Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model
Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of ca...
Saved in:
| Published in | International journal of remote sensing Vol. 40; no. 24; pp. 9412 - 9438 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Taylor & Francis
17.12.2019
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0143-1161 1366-5901 1366-5901 |
| DOI | 10.1080/01431161.2019.1633696 |
Cover
| Abstract | Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of causative species based on remote sensing data are greatly limited because of the difficulties in interpreting the composite reflectance signal from different water features and types. In the present study, an accurate and reliable method is developed to automatically detect the onset of blooms and correctly classify the bloom species in Arabian Sea and Bay of Bengal waters using remote sensing data. A data-driven approach using machine learning algorithm is devised based on reflectance spectral signatures and tested on several MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) data for classifying the dominant water categories, including clear ocean waters devoid of sediments and algal blooms, sediment-laden coastal waters, and three major algal blooms, Trichodesmium erythraeum, Noctiluca scintillans and Cochlodinium polykrikoides. An extreme gradient boosted decision tree (XGBoost) model is chosen to improve the prediction accuracy by prevention of overfitting, which increases the scalability of the model on several unseen test data. This model was trained using 1.5 million samples and resulted in a classification accuracy of over 98%. When the results were validated using forty thousand random samples from the known blooms, an overall accuracy more than 96.8% was achieved. The applicability of the trained XGBoost model was further verified using MODIS-Aqua images, and it showed promise for successful detection and identification of well-documented blooms. The use of spectral information to classify algal blooms makes this method more robust and easily adaptable to different ocean colour sensors with a scope to accommodate other major algal blooms. |
|---|---|
| AbstractList | Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of incidence over large geographical areas due to anthropogenic factors such as pollution and climate shifts. To date, detection capabilities of causative species based on remote sensing data are greatly limited because of the difficulties in interpreting the composite reflectance signal from different water features and types. In the present study, an accurate and reliable method is developed to automatically detect the onset of blooms and correctly classify the bloom species in Arabian Sea and Bay of Bengal waters using remote sensing data. A data-driven approach using machine learning algorithm is devised based on reflectance spectral signatures and tested on several MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer) data for classifying the dominant water categories, including clear ocean waters devoid of sediments and algal blooms, sediment-laden coastal waters, and three major algal blooms, Trichodesmium erythraeum, Noctiluca scintillans and Cochlodinium polykrikoides. An extreme gradient boosted decision tree (XGBoost) model is chosen to improve the prediction accuracy by prevention of overfitting, which increases the scalability of the model on several unseen test data. This model was trained using 1.5 million samples and resulted in a classification accuracy of over 98%. When the results were validated using forty thousand random samples from the known blooms, an overall accuracy more than 96.8% was achieved. The applicability of the trained XGBoost model was further verified using MODIS-Aqua images, and it showed promise for successful detection and identification of well-documented blooms. The use of spectral information to classify algal blooms makes this method more robust and easily adaptable to different ocean colour sensors with a scope to accommodate other major algal blooms. |
| Author | Ghatkar, Jayesh Ganpat Singh, Rakesh Kumar Shanmugam, Palanisamy |
| Author_xml | – sequence: 1 givenname: Jayesh Ganpat orcidid: 0000-0002-7380-4056 surname: Ghatkar fullname: Ghatkar, Jayesh Ganpat organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras – sequence: 2 givenname: Rakesh Kumar orcidid: 0000-0002-6533-9422 surname: Singh fullname: Singh, Rakesh Kumar organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras – sequence: 3 givenname: Palanisamy orcidid: 0000-0002-5659-4464 surname: Shanmugam fullname: Shanmugam, Palanisamy email: pshanmugam@iitm.ac.in organization: Ocean Optics and Imaging Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras |
| BookMark | eNqFkc1u3CAUhVGVSp2keYRKSN1k4wkXbLDVTapR-iNF6qZZI4yvR0QYpsCozdsXZ9JNFg0bQOc7R3DPOTkLMSAhH4BtgfXsmkErACRsOYNhC1IIOcg3ZANCyqYbGJyRzco0K_SOnOf8wBiTqlMbUnbe5OxmZ01xMdA4U-P3xtPRx7jQfEDrMNM51UvCJRakGUN2YU8nUww9Ph1NoPinVB3pPpnJYSh0jDEXnOhUE_IaXXWkS5zQvydvZ-MzXj7vF-T-y-3P3bfm7sfX77vPd40VCkoDSvVm7qAdRtOLzigFAxvbQUzAR4W2l7bKqmVt_RwfkInqm7gdW4tty3pxQa5OuYcUfx0xF724bNF7EzAes-YCOi77fljRjy_Qh3hMob5Oc97zFtZVqU8nyqaYc8JZW1eeBleScV4D02sj-l8jem1EPzdS3d0L9yG5xaTHV303J58Lc0yL-R2Tn3Qxjz6mOZlQ56vF_yP-ApD9pDU |
| CitedBy_id | crossref_primary_10_3390_rs14236002 crossref_primary_10_1109_TGRS_2023_3326143 crossref_primary_10_1016_j_marpolbul_2023_115148 crossref_primary_10_3390_rs14133000 crossref_primary_10_1016_j_scitotenv_2020_141821 crossref_primary_10_1016_j_algal_2021_102487 crossref_primary_10_1007_s10661_023_11827_0 crossref_primary_10_1364_OE_499362 crossref_primary_10_1080_10106049_2024_2380372 crossref_primary_10_1007_s00271_022_00788_w crossref_primary_10_1007_s11042_023_17612_y crossref_primary_10_1016_j_eehl_2022_06_001 crossref_primary_10_3390_w17010050 crossref_primary_10_1016_j_jconhyd_2024_104304 crossref_primary_10_1109_JSTARS_2021_3066697 crossref_primary_10_3390_app10051666 crossref_primary_10_1016_j_ecoinf_2024_102782 crossref_primary_10_1021_acs_est_4c01877 crossref_primary_10_1007_s12145_020_00475_4 crossref_primary_10_1016_j_asr_2020_09_045 crossref_primary_10_3390_rs15164112 crossref_primary_10_1016_j_marpolbul_2024_117036 crossref_primary_10_1016_j_isci_2025_111916 crossref_primary_10_1016_j_rse_2020_111974 crossref_primary_10_3390_hydrology10050110 crossref_primary_10_1016_j_isprsjprs_2022_07_012 crossref_primary_10_3390_rs15010274 crossref_primary_10_3389_frsen_2023_1194580 crossref_primary_10_3390_rs12050777 crossref_primary_10_1109_TGRS_2023_3348159 crossref_primary_10_3390_rs14061453 crossref_primary_10_1016_j_envpol_2022_120078 crossref_primary_10_3390_rs13224662 crossref_primary_10_1088_1361_6501_adc030 crossref_primary_10_1117_1_JRS_18_024513 crossref_primary_10_1109_TGRS_2021_3114635 crossref_primary_10_1177_0739456X241268464 crossref_primary_10_1016_j_rse_2023_113486 crossref_primary_10_7717_peerj_14557 crossref_primary_10_1016_j_idairyj_2022_105467 crossref_primary_10_3390_rs12223751 crossref_primary_10_1016_j_jhydrol_2020_125682 crossref_primary_10_3389_feart_2022_1102802 crossref_primary_10_3390_rs15163958 crossref_primary_10_1016_j_ecolind_2021_107356 crossref_primary_10_1016_j_envpol_2023_123017 crossref_primary_10_1016_j_isprsjprs_2023_12_012 crossref_primary_10_3390_rs14020271 crossref_primary_10_1088_1755_1315_842_1_012018 crossref_primary_10_1080_17538947_2021_1907462 crossref_primary_10_4236_ijg_2019_1010050 crossref_primary_10_3390_rs16030514 crossref_primary_10_3390_w15203567 crossref_primary_10_1038_s41598_024_66699_2 crossref_primary_10_1016_j_ecolind_2024_111715 crossref_primary_10_3390_rs12030407 |
| Cites_doi | 10.1016/j.asr.2018.02.024 10.1016/j.hal.2008.08.024 10.1016/j.rse.2015.05.022 10.1016/j.jglr.2016.11.001 10.1016/j.marpolbul.2014.06.048 10.3390/rs5104774 10.1364/OE.23.003055 10.1016/j.dsr.2008.03.003 10.1109/JSTARS.2012.2227993 10.3390/rs6042963 10.1016/j.hal.2007.12.006 10.1002/2016JC012368 10.1007/s12237-009-9169-5 10.1093/icesjms/fsq168 10.4172/JREAC.1000123 10.1016/j.rse.2011.10.001 10.1016/j.hal.2009.08.013 10.1080/01431168908903974 10.3390/en10081168 10.1002/2015JC011604 10.1080/01431160802178110 10.1007/978-3-662-08968-2_16 10.1038/ncomms5862 10.1007/978-1-4899-3242-6 10.1016/j.rse.2009.05.012 10.1016/j.rse.2006.04.007 10.1016/j.hal.2013.10.002 10.1016/j.hal.2011.10.027 10.5194/osd-11-2791-2014 10.1029/2011JC007395 10.4319/lom.2011.9.50 10.1016/j.procs.2016.07.229 10.1126/science.281.5374.237 10.1016/j.ocecoaman.2009.04.006 10.1080/14634988.2012.672151 10.1007/s12601-010-0013-4 10.1007/s12237-013-9693-1 10.3390/s150202873 10.1088/1748-9326/9/11/114003 10.1364/AO.46.005068 10.1364/AO.33.001081 10.2216/i0031-8884-32-2-79.1 10.3390/rs10030191 10.1016/j.hal.2013.11.003 10.2307/1296885 10.1016/j.isprsjprs.2014.12.010 10.4236/ars.2012.12004 10.1016/j.scitotenv.2009.02.040 10.1145/2939672.2939785 10.1016/j.rse.2010.04.011 10.1007/978-1-4614-7138-7 10.1109/JSTARS.2016.2520501 10.1016/S0967-0645(01)00096-0 10.1016/j.rse.2014.03.026 10.1029/JC082i024p03487 |
| ContentType | Journal Article |
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| DOI | 10.1080/01431161.2019.1633696 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1366-5901 |
| EndPage | 9438 |
| ExternalDocumentID | 10_1080_01431161_2019_1633696 1633696 |
| Genre | Article |
| GeographicLocations | Bay of Bengal Arabian Sea |
| GeographicLocations_xml | – name: Arabian Sea – name: Bay of Bengal |
| GrantInformation_xml | – fundername: Department of Science and Technology India grantid: OEC1819150DSTXPSHA |
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABUFD ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c371t-1778af5149ba835a77190b493d12b7ec86caf5740414329e03c37d2cb4ce44083 |
| ISSN | 0143-1161 1366-5901 |
| IngestDate | Fri Sep 05 17:33:38 EDT 2025 Wed Aug 13 11:22:10 EDT 2025 Wed Oct 01 04:43:47 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Mon Oct 20 23:45:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c371t-1778af5149ba835a77190b493d12b7ec86caf5740414329e03c37d2cb4ce44083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5659-4464 0000-0002-7380-4056 0000-0002-6533-9422 |
| PQID | 2282411111 |
| PQPubID | 2045515 |
| PageCount | 27 |
| ParticipantIDs | crossref_citationtrail_10_1080_01431161_2019_1633696 crossref_primary_10_1080_01431161_2019_1633696 informaworld_taylorfrancis_310_1080_01431161_2019_1633696 proquest_miscellaneous_2315268898 proquest_journals_2282411111 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-17 |
| PublicationDateYYYYMMDD | 2019-12-17 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | International journal of remote sensing |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_3_52_1 IOCCG (e_1_3_3_25_1) 2014 Kotsiantis S. B. (e_1_3_3_27_1) 2007 e_1_3_3_50_1 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_58_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 e_1_3_3_63_1 e_1_3_3_61_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_48_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_30_1 e_1_3_3_51_1 Sahayak Satish, R. (e_1_3_3_44_1) 2005; 89 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_59_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_57_1 e_1_3_3_55_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_53_1 e_1_3_3_41_1 e_1_3_3_62_1 e_1_3_3_60_1 Mohanty A. K. (e_1_3_3_34_1) 2010; 39 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 Saeedi H. (e_1_3_3_43_1) 2011; 2 e_1_3_3_24_1 e_1_3_3_49_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 |
| References_xml | – ident: e_1_3_3_48_1 doi: 10.1016/j.asr.2018.02.024 – start-page: 3 volume-title: Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies year: 2007 ident: e_1_3_3_27_1 – ident: e_1_3_3_24_1 doi: 10.1016/j.hal.2008.08.024 – ident: e_1_3_3_21_1 doi: 10.1016/j.rse.2015.05.022 – ident: e_1_3_3_58_1 doi: 10.1016/j.jglr.2016.11.001 – ident: e_1_3_3_49_1 doi: 10.1016/j.marpolbul.2014.06.048 – ident: e_1_3_3_39_1 doi: 10.3390/rs5104774 – ident: e_1_3_3_56_1 doi: 10.1364/OE.23.003055 – ident: e_1_3_3_15_1 doi: 10.1016/j.dsr.2008.03.003 – ident: e_1_3_3_47_1 doi: 10.1109/JSTARS.2012.2227993 – ident: e_1_3_3_7_1 doi: 10.3390/rs6042963 – ident: e_1_3_3_12_1 doi: 10.1016/j.hal.2007.12.006 – ident: e_1_3_3_57_1 doi: 10.1002/2016JC012368 – ident: e_1_3_3_36_1 doi: 10.1007/s12237-009-9169-5 – ident: e_1_3_3_60_1 doi: 10.1093/icesjms/fsq168 – ident: e_1_3_3_61_1 doi: 10.4172/JREAC.1000123 – volume: 39 start-page: 323 issue: 3 year: 2010 ident: e_1_3_3_34_1 article-title: Bloom of Trichodesmium Erythraeum (Ehr.) And Its Impact on Water Quality and Plankton Community Structure in the Coastal Waters of Woutheast Coast of India publication-title: Indian Journal of Marine Science – ident: e_1_3_3_35_1 doi: 10.1016/j.rse.2011.10.001 – ident: e_1_3_3_42_1 doi: 10.1016/j.hal.2009.08.013 – ident: e_1_3_3_46_1 doi: 10.1080/01431168908903974 – ident: e_1_3_3_63_1 doi: 10.3390/en10081168 – ident: e_1_3_3_13_1 doi: 10.1002/2015JC011604 – volume: 89 start-page: 1472 issue: 9 year: 2005 ident: e_1_3_3_44_1 article-title: Red Tide of Noctiluca Miliaris off South of Thiruvananthapuram Subsequent to the ‘Stench Event’ at the Southern Kerala Coast publication-title: Current Science – ident: e_1_3_3_16_1 doi: 10.1080/01431160802178110 – ident: e_1_3_3_54_1 doi: 10.1007/978-3-662-08968-2_16 – ident: e_1_3_3_14_1 doi: 10.1038/ncomms5862 – ident: e_1_3_3_31_1 doi: 10.1007/978-1-4899-3242-6 – ident: e_1_3_3_18_1 doi: 10.1016/j.rse.2009.05.012 – ident: e_1_3_3_2_1 doi: 10.1016/j.rse.2006.04.007 – ident: e_1_3_3_29_1 doi: 10.1016/j.hal.2013.10.002 – ident: e_1_3_3_38_1 doi: 10.1016/j.hal.2011.10.027 – ident: e_1_3_3_52_1 doi: 10.5194/osd-11-2791-2014 – ident: e_1_3_3_22_1 doi: 10.1029/2011JC007395 – ident: e_1_3_3_32_1 doi: 10.4319/lom.2011.9.50 – volume-title: Reports and Monographs of the International OceanColour Coordinating Group year: 2014 ident: e_1_3_3_25_1 – ident: e_1_3_3_30_1 – ident: e_1_3_3_6_1 doi: 10.1016/j.procs.2016.07.229 – ident: e_1_3_3_10_1 doi: 10.1126/science.281.5374.237 – ident: e_1_3_3_5_1 doi: 10.1016/j.ocecoaman.2009.04.006 – ident: e_1_3_3_3_1 doi: 10.1080/14634988.2012.672151 – ident: e_1_3_3_40_1 doi: 10.1007/s12601-010-0013-4 – ident: e_1_3_3_4_1 doi: 10.1007/s12237-013-9693-1 – ident: e_1_3_3_19_1 doi: 10.3390/s150202873 – ident: e_1_3_3_33_1 doi: 10.1088/1748-9326/9/11/114003 – ident: e_1_3_3_11_1 doi: 10.1364/AO.46.005068 – ident: e_1_3_3_45_1 doi: 10.1364/AO.33.001081 – ident: e_1_3_3_17_1 doi: 10.2216/i0031-8884-32-2-79.1 – ident: e_1_3_3_23_1 doi: 10.3390/rs10030191 – volume: 2 start-page: 13 issue: 6 year: 2011 ident: e_1_3_3_43_1 article-title: Catastrophic Impact of Red Tides of Cochlodinium Polykrikoides on the Razor Clam Solen Dactylus in Coastal Waters of the Northern Persian Gulf publication-title: Journal of the Persian Gulf – ident: e_1_3_3_28_1 doi: 10.1016/j.hal.2013.11.003 – ident: e_1_3_3_41_1 doi: 10.2307/1296885 – ident: e_1_3_3_62_1 doi: 10.1016/j.isprsjprs.2014.12.010 – ident: e_1_3_3_9_1 – ident: e_1_3_3_50_1 doi: 10.4236/ars.2012.12004 – ident: e_1_3_3_59_1 doi: 10.1016/j.scitotenv.2009.02.040 – ident: e_1_3_3_8_1 doi: 10.1145/2939672.2939785 – ident: e_1_3_3_20_1 doi: 10.1016/j.rse.2010.04.011 – ident: e_1_3_3_26_1 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_3_3_53_1 doi: 10.1109/JSTARS.2016.2520501 – ident: e_1_3_3_55_1 doi: 10.1016/S0967-0645(01)00096-0 – ident: e_1_3_3_51_1 doi: 10.1016/j.rse.2014.03.026 – ident: e_1_3_3_37_1 doi: 10.1029/JC082i024p03487 |
| SSID | ssj0006757 |
| Score | 2.5331135 |
| Snippet | Coastal and open ocean regions throughout the world are now subject to an array of toxic, harmful, or more intense algal blooms with an increasing trend of... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9412 |
| SubjectTerms | Accuracy Algae Algal blooms Algorithms Anthropogenic factors Arabian Sea Bay of Bengal Classification climate Coastal sediments Coastal waters Cochlodinium color Data decision support systems Decision trees Detection Eutrophication Image detection Imaging techniques Machine learning Model testing MODIS Noctiluca Ocean colour Oceans pollution Pollution detection prediction Reflectance Remote sensing Sediments Species Species classification Spectral signatures Spectroradiometers toxicity Trichodesmium erythraeum Water pollution Water quality |
| Title | Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2019.1633696 https://www.proquest.com/docview/2282411111 https://www.proquest.com/docview/2315268898 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1366-5901 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006757 issn: 0143-1161 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ALGr9EYSAjsVOUqom9JD5ObF01jYGgFRWXyE6ddtqWljY9jD-Rv4r3bCdL1YkBOURpHMdq3hf7s_O99wh5L2SuhFDK1xlMUThwZF_wXu6HIZDTIBEH3DgKfzyPBiN-Oj4Yt1q_Gqqldam62c87_Ur-x6pwDuyKXrL_YNn6pnACjsG-sAcLw_6vbGwyWqLWp-Z96JlxZdTo1x46UcI82HqQLDXYRHsr1KsXUw-Fod56ZT0UPeigcZnQmy6NAKz0gHrjMqg3cRl4UI-ubdacJpvdXE5sBKHYbK3W-MxkeWkF3afyRq9m3oksFrIW3nyFa80qzxd5iaVG_l0XzmRxvZ5a_H5GQebFSjp3DLdqEZiUC9ZJ0-BsuJVApKFisuuczA8CG6e9q23fzKLIR1fZZudtYz05kIa80RUL7vTZ2v20UWS2hgynsYQGsT0U-4kukFTMc3g7Rla6gPNPaX90dpYOj8fDfdZf_PAxfxl-599nRxZgD8hOCCNMr012DgdH37_VvACmZtZ53_21yp8MI73f1foGU9qIo7vFGwwZGu6Sx24WQw8tJJ-Qli6ekocn2sU_f0bKTWjSeU4NNKmBJnXQpAhNasFCHVgoQpMaaFJZUAdNWkGTOmjSCpoUoUkNNJ-TUf94-GHguwQffsbioARAxInMgbILJWEmIOMY6Knigk2CUMU6S6IMimPe4_B8QqF7DOpNwkzxTGOmdPaCtIt5oV8SKhI2Ab7HejljXORxkkeJyhWLJJ9orkWH8OphppmLfo9JWK7SoAqS62yQog1SZ4MO6dbVFjb8y30VRNNSaWmAnluMp-yeunuVWVP3yq7SMEyAZOPWIe_qYhgD8MOeLPR8DdewAKM2JSJ59edbvCaPbl_GPdIul2v9Bkh1qd46tP4GfOzMTQ |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB219EAvUPqhbqEwlXrNEsfedXysKtDSwp5A4mbFjt1KpVkE2QP8-s44yQqoEAduK3knu3Fsz7Pz5j2Ar6aKzhjnsuBpi6III2dG5TErCgKnojQTlQqFT-bT2Zn6cT45v1MLw7RK3kPHTigirdU8ufkweqDE7bMmnSCowswsMyZEwaZ0L-HVhMA-uxjIfL5ajQkQdyXTLMVJMUMVz2OXuZef7qmX_rdapxR0uAl--PMd8-TPeNm6sb99oOv4vLt7Axs9QsVv3ZDagheheQvrvVn675t30CYjTaYYpaeKi4hcEHKBTIL_i1y7Sdtv5MIVvAo0FAJeM02--YXMR8Vl-lg1SHmBTyeRLsy8sxYJ8fPpK9a98Q_yK3NMZj3v4ezw4PT7LOvNGzIvtWgzoXVZRYJjxlWE8iqtCXo4ZWQtCqeDL6eemrXKFd1uYUIuKa4uvFM-sAu2_ABrzaIJHwFNKWvK5TKPUioTdRmnpYtOTitVBxXMCNTwyKzvlc3ZYOPCikEAte9Sy11q-y4dwXgVdtlJezwVYO6OB9umM5XYGaBY-UTszjB4bL9KXNuC9ruKc5YYwZdVM81vfmlTNWGxpO9IwYo8pSk_PePn92B9dnpybI-P5j-34TU3MSdH6B1Ya6-W4TMhq9btpqnzD4rBE98 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYBLy6ti-4BB4poljt04PlaUVctjxYFK3Kw4sUFqyVbd7KH8-s44zoqCUA-9RXImiR3b89n-Zj6At6YOzhjnMt_QEkURRs6MykNWFARORWUOVAwU_jIvj0_Vx-8HI5twmWiVvIYOQ6KIOFfz4L5ow8iIe8cp6QQhFSZmmSkBCtakuw8PSj4V4yiOfL6ejAkPDxHTnImTbMYgnv895oZ7upG89J_JOnqg2Ra48dsH4snZdNW7afP7r7SOd6rcE9hM-BQPhw71FO757hk8SlLpP6-eQx9lNJlgFP8pLgJyOMg5MgX-F3LkJi2-kcNW8NJTR_C4ZJJ89wOZjYqreFl3SF6B9yaRHsyssx4J7_PeK7ZJ9gf5wByjVM8LOJ19-Pb-OEvSDVkjtegzoXVVBwJjxtWE8WqtCXg4ZWQrCqd9U5UNFWuVK6puYXwuya4tGqcazxrYchs2ukXnXwKaSrbkyWUepFQm6CqUlQtOlrVqvfJmAmr8Y7ZJec1ZXuPcijH9aWpSy01qU5NOYLo2uxgSe9xmYP7sDraPOyphkD-x8hbbvbHv2DRHLG1Bq13FHktM4M26mEY3H9nUnV-s6B4pOB9PZaqdO7z-NTz8ejSzn0_mn3bhMZcwIUfoPdjoL1d-n2BV717FgXMNCSMSgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+algal+bloom+species+from+remote+sensing+data+using+an+extreme+gradient+boosted+decision+tree+model&rft.jtitle=International+journal+of+remote+sensing&rft.au=Ghatkar%2C+Jayesh+Ganpat&rft.au=Singh%2C+Rakesh+Kumar&rft.au=Shanmugam%2C+Palanisamy&rft.date=2019-12-17&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=40&rft.issue=24&rft.spage=9412&rft.epage=9438&rft_id=info:doi/10.1080%2F01431161.2019.1633696&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |