Integrated Reactive Power Optimisation for Power Grids Containing Large-Scale Wind Power Based on Improved HHO Algorithm

Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is propo...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 15; no. 17; p. 12962
Main Authors Zhao, Jie, Zhang, Mingcheng, Zhao, Biao, Du, Xiao, Zhang, Huaixun, Shang, Lei, Wang, Chenhao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su151712962

Cover

Abstract Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is proposed. Firstly, a reactive power regulation model is constructed to solve the reactive power regulation interval of wind turbines, and the reactive power margin of wind turbines is used to participate in the system’s reactive power optimisation. Finally, a reactive power compensation capacity allocation optimisation model considering nodal voltage deviation, line loss and equipment investment cost, is established, and a reactive power optimisation scheme is obtained using the Harris Hawk optimisation algorithm on the basis of considering the constraints of the wind turbine reactive power output interval. The improved HHO algorithm is used to solve the reactive power optimisation scheme considering the constraints of tidal power, machine end voltage, a conventional generator and wind farm reactive power. In the simulation, the effects of the improved Harris Hawk optimisation algorithm and the particle swarm optimisation algorithm are compared, and the experimental results prove that compared to the particle swarm algorithm, the optimisation result of the improved Harris Hawk optimisation algorithm reduces the average loss of the system by 42.6% and reduces the average voltage deviation by 30.3%, which confirms that the improved Harris Hawk intelligent optimisation algorithm is effective in proving its superiority and solving the multi-objective model for reactive power optimisation.
AbstractList Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to the optimal state. In this paper, an integrated reactive power optimisation method based on the improved Harris Hawk (HHO) algorithm is proposed. Firstly, a reactive power regulation model is constructed to solve the reactive power regulation interval of wind turbines, and the reactive power margin of wind turbines is used to participate in the system’s reactive power optimisation. Finally, a reactive power compensation capacity allocation optimisation model considering nodal voltage deviation, line loss and equipment investment cost, is established, and a reactive power optimisation scheme is obtained using the Harris Hawk optimisation algorithm on the basis of considering the constraints of the wind turbine reactive power output interval. The improved HHO algorithm is used to solve the reactive power optimisation scheme considering the constraints of tidal power, machine end voltage, a conventional generator and wind farm reactive power. In the simulation, the effects of the improved Harris Hawk optimisation algorithm and the particle swarm optimisation algorithm are compared, and the experimental results prove that compared to the particle swarm algorithm, the optimisation result of the improved Harris Hawk optimisation algorithm reduces the average loss of the system by 42.6% and reduces the average voltage deviation by 30.3%, which confirms that the improved Harris Hawk intelligent optimisation algorithm is effective in proving its superiority and solving the multi-objective model for reactive power optimisation.
Audience Academic
Author Zhang, Huaixun
Zhang, Mingcheng
Zhao, Biao
Shang, Lei
Wang, Chenhao
Zhao, Jie
Du, Xiao
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-8294-4130
  surname: Zhao
  fullname: Zhao, Jie
– sequence: 2
  givenname: Mingcheng
  surname: Zhang
  fullname: Zhang, Mingcheng
– sequence: 3
  givenname: Biao
  surname: Zhao
  fullname: Zhao, Biao
– sequence: 4
  givenname: Xiao
  surname: Du
  fullname: Du, Xiao
– sequence: 5
  givenname: Huaixun
  surname: Zhang
  fullname: Zhang, Huaixun
– sequence: 6
  givenname: Lei
  surname: Shang
  fullname: Shang, Lei
– sequence: 7
  givenname: Chenhao
  surname: Wang
  fullname: Wang, Chenhao
BookMark eNqFkclO5DAQhi3ESCzDaV4gEifEBLwkdnxsWgzdUks9YtEco8JxglFiN7bD8vYYug-AkMY-uFT-_tJfVXto2zqrEfpF8AljEp-GkZREECo53UK7FAuSE1zi7Q_xDjoI4R6nwxiRhO-i57mNuvMQdZNdalDRPOrsr3vSPluuohlMgGiczVrnN-kLb5qQTZ2NYKyxXbYA3-n8SkGvs3_GNhvuDEKqmaTzYeXdY4pns2U26TvnTbwbfqIfLfRBH2zefXTz5_x6OssXy4v5dLLIFRMk5rxqK0ZpBRI3RDZEC8kKlv5KwEWDVSnLUqtSYQq8EqK8FbcNEFoxzDmnbcH20e913dGu4OUJ-r5eeTOAf6kJrt8GV38YXMIP13jy_DDqEOt7N3qbHNa04lRQKqVM1Mma6lLTtbGtix5Uuo0ejEpraU3KTwQvCs5x8SY4-iRITNTPsYMxhHp-dfmZPV6zyrsQvG7_Y5h8oZWJ7ztLlkz_reYVRQSpfg
CitedBy_id crossref_primary_10_1049_stg2_70009
crossref_primary_10_1016_j_eswa_2025_126737
crossref_primary_10_3390_electronics13173384
Cites_doi 10.1016/j.future.2019.02.028
10.15302/J-SSCAE-2021.06.003
10.3390/en16010357
10.3390/electronics8101130
10.3390/rs11121421
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/su151712962
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su151712962
A764466049
10_3390_su151712962
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c371t-68f83228a90d19d1e79343c375a04d0c5955ec5c02a68775b7bda128306662f43
IEDL.DBID UNPAY
ISSN 2071-1050
IngestDate Sun Oct 26 03:46:17 EDT 2025
Mon Jun 30 14:49:49 EDT 2025
Mon Oct 20 17:15:55 EDT 2025
Thu Oct 16 16:07:57 EDT 2025
Thu Oct 16 04:35:29 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-68f83228a90d19d1e79343c375a04d0c5955ec5c02a68775b7bda128306662f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8294-4130
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2071-1050/15/17/12962/pdf?version=1693217069
PQID 2862722999
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su151712962
proquest_journals_2862722999
gale_infotracacademiconefile_A764466049
gale_incontextgauss_ISR_A764466049
crossref_primary_10_3390_su151712962
crossref_citationtrail_10_3390_su151712962
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_12) 2023; 44
Xiao (ref_7) 2018; 38
Xiao (ref_18) 2022; 18
Yang (ref_25) 2020; 41
Zhang (ref_15) 2023; 56
ref_14
Cao (ref_24) 2020; 42
Yao (ref_9) 2021; 46
Ruan (ref_10) 2019; 39
ref_30
Chen (ref_20) 2022; 43
Wang (ref_27) 2022; 50
Wu (ref_11) 2019; 47
Guo (ref_3) 2023; 51
Sun (ref_17) 2016; 40
Shu (ref_1) 2021; 23
Lu (ref_6) 2021; 49
Wang (ref_13) 2017; 41
Liu (ref_26) 2019; 34
ref_22
ref_21
Xia (ref_19) 2023; 51
ref_2
Jin (ref_23) 2021; 49
Lin (ref_8) 2018; 42
Zhou (ref_16) 2021; 42
Jingwei (ref_29) 2019; 8
ref_5
ref_4
Heidari (ref_28) 2019; 97
References_xml – volume: 41
  start-page: 3641
  year: 2017
  ident: ref_13
  article-title: Optimal power flow calculation with moth-flame optimization algorithm
  publication-title: Power Syst. Technol.
– volume: 44
  start-page: 525
  year: 2023
  ident: ref_12
  article-title: Research on dynamic reactive power compensation optimization strategy for distribution networks with distributed generation
  publication-title: Acta Energiae Solaris Sin.
– ident: ref_5
– volume: 41
  start-page: 100
  year: 2020
  ident: ref_25
  article-title: Multi-objective reactive power optimisation algorithm for new energy grid with high proportion of wind and solar energy
  publication-title: Electr. Power Constr.
– volume: 49
  start-page: 28
  year: 2021
  ident: ref_6
  article-title: Two-stage reactive power chance-constrained optimization method for an active distribution network considering DG uncertainties
  publication-title: Power Syst. Prot. Control.
– volume: 42
  start-page: 22
  year: 2021
  ident: ref_16
  article-title: Two-stage dynamic reactive power optimization for power systems based on improved state transfer algorithm
  publication-title: Power Capacit. React. Power Compens.
– volume: 51
  start-page: 63
  year: 2023
  ident: ref_19
  article-title: Application of improved grey wolf algorithm in reactive power optimisation of distribution network containing wind power
  publication-title: Smart Power
– volume: 47
  start-page: 173
  year: 2019
  ident: ref_11
  article-title: Time decoupled dynamic extended reactive power optimization in incremental distribution network with photovoltaic-energy storage hybrid system
  publication-title: Power Syst. Prot. Control
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_28
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 50
  start-page: 83
  year: 2022
  ident: ref_27
  article-title: Wind farm reactive voltage control strategy considering wind turbine reactive potential
  publication-title: Power Syst. Prot. Control
– volume: 40
  start-page: 1804
  year: 2016
  ident: ref_17
  article-title: A multi-stage solution method for dynamic reactive power optimization
  publication-title: Power Syst. Technol.
– volume: 23
  start-page: 61
  year: 2021
  ident: ref_1
  article-title: Study on the framework of building a new power system with new energy as the main source
  publication-title: Strateg. Study CAE
  doi: 10.15302/J-SSCAE-2021.06.003
– ident: ref_2
  doi: 10.3390/en16010357
– ident: ref_14
– volume: 49
  start-page: 46
  year: 2021
  ident: ref_23
  article-title: Calculation method of voltage stability limit based on improved continuous power flow method
  publication-title: Smart Power
– volume: 42
  start-page: 238
  year: 2018
  ident: ref_8
  article-title: Dynamic partition and optimization method for reactive power of distribution networks with distributed generation based on second-order cone programming
  publication-title: Power Syst. Technol.
– volume: 43
  start-page: 507
  year: 2022
  ident: ref_20
  article-title: Strategy for optimal operation of a two-tier distribution grid containing distributed energy sources
  publication-title: Acta Energiae Solaris Sin.
– ident: ref_21
– volume: 34
  start-page: 646
  year: 2019
  ident: ref_26
  article-title: Impact of reactive voltage optimisation on new energy consumption
  publication-title: Transac. China Electr. Society
– volume: 8
  start-page: 1130
  year: 2019
  ident: ref_29
  article-title: A new quadratic binary harris hawk optimization for feature selection
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– ident: ref_4
– volume: 18
  start-page: 133
  year: 2022
  ident: ref_18
  article-title: Research on reactive power optimization of distribution networks containing wind power based on particle swarm algorithm
  publication-title: Electr. Eng.
– volume: 51
  start-page: 148
  year: 2023
  ident: ref_3
  article-title: A generator reactive power optimisation method based on XGBOOST-PSO to improve the transient stability of the voltage at the receiving end grid
  publication-title: Power Syst. Prot. Control
– volume: 39
  start-page: 685
  year: 2019
  ident: ref_10
  article-title: A distributionally robust reactive power optimization model for active distribution network considering reactive power support of DG and switch reconfiguration
  publication-title: Proc. CSEE
– ident: ref_30
  doi: 10.3390/rs11121421
– volume: 46
  start-page: 39
  year: 2021
  ident: ref_9
  article-title: Comprehensive reactive power optimization of power distribution and consumption system with support of electric vehicle charging and discharging
  publication-title: Autom. Electr. Power Syst.
– volume: 42
  start-page: 13
  year: 2020
  ident: ref_24
  article-title: Fast calculation method of static voltage stability limit point of wind power connection system
  publication-title: Electr. Autom.
– volume: 56
  start-page: 112
  year: 2023
  ident: ref_15
  article-title: Dynamic reactive power optimization algorithm for regional power grids based on decoupled interior point method and mixed integer programming method
  publication-title: Electr. Power
– ident: ref_22
– volume: 38
  start-page: 1
  year: 2018
  ident: ref_7
  article-title: Reactive power optimization of distribution network with distributed generation using metamodel-based global optimization method
  publication-title: Proc. CSEE
SSID ssj0000331916
Score 2.3557415
Snippet Large-scale wind power grid integration will greatly change the system current distribution, making it difficult for the reactive power regulator to adjust to...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 12962
SubjectTerms Air-turbines
Algorithms
Analysis
Energy
Green technology
Growth factors
Hawks
Integer programming
Laws, regulations and rules
Linear programming
Mathematical optimization
Ocean energy resources
Sustainability
Turbines
Wind farms
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6x8sB4QBsbWgdD1gSaNCla4sR28zChgsrKNAoqQ-MtcmyHIZW0I60G_z13jVNgmnir0ksb5c73w777PoAd6fIwxcIDy1RlgkTn6Ac7RgWJTAojXRQWc-qE44HsnyffL8TFEgyaWRhqq2x84txR27GhPfIvHFNvxdF5pnuTPwGxRtHpakOhoT21gv06hxh7AcuckLFasLzfG5wOF7suYYwmF8l6UC_Geh_1jTFPYdST_Elo-tdBr8LKrJzou796NHoUgQ5fwZpPHVm31vVrWHLlOqw0k8XVOmz0HqbWUNAv2-oN3B41oBCWDZ2euzh2Svxo7ARdxrVv6WGYwPrL326ubMUIuqpmkGA_qGM8OEONOvYL63gvt49B0DK8td6cwM_9_gnrji7x1U1_X7-F88Pez4N-4CkXAhOraBrITkFLvKPT0EapjRwu3yTG74QOExsakQrhjDAh17KjlMhVbnVEIGJYBvEiiTegVY5L9w4Y5gYKfaeUQkeJouNHg0ZhBFeu4DmP2vC5eduZ8XjkRIsxyrAuIdVkj1TThp2F8KSG4fi_2EdSW0bAFiV1zlzqWVVlR2fDrKskHV1jQdSGT16oGOMfGu0HEfCxCQvrieRWo_7ML-0qezDENuwuTOK5p3r__M9swkvisK8b17agNb2ZuQ-Y6UzzbW--9ybT-8s
  priority: 102
  providerName: ProQuest
Title Integrated Reactive Power Optimisation for Power Grids Containing Large-Scale Wind Power Based on Improved HHO Algorithm
URI https://www.proquest.com/docview/2862722999
https://www.mdpi.com/2071-1050/15/17/12962/pdf?version=1693217069
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6x9mHwsMFgotuoLDSEhJQ1dmO7eUId6tYh6KqOivEUOY4zqnVp1aTA-PWcG2dsE0JIvEXxOXHky3d39vk7gH1hYj_EwAPDVKm9QMWIgx0tvUAEqRaG-umqdMLHgeiPg_fnvMomzF1aJYbikxVIM7R_iBPcb1HeorKFtkmw1jxJ335zi0mWSoRZBphwDeqCozteg_p4MOx-sUXlqu7lubw2hvc4vWji5OpBdyzRfTx-BOvLbK6uv6vp9JbBOdqEuBpqmWdyebAs4gP98x6L4399y2PYcO4o6Zb68wQemGwL1qvTyvkWbPd-n4RDQQcF-VP4cVIRTSRkZNQKNsnQ1lwjpwhDVy5NiKBT7G4fLyZJTiwdVlmVgnywWejeGWqJIZ8nWeLkDtGwJgS7lgseeN3vn5Lu9GK2mBRfr57B-Kj36V3fc2UcPN2WtPBEJ7Ww0VGhn9AwoQYhIWhjG1d-kPiah5wbzbXPlOhIyWMZJ4paYjIMrVgatLehls0y8xwI-hsS8VgIrmgg7ZamRkXTnEmTspjRBryppjTSjuPcltqYRhjr2PmPbs1_A_ZvhOcltcefxV5a3YgsWUZms3Eu1DLPo5OzUdSVwm6HY5DVgNdOKJ3hC7Vyhxtw2JZf647kXqVjkYOLPGIYV0qGngE2v7rRu7-Naucf5XbhIUO3rMyK24NasViaF-hGFXET6oe9wXDUhLXjc9p0v80vqBsWUA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED4xeOh4mDY2RDfGrAk0aVK0xHHs5gFNZStLRymogMZb5tgOQyppR1ox_rn9bZwbp8A08cZb1FyTKPfluzv7fgBscpP5MQYeGKYK5TGZIQ-2lPAYZ7niJvDz2eiE_T5PTtj30-h0Af7WtTA2rbLmxBlR65Gya-SfKLregiJ5xp_Hvz07NcrurtYjNKQbraC3Zy3GXGHHnrm-whCu3O5-RX1vUbrbOf6SeG7KgKdCEUw83sotqlsy9nUQ68AgYlmI5yLpM-2rKI4ioyLlU8lbQkSZyLQMbN8s9PxpzkK87hNYYiGLMfhb2un0DwfzVR4_RIgHvCoMDMPYR3yhjRVoZTm9Zwr_NQjL0JgWY3l9JYfDOxZv9zk8c64qaVfYegELpliBRl3JXK7Aaue2Sg4FHU2UL-FPt25CocnAyBmlkkM7j40cIEVduBQigg6z-_nb5bkuiW2VVU2sID2boe4dIYIM-XFeaCe3g0ZXE_xrtRiCx0lyQNrDM1TV5NfFKzh5lJe_CovFqDBrQNAXEcjVnEcyYMJudyoEoYqoMDnNaNCEj_XbTpXrf27HcAxTjIOsatI7qmnC5lx4XLX9-L_Ye6u21DbSKGymzpmclmXaPRqkbcHtVjkGYE344ITyEd5QSVf4gI9te2_dk1yv1Z86KinTW-A3YWsOiYee6vXDl3kHjeR4v5f2uv29N_CUotdWJc2tw-Lkcmreopc1yTYclAn8fOyv5waMIjZm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED4xkAZ7mDY2tA62WRNo0qSIxInt5gGhMtq1g5WqDMFb5tgOIJW0kFaMf5G_aufGKTBNvPFWtZc0yn3-7s6-HwDr3KR-jIEHhqlCeZFMkQfrSngRjzLFTeBn09EJP7u8fRT9OGEnc3Bb1cLYtMqKE6dErYfK7pFvUnS9BUXyjDczlxbR221tjy49O0HKnrRW4zSkG7Ogt6btxlyRx565ucZwrtjq7KLuNyhtNX99a3tu4oCnQhGMPV7PLMLrMvZ1EOvAIHqjEH9j0o-0r1jMmFFM-VTyuhAsFamWge2hhVEAzaIQ7_sMFuzhF5LEwk6z2-vPdnz8EOEe8LJIMAxjH7GG9lagxeX0gVn81zi8gMVJPpI313IwuGf9Wq_gpXNbSaPE2WuYM_kyLFZVzcUyrDTvKuZQ0FFG8Qb-dKqGFJr0jZzSK-nZ2WzkAOnqwqUTEXSe3dffr851QWzbrHJ6Bdm32ereIaLJkOPzXDu5HTTAmuCl5cYIfm63D0hjcIqqGp9dvIWjJ3n5KzCfD3PzDgj6JQJ5m3Mmg0jYo0-FgFSMCpPRlAY1-Fq97US5Xuh2JMcgwZjIqia5p5oarM-ER2ULkP-LfbZqS2xTjdzC81ROiiLpHPaThuD22ByDsRp8cULZEP9QSVcEgY9t-3A9kFyr1J84WimSu0VQg40ZJB57qveP3-YTPMdVlOx3unursETRgSvz59Zgfnw1MR_Q4RqnHx2SCfx-6sXzFwScOpU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6x8sD2MBgbWjdA1sQ0aVJo7MZ284QKgpVpAwSrNp4ix3agoqRVk26Dv55z4_BL0zRpb1F8Thz58t2dff4OYEPYNIwx8MAwVeogUiniYEfLIBJRpoWlYTYrnfD1QPT60ecfvM4mLHxaJYbigxlIM7R_iBM8bFHeorKFtkmw1thkWz_9YpKjEmGOASZ-AvOCozvegPn-wVH31BWVq7tX5_LaGN7j9KKJk7MHPbBEj_H4GSxM87G6-qWGw3sGZ28R0nqoVZ7Jxea0TDf19SMWx__6liV47t1R0q305wXM2XwZFurTysUyrOzenYRDQQ8FxUv4vV8TTRhybNUMNsmRq7lGDhGGLn2aEEGn2N_-NBmYgjg6rKoqBfnistCDE9QSS74PcuPlttGwGoJdqwUPvO71Dkl3eDaaDMrzy1fQ39v9ttMLfBmHQLclLQPRyRxsdFQcGhobahESoja2cRVGJtQ85txqrkOmREdKnsrUKOqIyTC0YlnUXoFGPsrtayDob0jEYyG4opF0W5oaFU1zJm3GUkab8LGe0kR7jnNXamOYYKzj5j-5N_9N2LgVHlfUHn8We-d0I3FkGbnLxjlT06JI9k-Ok64Ubjscg6wmfPBC2QhfqJU_3IDDdvxaDyRXax1LPFwUCcO4UjL0DLD5_a3e_W1Ub_5R7i08ZeiWVVlxq9AoJ1O7hm5Uma77H-UGhTQTxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Reactive+Power+Optimisation+for+Power+Grids+Containing+Large-Scale+Wind+Power+Based+on+Improved+HHO+Algorithm&rft.jtitle=Sustainability&rft.au=Zhao%2C+Jie&rft.au=Zhang%2C+Mingcheng&rft.au=Zhao%2C+Biao&rft.au=Du%2C+Xiao&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=17&rft_id=info:doi/10.3390%2Fsu151712962&rft.externalDocID=A764466049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon