Political Optimization Algorithm with a Hybrid Deep Learning Assisted Malicious URL Detection Model
With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security,...
        Saved in:
      
    
          | Published in | Sustainability Vol. 15; no. 24; p. 16811 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2071-1050 2071-1050  | 
| DOI | 10.3390/su152416811 | 
Cover
| Abstract | With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability, transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs in an IoT environment is crucial to protect devices and the network from potential security threats. Malicious URL detection is an essential element of cybersecurity. It is established that malicious URL attacks mean large risks in smart cities, comprising financial damages, losses of personal identifications, online banking, losing data, and loss of user confidentiality in online businesses, namely e-commerce and employment of social media. Therefore, this paper concentrates on the proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC technique performs pre-processing to transform the data to a compatible format, and a Fast Text word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning (HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal accuracy of 99.31%. | 
    
|---|---|
| AbstractList | With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart devices to collect and process data in smart city structures utilizing an open channel, the Internet. Accordingly, challenges like security, centralization, privacy (i.e., execution data poisoning and inference attacks), scalability, transparency, and verifiability restrict faster variations of smart cities. Detecting malicious URLs in an IoT environment is crucial to protect devices and the network from potential security threats. Malicious URL detection is an essential element of cybersecurity. It is established that malicious URL attacks mean large risks in smart cities, comprising financial damages, losses of personal identifications, online banking, losing data, and loss of user confidentiality in online businesses, namely e-commerce and employment of social media. Therefore, this paper concentrates on the proposal of a Political Optimization Algorithm by a Hybrid Deep Learning Assisted Malicious URL Detection and Classification for Cybersecurity (POAHDL-MDC) technique. The presented POAHDL-MDC technique identifies whether malicious URLs occur. To accomplish this, the POAHDL-MDC technique performs pre-processing to transform the data to a compatible format, and a Fast Text word embedding process is involved. For malicious URL recognition, a Hybrid Deep Learning (HDL) model integrates the features of stacked autoencoder (SAE) and bi-directional long short-term memory (Bi-LSTM). Finally, POA is exploited for optimum hyperparameter tuning of the HDL technique. The simulation values of the POAHDL-MDC approach are tested on a Malicious URL database, and the outcome exhibits an improvement of the POAHDL-MDC technique with a maximal accuracy of 99.31%. | 
    
| Audience | Academic | 
    
| Author | Saeed, Muhammad Kashif Alrayes, Fatma S. Aljebreen, Mohammed Aljameel, Sumayh S.  | 
    
| Author_xml | – sequence: 1 givenname: Mohammed surname: Aljebreen fullname: Aljebreen, Mohammed – sequence: 2 givenname: Fatma S. surname: Alrayes fullname: Alrayes, Fatma S. – sequence: 3 givenname: Sumayh S. orcidid: 0000-0001-8246-4658 surname: Aljameel fullname: Aljameel, Sumayh S. – sequence: 4 givenname: Muhammad Kashif orcidid: 0000-0002-9300-2157 surname: Saeed fullname: Saeed, Muhammad Kashif  | 
    
| BookMark | eNqFkVtLxDAQhYMoeH3yDwR8El3NpW3ax8U7rChenktMp-tItqlJiq6_3uj6oCKYgSQM3zkcZtbJcuc6IGSbswMpK3YYBp6LjBcl50tkTTDFR5zlbPnbf5VshfDE0pGSV7xYI-baWYxotKVXfcQZvumIrqNjO3Ue4-OMvqSbano-f_DY0GOAnk5A-w67KR2HgCFCQy-1RYNuCPT-ZpKgCObT5tI1YDfJSqttgK2vd4Pcn57cHZ2PJldnF0fjychIxeOIFyyTCqqmNUZzpjIo8kxzIYUstYC2UYIXeZ5LU-qiNCWrKhCqrKRqc9mwVm6Q_YXv0PV6_qKtrXuPM-3nNWf1x4zqbzNK-M4C7717HiDE-skNvksJa1GxLPlKVSTqYEFNtYUau9ZFr02qBmZo0gZaTP2xUpXMMpHlSbD7Q5CYCK9xqocQ6ovbm5_s3oI13oXgof0nMP9FG4yf60qR0P6peQcoyqJE | 
    
| CitedBy_id | crossref_primary_10_3934_math_2024763 crossref_primary_10_1016_j_eswa_2024_125507  | 
    
| Cites_doi | 10.3390/s22093373 10.1016/j.knosys.2020.105709 10.1109/ICEARS53579.2022.9751862 10.1016/j.comcom.2022.12.027 10.1049/ise2.12106 10.1002/ett.3677 10.1155/2023/8168075 10.1109/ACCESS.2020.3038570 10.14569/IJACSA.2020.0110119 10.1016/j.is.2020.101494 10.1063/5.0074077 10.1007/978-3-030-52856-0_35 10.20944/preprints202002.0269.v1 10.11591/ijece.v10i1.pp997-1005 10.1016/j.comcom.2019.11.032  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| DOI | 10.3390/su152416811 | 
    
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 2071-1050 | 
    
| ExternalDocumentID | 10.3390/su152416811 A779344245 10_3390_su152416811  | 
    
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c371t-160437e9dfcca1074e654a123238a2efd72165553c8a68c8099e278937f53d0f3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2071-1050 | 
    
| IngestDate | Tue Aug 19 23:21:41 EDT 2025 Mon Jun 30 10:46:34 EDT 2025 Mon Oct 20 17:20:42 EDT 2025 Thu Oct 16 16:17:11 EDT 2025 Thu Oct 16 04:35:53 EDT 2025 Thu Apr 24 22:59:53 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c371t-160437e9dfcca1074e654a123238a2efd72165553c8a68c8099e278937f53d0f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8246-4658 0000-0002-9300-2157  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2904937376?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2904937376 | 
    
| PQPubID | 2032327 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_su152416811 proquest_journals_2904937376 gale_infotracacademiconefile_A779344245 gale_incontextgauss_ISR_A779344245 crossref_primary_10_3390_su152416811 crossref_citationtrail_10_3390_su152416811  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sustainability | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Li (ref_10) 2020; 91 Patgiri (ref_11) 2023; 200 Wang (ref_19) 2020; 8 ref_14 ref_23 ref_22 ref_21 Askari (ref_20) 2020; Volume 195 Prabakaran (ref_13) 2023; 17 ref_3 Kim (ref_1) 2023; 24 ref_18 ref_17 Kumar (ref_5) 2023; 2023 ref_16 ref_15 ref_9 Wanda (ref_12) 2019; 21 Zahmatkesh (ref_4) 2022; 33 Raja (ref_8) 2022; Volume 2393 ref_7 Sundhari (ref_2) 2020; 150 ref_6  | 
    
| References_xml | – volume: 24 start-page: 17 year: 2023 ident: ref_1 article-title: A Study on Log Collection to Analyze Causes of Malware Infection in IoT Devices in Smart City Environments publication-title: J. Korean Soc. Internet Inf. – ident: ref_9 – ident: ref_17 doi: 10.3390/s22093373 – volume: Volume 195 start-page: 105709 year: 2020 ident: ref_20 article-title: Political Optimizer: A novel socio-inspired meta-heuristic for global optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105709 – ident: ref_6 doi: 10.1109/ICEARS53579.2022.9751862 – volume: 200 start-page: 30 year: 2023 ident: ref_11 article-title: deepBF: Malicious URL detection using learned bloom filter and evolutionary deep learning publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.12.027 – volume: 17 start-page: 423 year: 2023 ident: ref_13 article-title: An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders publication-title: IET Inf. Secur. doi: 10.1049/ise2.12106 – volume: 33 start-page: e3677 year: 2022 ident: ref_4 article-title: An overview of security and privacy in smart cities’ IoT communications publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3677 – volume: 2023 start-page: 8168075 year: 2023 ident: ref_5 article-title: A Blockchain-Oriented Framework for Cloud-Assisted System to Countermeasure Phishing for Establishing Secure Smart City publication-title: Secur. Commun. Netw. doi: 10.1155/2023/8168075 – ident: ref_16 – volume: 8 start-page: 213783 year: 2020 ident: ref_19 article-title: Computer prediction of seawater sensor parameters in the central arctic region based on hybrid machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3038570 – ident: ref_7 doi: 10.14569/IJACSA.2020.0110119 – volume: 91 start-page: 101494 year: 2020 ident: ref_10 article-title: Improving malicious URLs detection via feature engineering: Linear and nonlinear space transformation methods publication-title: Inf. Syst. doi: 10.1016/j.is.2020.101494 – volume: 21 start-page: 971 year: 2019 ident: ref_12 article-title: URLDeep: Continuous Prediction of Malicious URL with Dynamic Deep Learning in Social Networks publication-title: Int. J. Netw. Secur. – volume: Volume 2393 start-page: 020176 year: 2022 ident: ref_8 article-title: Mudhr: Malicious URL detection using a heuristic rules-based approach publication-title: Proceedings of the AIP Conference Proceedings doi: 10.1063/5.0074077 – ident: ref_14 – ident: ref_18 doi: 10.1007/978-3-030-52856-0_35 – ident: ref_3 doi: 10.20944/preprints202002.0269.v1 – ident: ref_22 – ident: ref_23 – ident: ref_21 – ident: ref_15 doi: 10.11591/ijece.v10i1.pp997-1005 – volume: 150 start-page: 226 year: 2020 ident: ref_2 article-title: IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.11.032  | 
    
| SSID | ssj0000331916 | 
    
| Score | 2.3519342 | 
    
| Snippet | With the enhancement of the Internet of Things (IoT), smart cities have developed the idea of conventional urbanization. IoT networks permit distributed smart... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 16811 | 
    
| SubjectTerms | Algorithms Automation Blacklisting Classification Computational linguistics Cybersecurity Cyberterrorism Deep learning Home banking services Internet of Things Language processing Mathematical optimization Natural language interfaces Neural networks Optimization algorithms Optimization techniques URLs  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7k-lB9sFotPfuDRSqCkN4lu5sfT3LYllNsleqBPoXdze5ZTHNHk1PqX9-Zy6a2RUTw9ZhLNszkm28238wC7GlkFbGRIsDkYAJhUh1oWejAIDkxyMe50bQ1cHwSjyfi3RfZqQlrL6vEUvxsCdIR5j_ECTkchHIQiUEYp2E4mBfu9Q-_mRQmmGOQ8lJ370oskY73YGVy8nH0lQ6V6_7e9uVxLO_RvZiwxPJCtzLRXTx-AKuLaq4uf6qyvJFwjtZAd0ttdSbf9xeN3je_7kxx_K9neQQPPR1lozZ-HsM9W63DatetXK_DxuHvTjg09FBQPwHjlXP44weEnXPfz8lG5XR2cdZ8O2e0xcsUG19SUxg7sHbO_DTXKcOooPgq2DHWAYZ0uGxy-h6NmqU0rGJ0Rlv5FCZHh5_fjAN_YkNgeBI2QRjTqCSbFQ4Dg6SeNpZCEWvjqYqsK2hUkJSSm1TFKcZDlllqxeWJk7wYOr4BvWpW2U1gw6FCNLJOp0kkFM9So0NhktRJTBWSuz686ryXGz_OnE7VKHMsa8jV-Q1X92Hv2njeTvH4s9lzCoOc5mJUJLyZqkVd528_neajBIFM0GfiPrz0Rm6GNzTK9zHgsmmU1i3L7S6cco8MdR5lWJPxBHG9Dy-uQ-xvq3r2j3ZbcD9CBtZqbbah11ws7A4ypkbv-nfiCg5RDW8 priority: 102 providerName: Unpaywall  | 
    
| Title | Political Optimization Algorithm with a Hybrid Deep Learning Assisted Malicious URL Detection Model | 
    
| URI | https://www.proquest.com/docview/2904937376 https://www.mdpi.com/2071-1050/15/24/16811/pdf?version=1702475811  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7UO3B7QVphW2ykJFSEgRTR3nxwNChbUUREtVqNQ9RY7jlIcsLSQV2n_PXev0B0J7THRKnHz2-bN99x1AO0JW4SrhWDg5KMtRfmRFIo4sheREIR_nKqKtgdHYHc6cL3MxP4FxmQtDYZWlT9w46nipaI_8bTdALss9HA_vV78sqhpFp6tlCQ1pSivE7zYSYxWodUkZqwq1D_3xZLrbdelw7HK2u03U47jeR7xxBkNW4tv20dT0r4M-g_o6W8mHPzJND2agwTk8MdSR9bZYX8CJzhpQLzOL8wZc9vdZa2hohm3-FJSJcsOb39BF3JvcS9ZLF_iJxc97RtuxTLLhAyVwsVutV8wory4YIkh9IWYj5OyKYmbZbPoVjYpNGFfGqJ5a-gxmg_6Pj0PLVFewFPfswrJdkjXSQZwgiBSWqV3hSGJY3JddncQk6yOE4MqXro_YBYGmtFnuJYLHnYRfQjVbZvoKWKcj0XPoJPK9riN54KvIdpTnJwLduuBJE96UPzZURnqcKmCkIS5BCIXwAIUmtHfGq63ixv_NXhJCIWlYZBQks5DrPA8_f5-GPQ-djkNHuk14bYySJb5QSZNzgM0m2asjy-sS6dCM4jzc97kmvNqh_1irnj_-mBdwSuXqt-Ew11Atfq_1DZKaImqZntqCyqe5jVez8aR39xdB0vgp | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6N7aHwgGAwURhgoU1ISBFJHOfHw4QK69SytqCySnvzHMcpD1laSKqp_xx_G3et020I7W2v0cmJfZe7z_Z9dwAHKaKKUIvAweCgnUDHqZOKLHU0ghONeJzrlI4GhqOwNwm-novzLfjTcGEorbLxiStHnc00nZF_9BPEsjzC_-HT_JdDXaPodrVpoaFsa4XsaFVizBI7Ts3yCrdw1VH_GPV96Psn3bMvPcd2GXA0j7za8UIq72OSLMfJUHqiCUWgCGnwWPkmz6i8jRCC61iFMc4hSQzRR3mUC565OcdxH8BOwIMEN387n7uj7-PNKY_L0cS9cE0M5Dxx0b4wYiIKij3vVij8NyA8gtainKvllSqKGxHv5Ak8tlCVdda29RS2TLkLrYbJXO3CXveaJYeC1k1Uz0DbrDp8-A1d0qXlerJOMcUlrX9eMjr-ZYr1lkQYY8fGzJmt9DplaDFkexkb4h5BU44um4wHKFSv0sZKRv3biucwuZd13oPtclaaF8BcV6GnMnkaR36geBLr1At0FOcCw4jgeRs-NAsrtS11Th03ColbHtKCvKGFNhxshOfrCh__F3tHGpJUM6OkpJypWlSV7P8Yy06ETi6gK-Q2vLdC-QxfqJXlOOBnU5mtW5L7jaal9RqVvLbxNhxutH_XV728e5i30OqdDQdy0B-dvoKHPgK0dSrOPmzXvxfmNQKqOn1jrZbBxX3_KH8BzNMwkQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLwgGAwURhgoU1ISNGSOM6PhwkV2qplW5kKlfaWOY5dHrK0kFRT_0X-Ku5ap9sQ2tteo1Pi-M53n-377gD2M0QVoRKBg8FBOYGKMycTeeYoBCcK8ThXGR0NnA7D_jj4ei7ON-BPw4WhtMrGJy4ddT5VdEZ-6CeIZXmE6-HQ2LSIs07v0-yXQx2k6Ka1aachbZuF_GhZbsySPI714gq3c9XRoIO6P_D9XvfHl75jOw44ikde7XghlfrRSW7wxyhVUYcikIQ6eCx9bXIqdSOE4CqWYYz_kySaqKQ8MoLnruH43gewRZdf6CS2PneHZ6P1iY_L0dy9cEUS5Dxx0dYweiIiij3vVlj8Nzg8hu15OZOLK1kUN6Jf7yk8sbCVtVd29gw2dLkD2w2rudqB3e41Yw4FrcuonoOyGXb48Bu6p0vL-2TtYoJTWv-8ZHQUzCTrL4g8xjpaz5it-jphaD1khzk7xf2ConxdNh6doFC9TCErGfVyK17A-F7meRc2y2mpXwJzXYleS5ssjvxA8iRWmReoKDYCQ4rgpgUfm4lNlS17Tt03ihS3P6SF9IYWWrC_Fp6tqn38X-w9aSil-hklWeJEzqsqHXwfpe0IHV5A18kt-GCFzBQ_qKTlO-CwqeTWLcm9RtOp9SBVem3vLThYa_-uUb26-zXv4CEumPRkMDx-DY98xGqrrJw92Kx_z_UbxFZ19tYaLYOL-14nfwHvnTTA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9RAEB7k-lB9sFotPfuDRSqCkN4lu5sfT3LYllNsleqBPoXdze5ZTHNHk1PqX9-Zy6a2RUTw9ZhLNszkm28238wC7GlkFbGRIsDkYAJhUh1oWejAIDkxyMe50bQ1cHwSjyfi3RfZqQlrL6vEUvxsCdIR5j_ECTkchHIQiUEYp2E4mBfu9Q-_mRQmmGOQ8lJ370oskY73YGVy8nH0lQ6V6_7e9uVxLO_RvZiwxPJCtzLRXTx-AKuLaq4uf6qyvJFwjtZAd0ttdSbf9xeN3je_7kxx_K9neQQPPR1lozZ-HsM9W63DatetXK_DxuHvTjg09FBQPwHjlXP44weEnXPfz8lG5XR2cdZ8O2e0xcsUG19SUxg7sHbO_DTXKcOooPgq2DHWAYZ0uGxy-h6NmqU0rGJ0Rlv5FCZHh5_fjAN_YkNgeBI2QRjTqCSbFQ4Dg6SeNpZCEWvjqYqsK2hUkJSSm1TFKcZDlllqxeWJk7wYOr4BvWpW2U1gw6FCNLJOp0kkFM9So0NhktRJTBWSuz686ryXGz_OnE7VKHMsa8jV-Q1X92Hv2njeTvH4s9lzCoOc5mJUJLyZqkVd528_neajBIFM0GfiPrz0Rm6GNzTK9zHgsmmU1i3L7S6cco8MdR5lWJPxBHG9Dy-uQ-xvq3r2j3ZbcD9CBtZqbbah11ws7A4ypkbv-nfiCg5RDW8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Political+Optimization+Algorithm+with+a+Hybrid+Deep+Learning+Assisted+Malicious+URL+Detection+Model&rft.jtitle=Sustainability&rft.au=Aljebreen%2C+Mohammed&rft.au=Alrayes%2C+Fatma+S&rft.au=Aljameel%2C+Sumayh+S&rft.au=Saeed%2C+Muhammad+Kashif&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=24&rft_id=info:doi/10.3390%2Fsu152416811&rft.externalDBID=ISR&rft.externalDocID=A779344245 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |