Political Optimization Algorithm with a Hybrid Deep Learning Assisted Malicious URL Detection Model

With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security,...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 15; no. 24; p. 16811
Main Authors Aljebreen, Mohammed, Alrayes, Fatma S., Aljameel, Sumayh S., Saeed, Muhammad Kashif
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su152416811

Cover

Abstract With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability, transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs in an IoT environment is crucial to protect devices and the network from potential security threats. Malicious URL detection is an essential element of cybersecurity. It is established that malicious URL attacks mean large risks in smart cities, comprising financial damages, losses of personal identifications, online banking, losing data, and loss of user confidentiality in online businesses, namely e-commerce and employment of social media. Therefore, this paper concentrates on the proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC technique performs pre-processing to transform the data to a compatible format, and a Fast Text word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning (HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal accuracy of 99.31%.
AbstractList With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability, transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs in an IoT environment is crucial to protect devices and the network from potential security threats. Malicious URL detection is an essential element of cybersecurity. It is established that malicious URL attacks mean large risks in smart cities, comprising financial damages, losses of personal identifications, online banking, losing data, and loss of user confidentiality in online businesses, namely e-commerce and employment of social media. Therefore, this paper concentrates on the proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC technique performs pre-processing to transform the data to a compatible format, and a Fast Text word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning (HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal accuracy of 99.31%.
Audience Academic
Author Saeed, Muhammad Kashif
Alrayes, Fatma S.
Aljebreen, Mohammed
Aljameel, Sumayh S.
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Aljebreen
  fullname: Aljebreen, Mohammed
– sequence: 2
  givenname: Fatma S.
  surname: Alrayes
  fullname: Alrayes, Fatma S.
– sequence: 3
  givenname: Sumayh S.
  orcidid: 0000-0001-8246-4658
  surname: Aljameel
  fullname: Aljameel, Sumayh S.
– sequence: 4
  givenname: Muhammad Kashif
  orcidid: 0000-0002-9300-2157
  surname: Saeed
  fullname: Saeed, Muhammad Kashif
BookMark eNqFkVtLxDAQhYMoeH3yDwR8El3NpW3ax8U7rChenktMp-tItqlJiq6_3uj6oCKYgSQM3zkcZtbJcuc6IGSbswMpK3YYBp6LjBcl50tkTTDFR5zlbPnbf5VshfDE0pGSV7xYI-baWYxotKVXfcQZvumIrqNjO3Ue4-OMvqSbano-f_DY0GOAnk5A-w67KR2HgCFCQy-1RYNuCPT-ZpKgCObT5tI1YDfJSqttgK2vd4Pcn57cHZ2PJldnF0fjychIxeOIFyyTCqqmNUZzpjIo8kxzIYUstYC2UYIXeZ5LU-qiNCWrKhCqrKRqc9mwVm6Q_YXv0PV6_qKtrXuPM-3nNWf1x4zqbzNK-M4C7717HiDE-skNvksJa1GxLPlKVSTqYEFNtYUau9ZFr02qBmZo0gZaTP2xUpXMMpHlSbD7Q5CYCK9xqocQ6ovbm5_s3oI13oXgof0nMP9FG4yf60qR0P6peQcoyqJE
CitedBy_id crossref_primary_10_3934_math_2024763
crossref_primary_10_1016_j_eswa_2024_125507
Cites_doi 10.3390/s22093373
10.1016/j.knosys.2020.105709
10.1109/ICEARS53579.2022.9751862
10.1016/j.comcom.2022.12.027
10.1049/ise2.12106
10.1002/ett.3677
10.1155/2023/8168075
10.1109/ACCESS.2020.3038570
10.14569/IJACSA.2020.0110119
10.1016/j.is.2020.101494
10.1063/5.0074077
10.1007/978-3-030-52856-0_35
10.20944/preprints202002.0269.v1
10.11591/ijece.v10i1.pp997-1005
10.1016/j.comcom.2019.11.032
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/su152416811
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10.3390/su152416811
A779344245
10_3390_su152416811
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c371t-160437e9dfcca1074e654a123238a2efd72165553c8a68c8099e278937f53d0f3
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Tue Aug 19 23:21:41 EDT 2025
Mon Jun 30 10:46:34 EDT 2025
Mon Oct 20 17:20:42 EDT 2025
Thu Oct 16 16:17:11 EDT 2025
Thu Oct 16 04:35:53 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c371t-160437e9dfcca1074e654a123238a2efd72165553c8a68c8099e278937f53d0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8246-4658
0000-0002-9300-2157
OpenAccessLink https://www.proquest.com/docview/2904937376?pq-origsite=%requestingapplication%&accountid=15518
PQID 2904937376
PQPubID 2032327
ParticipantIDs unpaywall_primary_10_3390_su152416811
proquest_journals_2904937376
gale_infotracacademiconefile_A779344245
gale_incontextgauss_ISR_A779344245
crossref_primary_10_3390_su152416811
crossref_citationtrail_10_3390_su152416811
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_10) 2020; 91
Patgiri (ref_11) 2023; 200
Wang (ref_19) 2020; 8
ref_14
ref_23
ref_22
ref_21
Askari (ref_20) 2020; Volume 195
Prabakaran (ref_13) 2023; 17
ref_3
Kim (ref_1) 2023; 24
ref_18
ref_17
Kumar (ref_5) 2023; 2023
ref_16
ref_15
ref_9
Wanda (ref_12) 2019; 21
Zahmatkesh (ref_4) 2022; 33
Raja (ref_8) 2022; Volume 2393
ref_7
Sundhari (ref_2) 2020; 150
ref_6
References_xml – volume: 24
  start-page: 17
  year: 2023
  ident: ref_1
  article-title: A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart City Environments
  publication-title: J. Korean Soc. Internet Inf.
– ident: ref_9
– ident: ref_17
  doi: 10.3390/s22093373
– volume: Volume 195
  start-page: 105709
  year: 2020
  ident: ref_20
  article-title: Political Optimizer: A novel socio-inspired meta-heuristic for global optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.105709
– ident: ref_6
  doi: 10.1109/ICEARS53579.2022.9751862
– volume: 200
  start-page: 30
  year: 2023
  ident: ref_11
  article-title: deepBF: Malicious URL detection using learned bloom filter and evolutionary deep learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.12.027
– volume: 17
  start-page: 423
  year: 2023
  ident: ref_13
  article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders
  publication-title: IET Inf. Secur.
  doi: 10.1049/ise2.12106
– volume: 33
  start-page: e3677
  year: 2022
  ident: ref_4
  article-title: An overview of security and privacy in smart cities’ IoT communications
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3677
– volume: 2023
  start-page: 8168075
  year: 2023
  ident: ref_5
  article-title: A Blockchain-Oriented Framework for Cloud-Assisted System to Countermeasure Phishing for Establishing Secure Smart City
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2023/8168075
– ident: ref_16
– volume: 8
  start-page: 213783
  year: 2020
  ident: ref_19
  article-title: Computer prediction of seawater sensor parameters in the central arctic region based on hybrid machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038570
– ident: ref_7
  doi: 10.14569/IJACSA.2020.0110119
– volume: 91
  start-page: 101494
  year: 2020
  ident: ref_10
  article-title: Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2020.101494
– volume: 21
  start-page: 971
  year: 2019
  ident: ref_12
  article-title: URLDeep: Continuous Prediction of Malicious URL with Dynamic Deep Learning in Social Networks
  publication-title: Int. J. Netw. Secur.
– volume: Volume 2393
  start-page: 020176
  year: 2022
  ident: ref_8
  article-title: Mudhr: Malicious URL detection using a heuristic rules-based approach
  publication-title: Proceedings of the AIP Conference Proceedings
  doi: 10.1063/5.0074077
– ident: ref_14
– ident: ref_18
  doi: 10.1007/978-3-030-52856-0_35
– ident: ref_3
  doi: 10.20944/preprints202002.0269.v1
– ident: ref_22
– ident: ref_23
– ident: ref_21
– ident: ref_15
  doi: 10.11591/ijece.v10i1.pp997-1005
– volume: 150
  start-page: 226
  year: 2020
  ident: ref_2
  article-title: IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.11.032
SSID ssj0000331916
Score 2.3519342
Snippet With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 16811
SubjectTerms Algorithms
Automation
Blacklisting
Classification
Computational linguistics
Cybersecurity
Cyberterrorism
Deep learning
Home banking services
Internet of Things
Language processing
Mathematical optimization
Natural language interfaces
Neural networks
Optimization algorithms
Optimization techniques
URLs
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7k-lB9sFotPfuDRSqCkN4lu5sfT3LYllNsleqBPoXdze5ZTHNHk1PqX9-Zy6a2RUTw9ZhLNszkm28238wC7GlkFbGRIsDkYAJhUh1oWejAIDkxyMe50bQ1cHwSjyfi3RfZqQlrL6vEUvxsCdIR5j_ECTkchHIQiUEYp2E4mBfu9Q-_mRQmmGOQ8lJ370oskY73YGVy8nH0lQ6V6_7e9uVxLO_RvZiwxPJCtzLRXTx-AKuLaq4uf6qyvJFwjtZAd0ttdSbf9xeN3je_7kxx_K9neQQPPR1lozZ-HsM9W63DatetXK_DxuHvTjg09FBQPwHjlXP44weEnXPfz8lG5XR2cdZ8O2e0xcsUG19SUxg7sHbO_DTXKcOooPgq2DHWAYZ0uGxy-h6NmqU0rGJ0Rlv5FCZHh5_fjAN_YkNgeBI2QRjTqCSbFQ4Dg6SeNpZCEWvjqYqsK2hUkJSSm1TFKcZDlllqxeWJk7wYOr4BvWpW2U1gw6FCNLJOp0kkFM9So0NhktRJTBWSuz686ryXGz_OnE7VKHMsa8jV-Q1X92Hv2njeTvH4s9lzCoOc5mJUJLyZqkVd528_neajBIFM0GfiPrz0Rm6GNzTK9zHgsmmU1i3L7S6cco8MdR5lWJPxBHG9Dy-uQ-xvq3r2j3ZbcD9CBtZqbbah11ws7A4ypkbv-nfiCg5RDW8
  priority: 102
  providerName: Unpaywall
Title Political Optimization Algorithm with a Hybrid Deep Learning Assisted Malicious URL Detection Model
URI https://www.proquest.com/docview/2904937376
https://www.mdpi.com/2071-1050/15/24/16811/pdf?version=1702475811
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: A8Z
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7UO3B7QVphW2ykJFSEgRTR3nxwNChbUUREtVqNQ9RY7jlIcsLSQV2n_PXev0B0J7THRKnHz2-bN99x1AO0JW4SrhWDg5KMtRfmRFIo4sheREIR_nKqKtgdHYHc6cL3MxP4FxmQtDYZWlT9w46nipaI_8bTdALss9HA_vV78sqhpFp6tlCQ1pSivE7zYSYxWodUkZqwq1D_3xZLrbdelw7HK2u03U47jeR7xxBkNW4tv20dT0r4M-g_o6W8mHPzJND2agwTk8MdSR9bZYX8CJzhpQLzOL8wZc9vdZa2hohm3-FJSJcsOb39BF3JvcS9ZLF_iJxc97RtuxTLLhAyVwsVutV8wory4YIkh9IWYj5OyKYmbZbPoVjYpNGFfGqJ5a-gxmg_6Pj0PLVFewFPfswrJdkjXSQZwgiBSWqV3hSGJY3JddncQk6yOE4MqXro_YBYGmtFnuJYLHnYRfQjVbZvoKWKcj0XPoJPK9riN54KvIdpTnJwLduuBJE96UPzZURnqcKmCkIS5BCIXwAIUmtHfGq63ixv_NXhJCIWlYZBQks5DrPA8_f5-GPQ-djkNHuk14bYySJb5QSZNzgM0m2asjy-sS6dCM4jzc97kmvNqh_1irnj_-mBdwSuXqt-Ew11Atfq_1DZKaImqZntqCyqe5jVez8aR39xdB0vgp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7aHwgGAwURhgoU1ISBFJHOfHw4QK69SytqCySnvzHMcpD1laSKqp_xx_G3et020I7W2v0cmJfZe7z_Z9dwAHKaKKUIvAweCgnUDHqZOKLHU0ghONeJzrlI4GhqOwNwm-novzLfjTcGEorbLxiStHnc00nZF_9BPEsjzC_-HT_JdDXaPodrVpoaFsa4XsaFVizBI7Ts3yCrdw1VH_GPV96Psn3bMvPcd2GXA0j7za8UIq72OSLMfJUHqiCUWgCGnwWPkmz6i8jRCC61iFMc4hSQzRR3mUC565OcdxH8BOwIMEN387n7uj7-PNKY_L0cS9cE0M5Dxx0b4wYiIKij3vVij8NyA8gtainKvllSqKGxHv5Ak8tlCVdda29RS2TLkLrYbJXO3CXveaJYeC1k1Uz0DbrDp8-A1d0qXlerJOMcUlrX9eMjr-ZYr1lkQYY8fGzJmt9DplaDFkexkb4h5BU44um4wHKFSv0sZKRv3biucwuZd13oPtclaaF8BcV6GnMnkaR36geBLr1At0FOcCw4jgeRs-NAsrtS11Th03ColbHtKCvKGFNhxshOfrCh__F3tHGpJUM6OkpJypWlSV7P8Yy06ETi6gK-Q2vLdC-QxfqJXlOOBnU5mtW5L7jaal9RqVvLbxNhxutH_XV728e5i30OqdDQdy0B-dvoKHPgK0dSrOPmzXvxfmNQKqOn1jrZbBxX3_KH8BzNMwkQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLwgGAwURhgoU1ISNGSOM6PhwkV2qplW5kKlfaWOY5dHrK0kFRT_0X-Ku5ap9sQ2tteo1Pi-M53n-377gD2M0QVoRKBg8FBOYGKMycTeeYoBCcK8ThXGR0NnA7D_jj4ei7ON-BPw4WhtMrGJy4ddT5VdEZ-6CeIZXmE6-HQ2LSIs07v0-yXQx2k6Ka1aachbZuF_GhZbsySPI714gq3c9XRoIO6P_D9XvfHl75jOw44ikde7XghlfrRSW7wxyhVUYcikIQ6eCx9bXIqdSOE4CqWYYz_kySaqKQ8MoLnruH43gewRZdf6CS2PneHZ6P1iY_L0dy9cEUS5Dxx0dYweiIiij3vVlj8Nzg8hu15OZOLK1kUN6Jf7yk8sbCVtVd29gw2dLkD2w2rudqB3e41Yw4FrcuonoOyGXb48Bu6p0vL-2TtYoJTWv-8ZHQUzCTrL4g8xjpaz5it-jphaD1khzk7xf2ConxdNh6doFC9TCErGfVyK17A-F7meRc2y2mpXwJzXYleS5ssjvxA8iRWmReoKDYCQ4rgpgUfm4lNlS17Tt03ihS3P6SF9IYWWrC_Fp6tqn38X-w9aSil-hklWeJEzqsqHXwfpe0IHV5A18kt-GCFzBQ_qKTlO-CwqeTWLcm9RtOp9SBVem3vLThYa_-uUb26-zXv4CEumPRkMDx-DY98xGqrrJw92Kx_z_UbxFZ19tYaLYOL-14nfwHvnTTA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7k-lB9sFotPfuDRSqCkN4lu5sfT3LYllNsleqBPoXdze5ZTHNHk1PqX9-Zy6a2RUTw9ZhLNszkm28238wC7GlkFbGRIsDkYAJhUh1oWejAIDkxyMe50bQ1cHwSjyfi3RfZqQlrL6vEUvxsCdIR5j_ECTkchHIQiUEYp2E4mBfu9Q-_mRQmmGOQ8lJ370oskY73YGVy8nH0lQ6V6_7e9uVxLO_RvZiwxPJCtzLRXTx-AKuLaq4uf6qyvJFwjtZAd0ttdSbf9xeN3je_7kxx_K9neQQPPR1lozZ-HsM9W63DatetXK_DxuHvTjg09FBQPwHjlXP44weEnXPfz8lG5XR2cdZ8O2e0xcsUG19SUxg7sHbO_DTXKcOooPgq2DHWAYZ0uGxy-h6NmqU0rGJ0Rlv5FCZHh5_fjAN_YkNgeBI2QRjTqCSbFQ4Dg6SeNpZCEWvjqYqsK2hUkJSSm1TFKcZDlllqxeWJk7wYOr4BvWpW2U1gw6FCNLJOp0kkFM9So0NhktRJTBWSuz686ryXGz_OnE7VKHMsa8jV-Q1X92Hv2njeTvH4s9lzCoOc5mJUJLyZqkVd528_neajBIFM0GfiPrz0Rm6GNzTK9zHgsmmU1i3L7S6cco8MdR5lWJPxBHG9Dy-uQ-xvq3r2j3ZbcD9CBtZqbbah11ws7A4ypkbv-nfiCg5RDW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Political+Optimization+Algorithm+with+a+Hybrid+Deep+Learning+Assisted+Malicious+URL+Detection+Model&rft.jtitle=Sustainability&rft.au=Aljebreen%2C+Mohammed&rft.au=Alrayes%2C+Fatma+S&rft.au=Aljameel%2C+Sumayh+S&rft.au=Saeed%2C+Muhammad+Kashif&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=24&rft_id=info:doi/10.3390%2Fsu152416811&rft.externalDBID=ISR&rft.externalDocID=A779344245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon