Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model

Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of ca...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 40; no. 24; pp. 9412 - 9438
Main Authors Ghatkar, Jayesh Ganpat, Singh, Rakesh Kumar, Shanmugam, Palanisamy
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 17.12.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0143-1161
1366-5901
1366-5901
DOI10.1080/01431161.2019.1633696

Cover

Abstract Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of causative species based on remote sensing data are greatly limited because of the difficulties in interpreting the composite reflectance signal from different water features and types. In the present study, an accurate and reliable method is developed to automatically detect the onset of blooms and correctly classify the bloom species in Arabian Sea and Bay of Bengal waters using remote sensing data. A data-driven approach using machine learning algorithm is devised based on reflectance spectral signatures and tested on several MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) data for classifying the dominant water categories, including clear ocean waters devoid of sediments and algal blooms, sediment-laden coastal waters, and three major algal blooms, Trichodesmium erythraeum, Noctiluca scintillans and Cochlodinium polykrikoides. An extreme gradient boosted decision tree (XGBoost) model is chosen to improve the prediction accuracy by prevention of overfitting, which increases the scalability of the model on several unseen test data. This model was trained using 1.5 million samples and resulted in a classification accuracy of over 98%. When the results were validated using forty thousand random samples from the known blooms, an overall accuracy more than 96.8% was achieved. The applicability of the trained XGBoost model was further verified using MODIS-Aqua images, and it showed promise for successful detection and identification of well-documented blooms. The use of spectral information to classify algal blooms makes this method more robust and easily adaptable to different ocean colour sensors with a scope to accommodate other major algal blooms.
AbstractList Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of causative species based on remote sensing data are greatly limited because of the difficulties in interpreting the composite reflectance signal from different water features and types. In the present study, an accurate and reliable method is developed to automatically detect the onset of blooms and correctly classify the bloom species in Arabian Sea and Bay of Bengal waters using remote sensing data. A data-driven approach using machine learning algorithm is devised based on reflectance spectral signatures and tested on several MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) data for classifying the dominant water categories, including clear ocean waters devoid of sediments and algal blooms, sediment-laden coastal waters, and three major algal blooms, Trichodesmium erythraeum, Noctiluca scintillans and Cochlodinium polykrikoides. An extreme gradient boosted decision tree (XGBoost) model is chosen to improve the prediction accuracy by prevention of overfitting, which increases the scalability of the model on several unseen test data. This model was trained using 1.5 million samples and resulted in a classification accuracy of over 98%. When the results were validated using forty thousand random samples from the known blooms, an overall accuracy more than 96.8% was achieved. The applicability of the trained XGBoost model was further verified using MODIS-Aqua images, and it showed promise for successful detection and identification of well-documented blooms. The use of spectral information to classify algal blooms makes this method more robust and easily adaptable to different ocean colour sensors with a scope to accommodate other major algal blooms.
Author Ghatkar, Jayesh Ganpat
Singh, Rakesh Kumar
Shanmugam, Palanisamy
Author_xml – sequence: 1
  givenname: Jayesh Ganpat
  orcidid: 0000-0002-7380-4056
  surname: Ghatkar
  fullname: Ghatkar, Jayesh Ganpat
  organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras
– sequence: 2
  givenname: Rakesh Kumar
  orcidid: 0000-0002-6533-9422
  surname: Singh
  fullname: Singh, Rakesh Kumar
  organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras
– sequence: 3
  givenname: Palanisamy
  orcidid: 0000-0002-5659-4464
  surname: Shanmugam
  fullname: Shanmugam, Palanisamy
  email: pshanmugam@iitm.ac.in
  organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras
BookMark eNqFkc1u3CAUhVGVSp2keYRKSN1k4wkXbLDVTapR-iNF6qZZI4yvR0QYpsCozdsXZ9JNFg0bQOc7R3DPOTkLMSAhH4BtgfXsmkErACRsOYNhC1IIOcg3ZANCyqYbGJyRzco0K_SOnOf8wBiTqlMbUnbe5OxmZ01xMdA4U-P3xtPRx7jQfEDrMNM51UvCJRakGUN2YU8nUww9Ph1NoPinVB3pPpnJYSh0jDEXnOhUE_IaXXWkS5zQvydvZ-MzXj7vF-T-y-3P3bfm7sfX77vPd40VCkoDSvVm7qAdRtOLzigFAxvbQUzAR4W2l7bKqmVt_RwfkInqm7gdW4tty3pxQa5OuYcUfx0xF724bNF7EzAes-YCOi77fljRjy_Qh3hMob5Oc97zFtZVqU8nyqaYc8JZW1eeBleScV4D02sj-l8jem1EPzdS3d0L9yG5xaTHV303J58Lc0yL-R2Tn3Qxjz6mOZlQ56vF_yP-ApD9pDU
CitedBy_id crossref_primary_10_3390_rs14236002
crossref_primary_10_1109_TGRS_2023_3326143
crossref_primary_10_1016_j_marpolbul_2023_115148
crossref_primary_10_3390_rs14133000
crossref_primary_10_1016_j_scitotenv_2020_141821
crossref_primary_10_1016_j_algal_2021_102487
crossref_primary_10_1007_s10661_023_11827_0
crossref_primary_10_1364_OE_499362
crossref_primary_10_1080_10106049_2024_2380372
crossref_primary_10_1007_s00271_022_00788_w
crossref_primary_10_1007_s11042_023_17612_y
crossref_primary_10_1016_j_eehl_2022_06_001
crossref_primary_10_3390_w17010050
crossref_primary_10_1016_j_jconhyd_2024_104304
crossref_primary_10_1109_JSTARS_2021_3066697
crossref_primary_10_3390_app10051666
crossref_primary_10_1016_j_ecoinf_2024_102782
crossref_primary_10_1021_acs_est_4c01877
crossref_primary_10_1007_s12145_020_00475_4
crossref_primary_10_1016_j_asr_2020_09_045
crossref_primary_10_3390_rs15164112
crossref_primary_10_1016_j_marpolbul_2024_117036
crossref_primary_10_1016_j_isci_2025_111916
crossref_primary_10_1016_j_rse_2020_111974
crossref_primary_10_3390_hydrology10050110
crossref_primary_10_1016_j_isprsjprs_2022_07_012
crossref_primary_10_3390_rs15010274
crossref_primary_10_3389_frsen_2023_1194580
crossref_primary_10_3390_rs12050777
crossref_primary_10_1109_TGRS_2023_3348159
crossref_primary_10_3390_rs14061453
crossref_primary_10_1016_j_envpol_2022_120078
crossref_primary_10_3390_rs13224662
crossref_primary_10_1088_1361_6501_adc030
crossref_primary_10_1117_1_JRS_18_024513
crossref_primary_10_1109_TGRS_2021_3114635
crossref_primary_10_1177_0739456X241268464
crossref_primary_10_1016_j_rse_2023_113486
crossref_primary_10_7717_peerj_14557
crossref_primary_10_1016_j_idairyj_2022_105467
crossref_primary_10_3390_rs12223751
crossref_primary_10_1016_j_jhydrol_2020_125682
crossref_primary_10_3389_feart_2022_1102802
crossref_primary_10_3390_rs15163958
crossref_primary_10_1016_j_ecolind_2021_107356
crossref_primary_10_1016_j_envpol_2023_123017
crossref_primary_10_1016_j_isprsjprs_2023_12_012
crossref_primary_10_3390_rs14020271
crossref_primary_10_1088_1755_1315_842_1_012018
crossref_primary_10_1080_17538947_2021_1907462
crossref_primary_10_4236_ijg_2019_1010050
crossref_primary_10_3390_rs16030514
crossref_primary_10_3390_w15203567
crossref_primary_10_1038_s41598_024_66699_2
crossref_primary_10_1016_j_ecolind_2024_111715
crossref_primary_10_3390_rs12030407
Cites_doi 10.1016/j.asr.2018.02.024
10.1016/j.hal.2008.08.024
10.1016/j.rse.2015.05.022
10.1016/j.jglr.2016.11.001
10.1016/j.marpolbul.2014.06.048
10.3390/rs5104774
10.1364/OE.23.003055
10.1016/j.dsr.2008.03.003
10.1109/JSTARS.2012.2227993
10.3390/rs6042963
10.1016/j.hal.2007.12.006
10.1002/2016JC012368
10.1007/s12237-009-9169-5
10.1093/icesjms/fsq168
10.4172/JREAC.1000123
10.1016/j.rse.2011.10.001
10.1016/j.hal.2009.08.013
10.1080/01431168908903974
10.3390/en10081168
10.1002/2015JC011604
10.1080/01431160802178110
10.1007/978-3-662-08968-2_16
10.1038/ncomms5862
10.1007/978-1-4899-3242-6
10.1016/j.rse.2009.05.012
10.1016/j.rse.2006.04.007
10.1016/j.hal.2013.10.002
10.1016/j.hal.2011.10.027
10.5194/osd-11-2791-2014
10.1029/2011JC007395
10.4319/lom.2011.9.50
10.1016/j.procs.2016.07.229
10.1126/science.281.5374.237
10.1016/j.ocecoaman.2009.04.006
10.1080/14634988.2012.672151
10.1007/s12601-010-0013-4
10.1007/s12237-013-9693-1
10.3390/s150202873
10.1088/1748-9326/9/11/114003
10.1364/AO.46.005068
10.1364/AO.33.001081
10.2216/i0031-8884-32-2-79.1
10.3390/rs10030191
10.1016/j.hal.2013.11.003
10.2307/1296885
10.1016/j.isprsjprs.2014.12.010
10.4236/ars.2012.12004
10.1016/j.scitotenv.2009.02.040
10.1145/2939672.2939785
10.1016/j.rse.2010.04.011
10.1007/978-1-4614-7138-7
10.1109/JSTARS.2016.2520501
10.1016/S0967-0645(01)00096-0
10.1016/j.rse.2014.03.026
10.1029/JC082i024p03487
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
DOI 10.1080/01431161.2019.1633696
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 9438
ExternalDocumentID 10_1080_01431161_2019_1633696
1633696
Genre Article
GeographicLocations Bay of Bengal
Arabian Sea
GeographicLocations_xml – name: Arabian Sea
– name: Bay of Bengal
GrantInformation_xml – fundername: Department of Science and Technology India
  grantid: OEC1819150DSTXPSHA
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7S9
L.6
ID FETCH-LOGICAL-c371t-1778af5149ba835a77190b493d12b7ec86caf5740414329e03c37d2cb4ce44083
ISSN 0143-1161
1366-5901
IngestDate Fri Sep 05 17:33:38 EDT 2025
Wed Aug 13 11:22:10 EDT 2025
Wed Oct 01 04:43:47 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Mon Oct 20 23:45:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c371t-1778af5149ba835a77190b493d12b7ec86caf5740414329e03c37d2cb4ce44083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5659-4464
0000-0002-7380-4056
0000-0002-6533-9422
PQID 2282411111
PQPubID 2045515
PageCount 27
ParticipantIDs crossref_citationtrail_10_1080_01431161_2019_1633696
crossref_primary_10_1080_01431161_2019_1633696
informaworld_taylorfrancis_310_1080_01431161_2019_1633696
proquest_miscellaneous_2315268898
proquest_journals_2282411111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-17
PublicationDateYYYYMMDD 2019-12-17
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_3_52_1
IOCCG (e_1_3_3_25_1) 2014
Kotsiantis S. B. (e_1_3_3_27_1) 2007
e_1_3_3_50_1
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_58_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_63_1
e_1_3_3_61_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_48_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_30_1
e_1_3_3_51_1
Sahayak Satish, R. (e_1_3_3_44_1) 2005; 89
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_59_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_57_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_53_1
e_1_3_3_41_1
e_1_3_3_62_1
e_1_3_3_60_1
Mohanty A. K. (e_1_3_3_34_1) 2010; 39
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
Saeedi H. (e_1_3_3_43_1) 2011; 2
e_1_3_3_24_1
e_1_3_3_49_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_48_1
  doi: 10.1016/j.asr.2018.02.024
– start-page: 3
  volume-title: Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies
  year: 2007
  ident: e_1_3_3_27_1
– ident: e_1_3_3_24_1
  doi: 10.1016/j.hal.2008.08.024
– ident: e_1_3_3_21_1
  doi: 10.1016/j.rse.2015.05.022
– ident: e_1_3_3_58_1
  doi: 10.1016/j.jglr.2016.11.001
– ident: e_1_3_3_49_1
  doi: 10.1016/j.marpolbul.2014.06.048
– ident: e_1_3_3_39_1
  doi: 10.3390/rs5104774
– ident: e_1_3_3_56_1
  doi: 10.1364/OE.23.003055
– ident: e_1_3_3_15_1
  doi: 10.1016/j.dsr.2008.03.003
– ident: e_1_3_3_47_1
  doi: 10.1109/JSTARS.2012.2227993
– ident: e_1_3_3_7_1
  doi: 10.3390/rs6042963
– ident: e_1_3_3_12_1
  doi: 10.1016/j.hal.2007.12.006
– ident: e_1_3_3_57_1
  doi: 10.1002/2016JC012368
– ident: e_1_3_3_36_1
  doi: 10.1007/s12237-009-9169-5
– ident: e_1_3_3_60_1
  doi: 10.1093/icesjms/fsq168
– ident: e_1_3_3_61_1
  doi: 10.4172/JREAC.1000123
– volume: 39
  start-page: 323
  issue: 3
  year: 2010
  ident: e_1_3_3_34_1
  article-title: Bloom of Trichodesmium Erythraeum (Ehr.) And Its Impact on Water Quality and Plankton Community Structure in the Coastal Waters of Woutheast Coast of India
  publication-title: Indian Journal of Marine Science
– ident: e_1_3_3_35_1
  doi: 10.1016/j.rse.2011.10.001
– ident: e_1_3_3_42_1
  doi: 10.1016/j.hal.2009.08.013
– ident: e_1_3_3_46_1
  doi: 10.1080/01431168908903974
– ident: e_1_3_3_63_1
  doi: 10.3390/en10081168
– ident: e_1_3_3_13_1
  doi: 10.1002/2015JC011604
– volume: 89
  start-page: 1472
  issue: 9
  year: 2005
  ident: e_1_3_3_44_1
  article-title: Red Tide of Noctiluca Miliaris off South of Thiruvananthapuram Subsequent to the ‘Stench Event’ at the Southern Kerala Coast
  publication-title: Current Science
– ident: e_1_3_3_16_1
  doi: 10.1080/01431160802178110
– ident: e_1_3_3_54_1
  doi: 10.1007/978-3-662-08968-2_16
– ident: e_1_3_3_14_1
  doi: 10.1038/ncomms5862
– ident: e_1_3_3_31_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_3_3_18_1
  doi: 10.1016/j.rse.2009.05.012
– ident: e_1_3_3_2_1
  doi: 10.1016/j.rse.2006.04.007
– ident: e_1_3_3_29_1
  doi: 10.1016/j.hal.2013.10.002
– ident: e_1_3_3_38_1
  doi: 10.1016/j.hal.2011.10.027
– ident: e_1_3_3_52_1
  doi: 10.5194/osd-11-2791-2014
– ident: e_1_3_3_22_1
  doi: 10.1029/2011JC007395
– ident: e_1_3_3_32_1
  doi: 10.4319/lom.2011.9.50
– volume-title: Reports and Monographs of the International OceanColour Coordinating Group
  year: 2014
  ident: e_1_3_3_25_1
– ident: e_1_3_3_30_1
– ident: e_1_3_3_6_1
  doi: 10.1016/j.procs.2016.07.229
– ident: e_1_3_3_10_1
  doi: 10.1126/science.281.5374.237
– ident: e_1_3_3_5_1
  doi: 10.1016/j.ocecoaman.2009.04.006
– ident: e_1_3_3_3_1
  doi: 10.1080/14634988.2012.672151
– ident: e_1_3_3_40_1
  doi: 10.1007/s12601-010-0013-4
– ident: e_1_3_3_4_1
  doi: 10.1007/s12237-013-9693-1
– ident: e_1_3_3_19_1
  doi: 10.3390/s150202873
– ident: e_1_3_3_33_1
  doi: 10.1088/1748-9326/9/11/114003
– ident: e_1_3_3_11_1
  doi: 10.1364/AO.46.005068
– ident: e_1_3_3_45_1
  doi: 10.1364/AO.33.001081
– ident: e_1_3_3_17_1
  doi: 10.2216/i0031-8884-32-2-79.1
– ident: e_1_3_3_23_1
  doi: 10.3390/rs10030191
– volume: 2
  start-page: 13
  issue: 6
  year: 2011
  ident: e_1_3_3_43_1
  article-title: Catastrophic Impact of Red Tides of Cochlodinium Polykrikoides on the Razor Clam Solen Dactylus in Coastal Waters of the Northern Persian Gulf
  publication-title: Journal of the Persian Gulf
– ident: e_1_3_3_28_1
  doi: 10.1016/j.hal.2013.11.003
– ident: e_1_3_3_41_1
  doi: 10.2307/1296885
– ident: e_1_3_3_62_1
  doi: 10.1016/j.isprsjprs.2014.12.010
– ident: e_1_3_3_9_1
– ident: e_1_3_3_50_1
  doi: 10.4236/ars.2012.12004
– ident: e_1_3_3_59_1
  doi: 10.1016/j.scitotenv.2009.02.040
– ident: e_1_3_3_8_1
  doi: 10.1145/2939672.2939785
– ident: e_1_3_3_20_1
  doi: 10.1016/j.rse.2010.04.011
– ident: e_1_3_3_26_1
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_3_3_53_1
  doi: 10.1109/JSTARS.2016.2520501
– ident: e_1_3_3_55_1
  doi: 10.1016/S0967-0645(01)00096-0
– ident: e_1_3_3_51_1
  doi: 10.1016/j.rse.2014.03.026
– ident: e_1_3_3_37_1
  doi: 10.1029/JC082i024p03487
SSID ssj0006757
Score 2.5331135
Snippet Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9412
SubjectTerms Accuracy
Algae
Algal blooms
Algorithms
Anthropogenic factors
Arabian Sea
Bay of Bengal
Classification
climate
Coastal sediments
Coastal waters
Cochlodinium
color
Data
decision support systems
Decision trees
Detection
Eutrophication
Image detection
Imaging techniques
Machine learning
Model testing
MODIS
Noctiluca
Ocean colour
Oceans
pollution
Pollution detection
prediction
Reflectance
Remote sensing
Sediments
Species
Species classification
Spectral signatures
Spectroradiometers
toxicity
Trichodesmium erythraeum
Water pollution
Water quality
Title Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1633696
https://www.proquest.com/docview/2282411111
https://www.proquest.com/docview/2315268898
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-5901
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006757
  issn: 0143-1161
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ALGr9EYSAjsVOUqom9JD5ObF01jYGgFRWXyE6ddtqWljY9jD-Rv4r3bCdL1YkBOURpHMdq3hf7s_O99wh5L2SuhFDK1xlMUThwZF_wXu6HIZDTIBEH3DgKfzyPBiN-Oj4Yt1q_Gqqldam62c87_Ur-x6pwDuyKXrL_YNn6pnACjsG-sAcLw_6vbGwyWqLWp-Z96JlxZdTo1x46UcI82HqQLDXYRHsr1KsXUw-Fod56ZT0UPeigcZnQmy6NAKz0gHrjMqg3cRl4UI-ubdacJpvdXE5sBKHYbK3W-MxkeWkF3afyRq9m3oksFrIW3nyFa80qzxd5iaVG_l0XzmRxvZ5a_H5GQebFSjp3DLdqEZiUC9ZJ0-BsuJVApKFisuuczA8CG6e9q23fzKLIR1fZZudtYz05kIa80RUL7vTZ2v20UWS2hgynsYQGsT0U-4kukFTMc3g7Rla6gPNPaX90dpYOj8fDfdZf_PAxfxl-599nRxZgD8hOCCNMr012DgdH37_VvACmZtZ53_21yp8MI73f1foGU9qIo7vFGwwZGu6Sx24WQw8tJJ-Qli6ekocn2sU_f0bKTWjSeU4NNKmBJnXQpAhNasFCHVgoQpMaaFJZUAdNWkGTOmjSCpoUoUkNNJ-TUf94-GHguwQffsbioARAxInMgbILJWEmIOMY6Knigk2CUMU6S6IMimPe4_B8QqF7DOpNwkzxTGOmdPaCtIt5oV8SKhI2Ab7HejljXORxkkeJyhWLJJ9orkWH8OphppmLfo9JWK7SoAqS62yQog1SZ4MO6dbVFjb8y30VRNNSaWmAnluMp-yeunuVWVP3yq7SMEyAZOPWIe_qYhgD8MOeLPR8DdewAKM2JSJ59edbvCaPbl_GPdIul2v9Bkh1qd46tP4GfOzMTQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB219EAvUPqhbqEwlXrNEsfedXysKtDSwp5A4mbFjt1KpVkE2QP8-s44yQqoEAduK3knu3Fsz7Pz5j2Ar6aKzhjnsuBpi6III2dG5TErCgKnojQTlQqFT-bT2Zn6cT45v1MLw7RK3kPHTigirdU8ufkweqDE7bMmnSCowswsMyZEwaZ0L-HVhMA-uxjIfL5ajQkQdyXTLMVJMUMVz2OXuZef7qmX_rdapxR0uAl--PMd8-TPeNm6sb99oOv4vLt7Axs9QsVv3ZDagheheQvrvVn675t30CYjTaYYpaeKi4hcEHKBTIL_i1y7Sdtv5MIVvAo0FAJeM02--YXMR8Vl-lg1SHmBTyeRLsy8sxYJ8fPpK9a98Q_yK3NMZj3v4ezw4PT7LOvNGzIvtWgzoXVZRYJjxlWE8iqtCXo4ZWQtCqeDL6eemrXKFd1uYUIuKa4uvFM-sAu2_ABrzaIJHwFNKWvK5TKPUioTdRmnpYtOTitVBxXMCNTwyKzvlc3ZYOPCikEAte9Sy11q-y4dwXgVdtlJezwVYO6OB9umM5XYGaBY-UTszjB4bL9KXNuC9ruKc5YYwZdVM81vfmlTNWGxpO9IwYo8pSk_PePn92B9dnpybI-P5j-34TU3MSdH6B1Ya6-W4TMhq9btpqnzD4rBE98
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLy6ti-4BB4poljt04PlaUVctjxYFK3Kw4sUFqyVbd7KH8-s44zoqCUA-9RXImiR3b89n-Zj6At6YOzhjnMt_QEkURRs6MykNWFARORWUOVAwU_jIvj0_Vx-8HI5twmWiVvIYOQ6KIOFfz4L5ow8iIe8cp6QQhFSZmmSkBCtakuw8PSj4V4yiOfL6ejAkPDxHTnImTbMYgnv895oZ7upG89J_JOnqg2Ra48dsH4snZdNW7afP7r7SOd6rcE9hM-BQPhw71FO757hk8SlLpP6-eQx9lNJlgFP8pLgJyOMg5MgX-F3LkJi2-kcNW8NJTR_C4ZJJ89wOZjYqreFl3SF6B9yaRHsyssx4J7_PeK7ZJ9gf5wByjVM8LOJ19-Pb-OEvSDVkjtegzoXVVBwJjxtWE8WqtCXg4ZWQrCqd9U5UNFWuVK6puYXwuya4tGqcazxrYchs2ukXnXwKaSrbkyWUepFQm6CqUlQtOlrVqvfJmAmr8Y7ZJec1ZXuPcijH9aWpSy01qU5NOYLo2uxgSe9xmYP7sDraPOyphkD-x8hbbvbHv2DRHLG1Bq13FHktM4M26mEY3H9nUnV-s6B4pOB9PZaqdO7z-NTz8ejSzn0_mn3bhMZcwIUfoPdjoL1d-n2BV717FgXMNCSMSgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+algal+bloom+species+from+remote+sensing+data+using+an+extreme+gradient+boosted+decision+tree+model&rft.jtitle=International+journal+of+remote+sensing&rft.au=Ghatkar%2C+Jayesh+Ganpat&rft.au=Singh%2C+Rakesh+Kumar&rft.au=Shanmugam%2C+Palanisamy&rft.date=2019-12-17&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=40&rft.issue=24&rft.spage=9412&rft.epage=9438&rft_id=info:doi/10.1080%2F01431161.2019.1633696&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon