Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is propo...
        Saved in:
      
    
          | Published in | Sustainability Vol. 15; no. 17; p. 12962 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.09.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2071-1050 2071-1050  | 
| DOI | 10.3390/su151712962 | 
Cover
| Abstract | Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is proposed. Firstly, a reactive power regulation model is constructed to solve the reactive power regulation interval of wind turbines, and the reactive power margin of wind turbines is used to participate in the system’s reactive power optimisation. Finally, a reactive power compensation capacity allocation optimisation model considering nodal voltage deviation, line loss and equipment investment cost, is established, and a reactive power optimisation scheme is obtained using the Harris Hawk optimisation algorithm on the basis of considering the constraints of the wind turbine reactive power output interval. The improved HHO algorithm is used to solve the reactive power optimisation scheme considering the constraints of tidal power, machine end voltage, a conventional generator and wind farm reactive power. In the simulation, the effects of the improved Harris Hawk optimisation algorithm and the particle swarm optimisation algorithm are compared, and the experimental results prove that compared to the particle swarm algorithm, the optimisation result of the improved Harris Hawk optimisation algorithm reduces the average loss of the system by 42.6% and reduces the average voltage deviation by 30.3%, which confirms that the improved Harris Hawk intelligent optimisation algorithm is effective in proving its superiority and solving the multi-objective model for reactive power optimisation. | 
    
|---|---|
| AbstractList | Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is proposed. Firstly, a reactive power regulation model is constructed to solve the reactive power regulation interval of wind turbines, and the reactive power margin of wind turbines is used to participate in the system’s reactive power optimisation. Finally, a reactive power compensation capacity allocation optimisation model considering nodal voltage deviation, line loss and equipment investment cost, is established, and a reactive power optimisation scheme is obtained using the Harris Hawk optimisation algorithm on the basis of considering the constraints of the wind turbine reactive power output interval. The improved HHO algorithm is used to solve the reactive power optimisation scheme considering the constraints of tidal power, machine end voltage, a conventional generator and wind farm reactive power. In the simulation, the effects of the improved Harris Hawk optimisation algorithm and the particle swarm optimisation algorithm are compared, and the experimental results prove that compared to the particle swarm algorithm, the optimisation result of the improved Harris Hawk optimisation algorithm reduces the average loss of the system by 42.6% and reduces the average voltage deviation by 30.3%, which confirms that the improved Harris Hawk intelligent optimisation algorithm is effective in proving its superiority and solving the multi-objective model for reactive power optimisation. | 
    
| Audience | Academic | 
    
| Author | Zhang, Huaixun Zhang, Mingcheng Zhao, Biao Shang, Lei Wang, Chenhao Zhao, Jie Du, Xiao  | 
    
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-8294-4130 surname: Zhao fullname: Zhao, Jie – sequence: 2 givenname: Mingcheng surname: Zhang fullname: Zhang, Mingcheng – sequence: 3 givenname: Biao surname: Zhao fullname: Zhao, Biao – sequence: 4 givenname: Xiao surname: Du fullname: Du, Xiao – sequence: 5 givenname: Huaixun surname: Zhang fullname: Zhang, Huaixun – sequence: 6 givenname: Lei surname: Shang fullname: Shang, Lei – sequence: 7 givenname: Chenhao surname: Wang fullname: Wang, Chenhao  | 
    
| BookMark | eNqFkclO5DAQhi3ESCzDaV4gEifEBLwkdnxsWgzdUks9YtEco8JxglFiN7bD8vYYug-AkMY-uFT-_tJfVXto2zqrEfpF8AljEp-GkZREECo53UK7FAuSE1zi7Q_xDjoI4R6nwxiRhO-i57mNuvMQdZNdalDRPOrsr3vSPluuohlMgGiczVrnN-kLb5qQTZ2NYKyxXbYA3-n8SkGvs3_GNhvuDEKqmaTzYeXdY4pns2U26TvnTbwbfqIfLfRBH2zefXTz5_x6OssXy4v5dLLIFRMk5rxqK0ZpBRI3RDZEC8kKlv5KwEWDVSnLUqtSYQq8EqK8FbcNEFoxzDmnbcH20e913dGu4OUJ-r5eeTOAf6kJrt8GV38YXMIP13jy_DDqEOt7N3qbHNa04lRQKqVM1Mma6lLTtbGtix5Uuo0ejEpraU3KTwQvCs5x8SY4-iRITNTPsYMxhHp-dfmZPV6zyrsQvG7_Y5h8oZWJ7ztLlkz_reYVRQSpfg | 
    
| CitedBy_id | crossref_primary_10_1049_stg2_70009 crossref_primary_10_1016_j_eswa_2025_126737 crossref_primary_10_3390_electronics13173384  | 
    
| Cites_doi | 10.1016/j.future.2019.02.028 10.15302/J-SSCAE-2021.06.003 10.3390/en16010357 10.3390/electronics8101130 10.3390/rs11121421  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| DOI | 10.3390/su151712962 | 
    
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 2071-1050 | 
    
| ExternalDocumentID | 10.3390/su151712962 A764466049 10_3390_su151712962  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c371t-68f83228a90d19d1e79343c375a04d0c5955ec5c02a68775b7bda128306662f43 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2071-1050 | 
    
| IngestDate | Sun Oct 26 03:46:17 EDT 2025 Mon Jun 30 14:49:49 EDT 2025 Mon Oct 20 17:15:55 EDT 2025 Thu Oct 16 16:07:57 EDT 2025 Thu Oct 16 04:35:29 EDT 2025 Thu Apr 24 22:55:35 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c371t-68f83228a90d19d1e79343c375a04d0c5955ec5c02a68775b7bda128306662f43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8294-4130 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2071-1050/15/17/12962/pdf?version=1693217069 | 
    
| PQID | 2862722999 | 
    
| PQPubID | 2032327 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_su151712962 proquest_journals_2862722999 gale_infotracacademiconefile_A764466049 gale_incontextgauss_ISR_A764466049 crossref_primary_10_3390_su151712962 crossref_citationtrail_10_3390_su151712962  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-09-01 | 
    
| PublicationDateYYYYMMDD | 2023-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sustainability | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Chen (ref_12) 2023; 44 Xiao (ref_7) 2018; 38 Xiao (ref_18) 2022; 18 Yang (ref_25) 2020; 41 Zhang (ref_15) 2023; 56 ref_14 Cao (ref_24) 2020; 42 Yao (ref_9) 2021; 46 Ruan (ref_10) 2019; 39 ref_30 Chen (ref_20) 2022; 43 Wang (ref_27) 2022; 50 Wu (ref_11) 2019; 47 Guo (ref_3) 2023; 51 Sun (ref_17) 2016; 40 Shu (ref_1) 2021; 23 Lu (ref_6) 2021; 49 Wang (ref_13) 2017; 41 Liu (ref_26) 2019; 34 ref_22 ref_21 Xia (ref_19) 2023; 51 ref_2 Jin (ref_23) 2021; 49 Lin (ref_8) 2018; 42 Zhou (ref_16) 2021; 42 Jingwei (ref_29) 2019; 8 ref_5 ref_4 Heidari (ref_28) 2019; 97  | 
    
| References_xml | – volume: 41 start-page: 3641 year: 2017 ident: ref_13 article-title: Optimal power flow calculation with moth-flame optimization algorithm publication-title: Power Syst. Technol. – volume: 44 start-page: 525 year: 2023 ident: ref_12 article-title: Research on dynamic reactive power compensation optimization strategy for distribution networks with distributed generation publication-title: Acta Energiae Solaris Sin. – ident: ref_5 – volume: 41 start-page: 100 year: 2020 ident: ref_25 article-title: Multi-objective reactive power optimisation algorithm for new energy grid with high proportion of wind and solar energy publication-title: Electr. Power Constr. – volume: 49 start-page: 28 year: 2021 ident: ref_6 article-title: Two-stage reactive power chance-constrained optimization method for an active distribution network considering DG uncertainties publication-title: Power Syst. Prot. Control. – volume: 42 start-page: 22 year: 2021 ident: ref_16 article-title: Two-stage dynamic reactive power optimization for power systems based on improved state transfer algorithm publication-title: Power Capacit. React. Power Compens. – volume: 51 start-page: 63 year: 2023 ident: ref_19 article-title: Application of improved grey wolf algorithm in reactive power optimisation of distribution network containing wind power publication-title: Smart Power – volume: 47 start-page: 173 year: 2019 ident: ref_11 article-title: Time decoupled dynamic extended reactive power optimization in incremental distribution network with photovoltaic-energy storage hybrid system publication-title: Power Syst. Prot. Control – volume: 97 start-page: 849 year: 2019 ident: ref_28 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 50 start-page: 83 year: 2022 ident: ref_27 article-title: Wind farm reactive voltage control strategy considering wind turbine reactive potential publication-title: Power Syst. Prot. Control – volume: 40 start-page: 1804 year: 2016 ident: ref_17 article-title: A multi-stage solution method for dynamic reactive power optimization publication-title: Power Syst. Technol. – volume: 23 start-page: 61 year: 2021 ident: ref_1 article-title: Study on the framework of building a new power system with new energy as the main source publication-title: Strateg. Study CAE doi: 10.15302/J-SSCAE-2021.06.003 – ident: ref_2 doi: 10.3390/en16010357 – ident: ref_14 – volume: 49 start-page: 46 year: 2021 ident: ref_23 article-title: Calculation method of voltage stability limit based on improved continuous power flow method publication-title: Smart Power – volume: 42 start-page: 238 year: 2018 ident: ref_8 article-title: Dynamic partition and optimization method for reactive power of distribution networks with distributed generation based on second-order cone programming publication-title: Power Syst. Technol. – volume: 43 start-page: 507 year: 2022 ident: ref_20 article-title: Strategy for optimal operation of a two-tier distribution grid containing distributed energy sources publication-title: Acta Energiae Solaris Sin. – ident: ref_21 – volume: 34 start-page: 646 year: 2019 ident: ref_26 article-title: Impact of reactive voltage optimisation on new energy consumption publication-title: Transac. China Electr. Society – volume: 8 start-page: 1130 year: 2019 ident: ref_29 article-title: A new quadratic binary harris hawk optimization for feature selection publication-title: Electronics doi: 10.3390/electronics8101130 – ident: ref_4 – volume: 18 start-page: 133 year: 2022 ident: ref_18 article-title: Research on reactive power optimization of distribution networks containing wind power based on particle swarm algorithm publication-title: Electr. Eng. – volume: 51 start-page: 148 year: 2023 ident: ref_3 article-title: A generator reactive power optimisation method based on XGBOOST-PSO to improve the transient stability of the voltage at the receiving end grid publication-title: Power Syst. Prot. Control – volume: 39 start-page: 685 year: 2019 ident: ref_10 article-title: A distributionally robust reactive power optimization model for active distribution network considering reactive power support of DG and switch reconfiguration publication-title: Proc. CSEE – ident: ref_30 doi: 10.3390/rs11121421 – volume: 46 start-page: 39 year: 2021 ident: ref_9 article-title: Comprehensive reactive power optimization of power distribution and consumption system with support of electric vehicle charging and discharging publication-title: Autom. Electr. Power Syst. – volume: 42 start-page: 13 year: 2020 ident: ref_24 article-title: Fast calculation method of static voltage stability limit point of wind power connection system publication-title: Electr. Autom. – volume: 56 start-page: 112 year: 2023 ident: ref_15 article-title: Dynamic reactive power optimization algorithm for regional power grids based on decoupled interior point method and mixed integer programming method publication-title: Electr. Power – ident: ref_22 – volume: 38 start-page: 1 year: 2018 ident: ref_7 article-title: Reactive power optimization of distribution network with distributed generation using metamodel-based global optimization method publication-title: Proc. CSEE  | 
    
| SSID | ssj0000331916 | 
    
| Score | 2.3557415 | 
    
| Snippet | Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 12962 | 
    
| SubjectTerms | Air-turbines Algorithms Analysis Energy Green technology Growth factors Hawks Integer programming Laws, regulations and rules Linear programming Mathematical optimization Ocean energy resources Sustainability Turbines Wind farms Wind power  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8sB4QBsbWgdD1gSaNCla4sR28zChgsrKNAoqQ-MtcmyHIZW0I60G_z13jVNgmnir0ksb5c73w777PoAd6fIwxcIDy1RlgkTn6Ac7RgWJTAojXRQWc-qE44HsnyffL8TFEgyaWRhqq2x84txR27GhPfIvHFNvxdF5pnuTPwGxRtHpakOhoT21gv06hxh7AcuckLFasLzfG5wOF7suYYwmF8l6UC_Geh_1jTFPYdST_Elo-tdBr8LKrJzou796NHoUgQ5fwZpPHVm31vVrWHLlOqw0k8XVOmz0HqbWUNAv2-oN3B41oBCWDZ2euzh2Svxo7ARdxrVv6WGYwPrL326ubMUIuqpmkGA_qGM8OEONOvYL63gvt49B0DK8td6cwM_9_gnrji7x1U1_X7-F88Pez4N-4CkXAhOraBrITkFLvKPT0EapjRwu3yTG74QOExsakQrhjDAh17KjlMhVbnVEIGJYBvEiiTegVY5L9w4Y5gYKfaeUQkeJouNHg0ZhBFeu4DmP2vC5eduZ8XjkRIsxyrAuIdVkj1TThp2F8KSG4fi_2EdSW0bAFiV1zlzqWVVlR2fDrKskHV1jQdSGT16oGOMfGu0HEfCxCQvrieRWo_7ML-0qezDENuwuTOK5p3r__M9swkvisK8b17agNb2ZuQ-Y6UzzbW--9ybT-8s priority: 102 providerName: ProQuest  | 
    
| Title | Integrated Reactive Power Optimisation for Power Grids Containing Large-Scale Wind Power Based on Improved HHO Algorithm | 
    
| URI | https://www.proquest.com/docview/2862722999 https://www.mdpi.com/2071-1050/15/17/12962/pdf?version=1693217069  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6x9mHwsMFgotuoLDSEhJQ1dmO7eUId6tYh6KqOivEUOY4zqnVp1aTA-PWcG2dsE0JIvEXxOXHky3d39vk7gH1hYj_EwAPDVKm9QMWIgx0tvUAEqRaG-umqdMLHgeiPg_fnvMomzF1aJYbikxVIM7R_iBPcb1HeorKFtkmw1jxJ335zi0mWSoRZBphwDeqCozteg_p4MOx-sUXlqu7lubw2hvc4vWji5OpBdyzRfTx-BOvLbK6uv6vp9JbBOdqEuBpqmWdyebAs4gP98x6L4399y2PYcO4o6Zb68wQemGwL1qvTyvkWbPd-n4RDQQcF-VP4cVIRTSRkZNQKNsnQ1lwjpwhDVy5NiKBT7G4fLyZJTiwdVlmVgnywWejeGWqJIZ8nWeLkDtGwJgS7lgseeN3vn5Lu9GK2mBRfr57B-Kj36V3fc2UcPN2WtPBEJ7Ww0VGhn9AwoQYhIWhjG1d-kPiah5wbzbXPlOhIyWMZJ4paYjIMrVgatLehls0y8xwI-hsS8VgIrmgg7ZamRkXTnEmTspjRBryppjTSjuPcltqYRhjr2PmPbs1_A_ZvhOcltcefxV5a3YgsWUZms3Eu1DLPo5OzUdSVwm6HY5DVgNdOKJ3hC7Vyhxtw2JZf647kXqVjkYOLPGIYV0qGngE2v7rRu7-Naucf5XbhIUO3rMyK24NasViaF-hGFXET6oe9wXDUhLXjc9p0v80vqBsWUA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED4xeOh4mDY2RDfGrAk0aVK0xHHs5gFNZStLRymogMZb5tgOQyppR1ox_rn9bZwbp8A08cZb1FyTKPfluzv7fgBscpP5MQYeGKYK5TGZIQ-2lPAYZ7niJvDz2eiE_T5PTtj30-h0Af7WtTA2rbLmxBlR65Gya-SfKLregiJ5xp_Hvz07NcrurtYjNKQbraC3Zy3GXGHHnrm-whCu3O5-RX1vUbrbOf6SeG7KgKdCEUw83sotqlsy9nUQ68AgYlmI5yLpM-2rKI4ioyLlU8lbQkSZyLQMbN8s9PxpzkK87hNYYiGLMfhb2un0DwfzVR4_RIgHvCoMDMPYR3yhjRVoZTm9Zwr_NQjL0JgWY3l9JYfDOxZv9zk8c64qaVfYegELpliBRl3JXK7Aaue2Sg4FHU2UL-FPt25CocnAyBmlkkM7j40cIEVduBQigg6z-_nb5bkuiW2VVU2sID2boe4dIYIM-XFeaCe3g0ZXE_xrtRiCx0lyQNrDM1TV5NfFKzh5lJe_CovFqDBrQNAXEcjVnEcyYMJudyoEoYqoMDnNaNCEj_XbTpXrf27HcAxTjIOsatI7qmnC5lx4XLX9-L_Ye6u21DbSKGymzpmclmXaPRqkbcHtVjkGYE344ITyEd5QSVf4gI9te2_dk1yv1Z86KinTW-A3YWsOiYee6vXDl3kHjeR4v5f2uv29N_CUotdWJc2tw-Lkcmreopc1yTYclAn8fOyv5waMIjZm | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED4xkAZ7mDY2tA62WRNo0qSIxInt5gGhMtq1g5WqDMFb5tgOIJW0kFaMf5G_aufGKTBNvPFWtZc0yn3-7s6-HwDr3KR-jIEHhqlCeZFMkQfrSngRjzLFTeBn09EJP7u8fRT9OGEnc3Bb1cLYtMqKE6dErYfK7pFvUnS9BUXyjDczlxbR221tjy49O0HKnrRW4zSkG7Ogt6btxlyRx565ucZwrtjq7KLuNyhtNX99a3tu4oCnQhGMPV7PLMLrMvZ1EOvAIHqjEH9j0o-0r1jMmFFM-VTyuhAsFamWge2hhVEAzaIQ7_sMFuzhF5LEwk6z2-vPdnz8EOEe8LJIMAxjH7GG9lagxeX0gVn81zi8gMVJPpI313IwuGf9Wq_gpXNbSaPE2WuYM_kyLFZVzcUyrDTvKuZQ0FFG8Qb-dKqGFJr0jZzSK-nZ2WzkAOnqwqUTEXSe3dffr851QWzbrHJ6Bdm32ereIaLJkOPzXDu5HTTAmuCl5cYIfm63D0hjcIqqGp9dvIWjJ3n5KzCfD3PzDgj6JQJ5m3Mmg0jYo0-FgFSMCpPRlAY1-Fq97US5Xuh2JMcgwZjIqia5p5oarM-ER2ULkP-LfbZqS2xTjdzC81ROiiLpHPaThuD22ByDsRp8cULZEP9QSVcEgY9t-3A9kFyr1J84WimSu0VQg40ZJB57qveP3-YTPMdVlOx3unursETRgSvz59Zgfnw1MR_Q4RqnHx2SCfx-6sXzFwScOpU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6x8sD2MBgbWjdA1sQ0aVJo7MZ284QKgpVpAwSrNp4ix3agoqRVk26Dv55z4_BL0zRpb1F8Thz58t2dff4OYEPYNIwx8MAwVeogUiniYEfLIBJRpoWlYTYrnfD1QPT60ecfvM4mLHxaJYbigxlIM7R_iBM8bFHeorKFtkmw1thkWz_9YpKjEmGOASZ-AvOCozvegPn-wVH31BWVq7tX5_LaGN7j9KKJk7MHPbBEj_H4GSxM87G6-qWGw3sGZ28R0nqoVZ7Jxea0TDf19SMWx__6liV47t1R0q305wXM2XwZFurTysUyrOzenYRDQQ8FxUv4vV8TTRhybNUMNsmRq7lGDhGGLn2aEEGn2N_-NBmYgjg6rKoqBfnistCDE9QSS74PcuPlttGwGoJdqwUPvO71Dkl3eDaaDMrzy1fQ39v9ttMLfBmHQLclLQPRyRxsdFQcGhobahESoja2cRVGJtQ85txqrkOmREdKnsrUKOqIyTC0YlnUXoFGPsrtayDob0jEYyG4opF0W5oaFU1zJm3GUkab8LGe0kR7jnNXamOYYKzj5j-5N_9N2LgVHlfUHn8We-d0I3FkGbnLxjlT06JI9k-Ok64Ubjscg6wmfPBC2QhfqJU_3IDDdvxaDyRXax1LPFwUCcO4UjL0DLD5_a3e_W1Ub_5R7i08ZeiWVVlxq9AoJ1O7hm5Uma77H-UGhTQTxQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Reactive+Power+Optimisation+for+Power+Grids+Containing+Large-Scale+Wind+Power+Based+on+Improved+HHO+Algorithm&rft.jtitle=Sustainability&rft.au=Zhao%2C+Jie&rft.au=Zhang%2C+Mingcheng&rft.au=Zhao%2C+Biao&rft.au=Du%2C+Xiao&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=17&rft_id=info:doi/10.3390%2Fsu151712962&rft.externalDocID=A764466049 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |