Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India

Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have...

Full description

Saved in:
Bibliographic Details
Published inAtmosphere Vol. 12; no. 12; p. 1654
Main Authors Kushwaha, Nand Lal, Rajput, Jitendra, Elbeltagi, Ahmed, Elnaggar, Ashraf Y., Sena, Dipaka Ranjan, Vishwakarma, Dinesh Kumar, Mani, Indra, Hussein, Enas E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2073-4433
2073-4433
DOI10.3390/atmos12121654

Cover

Abstract Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have examined the performance of models employing four meta-heuristic algorithms, namely, support vector machine (SVM), random tree (RT), reduced error pruning tree (REPTree), and random subspace (RSS) for simulating daily pan evaporation (EPd) at two different locations in north India representing semi-arid climate (New Delhi) and sub-humid climate (Ludhiana). The most suitable combinations of meteorological input variables as covariates to estimate EPd were ascertained through the subset regression technique followed by sensitivity analyses. The statistical indicators such as root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), Willmott index (WI), and correlation coefficient (r) followed by graphical interpretations, were utilized for model evaluation. The SVM algorithm successfully performed in reconstructing the EPd time series with acceptable statistical criteria (i.e., NSE = 0.937, 0.795; WI = 0.984, 0.943; r = 0.968, 0.902; MAE = 0.055, 0.993 mm/day; and RMSE = 0.092, 1.317 mm/day) compared with the other applied algorithms during the testing phase at the New Delhi and Ludhiana stations, respectively. This study also demonstrated and discussed the potential of meta-heuristic algorithms for producing reasonable estimates of daily evaporation using minimal meteorological input variables with applicability of the best candidate model vetted in two diverse agro-climatic settings.
AbstractList Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have examined the performance of models employing four meta-heuristic algorithms, namely, support vector machine (SVM), random tree (RT), reduced error pruning tree (REPTree), and random subspace (RSS) for simulating daily pan evaporation (EPd) at two different locations in north India representing semi-arid climate (New Delhi) and sub-humid climate (Ludhiana). The most suitable combinations of meteorological input variables as covariates to estimate EPd were ascertained through the subset regression technique followed by sensitivity analyses. The statistical indicators such as root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), Willmott index (WI), and correlation coefficient (r) followed by graphical interpretations, were utilized for model evaluation. The SVM algorithm successfully performed in reconstructing the EPd time series with acceptable statistical criteria (i.e., NSE = 0.937, 0.795; WI = 0.984, 0.943; r = 0.968, 0.902; MAE = 0.055, 0.993 mm/day; and RMSE = 0.092, 1.317 mm/day) compared with the other applied algorithms during the testing phase at the New Delhi and Ludhiana stations, respectively. This study also demonstrated and discussed the potential of meta-heuristic algorithms for producing reasonable estimates of daily evaporation using minimal meteorological input variables with applicability of the best candidate model vetted in two diverse agro-climatic settings.
Author Kushwaha, Nand Lal
Rajput, Jitendra
Vishwakarma, Dinesh Kumar
Sena, Dipaka Ranjan
Elbeltagi, Ahmed
Hussein, Enas E.
Elnaggar, Ashraf Y.
Mani, Indra
Author_xml – sequence: 1
  givenname: Nand Lal
  orcidid: 0000-0001-8171-1602
  surname: Kushwaha
  fullname: Kushwaha, Nand Lal
– sequence: 2
  givenname: Jitendra
  orcidid: 0000-0001-8299-9900
  surname: Rajput
  fullname: Rajput, Jitendra
– sequence: 3
  givenname: Ahmed
  orcidid: 0000-0002-5506-9502
  surname: Elbeltagi
  fullname: Elbeltagi, Ahmed
– sequence: 4
  givenname: Ashraf Y.
  orcidid: 0000-0001-7168-7709
  surname: Elnaggar
  fullname: Elnaggar, Ashraf Y.
– sequence: 5
  givenname: Dipaka Ranjan
  surname: Sena
  fullname: Sena, Dipaka Ranjan
– sequence: 6
  givenname: Dinesh Kumar
  orcidid: 0000-0002-2421-6995
  surname: Vishwakarma
  fullname: Vishwakarma, Dinesh Kumar
– sequence: 7
  givenname: Indra
  surname: Mani
  fullname: Mani, Indra
– sequence: 8
  givenname: Enas E.
  orcidid: 0000-0002-8943-2154
  surname: Hussein
  fullname: Hussein, Enas E.
BookMark eNp9kc9vFCEUxyemJtbao3cSz1NhYH55W7fVbtKqifXihbwZHlM2LKzAtNn_xT9W2jFGTRQOvJD3_eQD73lx5LzDonjJ6BnnPX0Naecjq_JuavGkOK5oy0shOD_6rX5WnMa4pXmJnldcHBffzyEB2biE1poJ3Yjk2iu0BJwi15igvMQ5mJjMSFZ28sGk210s30JERT6BIxd3sPcBkvFuSVrjJmIcubn35NxojQFdIqsp-HJtzQ4eSF-ze3xDVmSdOeRzmtWB6OB35IMP6RaDy0bKwIviqQYb8fTneVJ8eXdxs74srz6-36xXV-XIW5pK1IDDyITmgiKonvYdVf1QNz1Ubds1Ywddi1SoEStBWy06AUjHrm1Q4MBGflJsFq7ysJX7kC3DQXow8vHCh0lCyN4WJW1qWvNOIxuUqLkAxocKW1BadTAwmllnC2t2ezjcg7W_gIzKh1HJP0aVA6-WwD74bzPGJLd-Di6_V1YNq9qadbzJXXzpGoOPMaCWo0mPv54CGPtPdvlX6v8uPwD2Orcs
CitedBy_id crossref_primary_10_1007_s00477_023_02549_3
crossref_primary_10_1007_s00477_022_02277_0
crossref_primary_10_1007_s11600_023_01107_3
crossref_primary_10_3390_w15213822
crossref_primary_10_1007_s00024_022_03189_4
crossref_primary_10_1016_j_nhres_2025_03_006
crossref_primary_10_3390_atmos14030534
crossref_primary_10_1007_s00477_022_02254_7
crossref_primary_10_1007_s00704_024_04940_8
crossref_primary_10_1007_s11356_023_25194_3
crossref_primary_10_1016_j_heliyon_2023_e16290
crossref_primary_10_3390_su14031150
crossref_primary_10_1007_s44288_024_00089_z
crossref_primary_10_1007_s10668_023_03978_4
crossref_primary_10_2166_wpt_2024_144
crossref_primary_10_1007_s00477_022_02196_0
crossref_primary_10_1007_s00477_022_02228_9
crossref_primary_10_1016_j_ecoinf_2023_102122
crossref_primary_10_1007_s11356_023_25221_3
crossref_primary_10_1155_2022_4488446
crossref_primary_10_1016_j_jenvman_2024_122535
crossref_primary_10_1080_07055900_2022_2087589
crossref_primary_10_3390_atmos13081322
crossref_primary_10_2166_wcc_2022_385
crossref_primary_10_3390_w15061149
crossref_primary_10_1016_j_ecoinf_2023_102093
crossref_primary_10_1038_s41598_024_60616_3
crossref_primary_10_1007_s11269_023_03440_0
crossref_primary_10_3390_land11112040
crossref_primary_10_1007_s41101_025_00348_1
crossref_primary_10_1007_s00477_022_02235_w
crossref_primary_10_1038_s41598_024_83859_6
crossref_primary_10_1007_s12517_023_11387_0
crossref_primary_10_1007_s41748_024_00373_5
crossref_primary_10_3390_w15061117
crossref_primary_10_1002_agj2_21504
crossref_primary_10_1007_s11356_022_21596_x
crossref_primary_10_1007_s13201_022_01846_6
crossref_primary_10_1007_s13201_024_02200_8
crossref_primary_10_2166_ws_2024_063
crossref_primary_10_1016_j_jenvman_2023_118697
crossref_primary_10_1007_s00704_024_04953_3
crossref_primary_10_1016_j_heliyon_2024_e31085
crossref_primary_10_1016_j_aiia_2022_09_007
crossref_primary_10_1038_s41598_024_63490_1
crossref_primary_10_3390_su14138209
crossref_primary_10_2166_wst_2023_253
crossref_primary_10_2166_wst_2023_137
crossref_primary_10_1007_s00704_024_04862_5
crossref_primary_10_1038_s41598_023_32838_4
crossref_primary_10_1007_s00521_023_08466_4
crossref_primary_10_1016_j_jastp_2024_106340
crossref_primary_10_3390_su15021109
crossref_primary_10_3390_w15040765
crossref_primary_10_1007_s00271_022_00826_7
crossref_primary_10_1007_s13201_023_02005_1
crossref_primary_10_2139_ssrn_4050027
crossref_primary_10_1007_s12145_023_01078_5
crossref_primary_10_1007_s11269_023_03565_2
crossref_primary_10_1007_s13201_022_01667_7
crossref_primary_10_3390_su14042287
Cites_doi 10.3390/atmos11010066
10.1007/s00704-021-03760-4
10.1007/s10333-016-0571-x
10.1145/507338.507355
10.3390/atmos12060701
10.1007/978-1-4419-9326-7
10.2166/nh.2017.153
10.1007/s00704-017-2244-0
10.3390/w12051508
10.1007/s00704-019-02871-3
10.1080/00401706.1996.10484565
10.3390/atmos11060553
10.1201/9781315139470
10.1016/j.ejrh.2021.100847
10.1002/hyp.9428
10.1007/s00704-008-0096-3
10.1007/s00271-011-0295-z
10.1016/j.jhydrol.2020.125241
10.1139/x87-177
10.1016/j.jhydrol.2018.11.069
10.3390/su13010297
10.1016/j.compag.2019.105041
10.1016/j.jhydrol.2020.125662
10.1145/130385.130401
10.1109/TKDE.2017.2691702
10.1080/02626667.2019.1599487
10.1007/BF00994018
10.1007/s100440200011
10.1007/s00704-015-1392-3
10.1029/2019GL083875
10.1007/s00477-015-1153-y
10.1061/(ASCE)HE.1943-5584.0000445
10.1109/34.709601
10.1007/s00704-013-0985-y
10.1007/s00704-021-03724-8
10.1007/978-3-642-12127-2_6
10.1007/s00271-019-00659-x
10.1007/s00704-020-03283-4
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7ST
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ADTOC
UNPAY
DOA
DOI 10.3390/atmos12121654
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 2073-4433
ExternalDocumentID oai_doaj_org_article_0650538fe1bd4534a13b2e7adfd8ab10
10.3390/atmos12121654
10_3390_atmos12121654
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADMLS
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
KQ8
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
7QH
7ST
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c370t-efaebc14f340ead90980d9b569a27786c8a87e04dce2407f484ae0c876e4eb1c3
IEDL.DBID DOA
ISSN 2073-4433
IngestDate Tue Oct 14 19:04:05 EDT 2025
Sun Oct 26 04:16:16 EDT 2025
Mon Jun 30 07:28:17 EDT 2025
Thu Apr 24 22:51:11 EDT 2025
Thu Oct 16 04:35:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-efaebc14f340ead90980d9b569a27786c8a87e04dce2407f484ae0c876e4eb1c3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-8171-1602
0000-0001-7168-7709
0000-0002-8943-2154
0000-0002-2421-6995
0000-0002-5506-9502
0000-0001-8299-9900
OpenAccessLink https://doaj.org/article/0650538fe1bd4534a13b2e7adfd8ab10
PQID 2612751836
PQPubID 2032431
ParticipantIDs doaj_primary_oai_doaj_org_article_0650538fe1bd4534a13b2e7adfd8ab10
unpaywall_primary_10_3390_atmos12121654
proquest_journals_2612751836
crossref_citationtrail_10_3390_atmos12121654
crossref_primary_10_3390_atmos12121654
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Atmosphere
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kumar (ref_34) 2012; 17
Kushwaha (ref_3) 2016; 36
Rahimikhoob (ref_14) 2009; 98
Devanand (ref_42) 2019; 46
ref_35
Malik (ref_45) 2021; 15
Guan (ref_13) 2020; 142
ref_33
Salam (ref_40) 2020; 590
Kim (ref_11) 2013; 117
Kisi (ref_6) 2019; 64
Sain (ref_24) 1996; 38
Witten (ref_36) 2002; 31
Khosravi (ref_27) 2019; 167
ref_39
ref_16
Deo (ref_20) 2016; 30
Verbyla (ref_31) 1987; 17
Mu (ref_29) 2017; 29
(ref_12) 2021; 146
Tabari (ref_17) 2013; 31
Tezel (ref_18) 2016; 124
Ghaderpour (ref_22) 2021; 36
Cortes (ref_25) 1995; 20
Chen (ref_19) 2019; 138
ref_23
Lin (ref_46) 2012; 27
Yaseen (ref_15) 2019; 569
ref_43
Penman (ref_9) 1948; 193
ref_41
Joseph (ref_30) 2012; 6
Sarwar (ref_44) 2019; 38
Ghorbani (ref_1) 2021; 145
ref_28
Skurichina (ref_38) 2002; 5
ref_26
Ho (ref_37) 1998; 20
ref_8
Ghorbani (ref_10) 2018; 133
ref_5
ref_4
Pammar (ref_21) 2017; 15
Malik (ref_2) 2020; 14
Bharti (ref_32) 2017; 48
Elbeltagi (ref_7) 2021; 594
References_xml – ident: ref_41
  doi: 10.3390/atmos11010066
– volume: 146
  start-page: 961
  year: 2021
  ident: ref_12
  article-title: Modeling of pan evaporation based on the development of machine learning methods
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-021-03760-4
– volume: 15
  start-page: 711
  year: 2017
  ident: ref_21
  article-title: Daily pan evaporation modeling in climatically contrasting zones with hybridization of wavelet transform and support vector machines
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-016-0571-x
– volume: 31
  start-page: 76
  year: 2002
  ident: ref_36
  article-title: Practical Machine Learning Tools and Techniques with Java Implementations
  publication-title: ACM Sigmod Rec.
  doi: 10.1145/507338.507355
– ident: ref_8
  doi: 10.3390/atmos12060701
– volume: 36
  start-page: 17
  year: 2016
  ident: ref_3
  article-title: Hydrologic Response of Takarla-Ballowal Watershed in Shivalik Foot-Hills Based on Morphometric Analysis Using Remote Sensing and GIS
  publication-title: J. Indian Water Resour. Soc.
– ident: ref_28
  doi: 10.1007/978-1-4419-9326-7
– volume: 48
  start-page: 1489
  year: 2017
  ident: ref_32
  article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2017.153
– volume: 133
  start-page: 1119
  year: 2018
  ident: ref_10
  article-title: Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-017-2244-0
– ident: ref_4
  doi: 10.3390/w12051508
– volume: 138
  start-page: 1095
  year: 2019
  ident: ref_19
  article-title: Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-019-02871-3
– volume: 38
  start-page: 409
  year: 1996
  ident: ref_24
  article-title: The Nature of Statistical Learning Theory
  publication-title: Technometrics
  doi: 10.1080/00401706.1996.10484565
– ident: ref_5
  doi: 10.3390/atmos11060553
– ident: ref_33
  doi: 10.1201/9781315139470
– volume: 36
  start-page: 100847
  year: 2021
  ident: ref_22
  article-title: Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2021.100847
– ident: ref_35
– volume: 15
  start-page: 1075
  year: 2021
  ident: ref_45
  article-title: Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 27
  start-page: 3115
  year: 2012
  ident: ref_46
  article-title: Development of a support-vector-machine-based model for daily pan evaporation estimation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9428
– volume: 193
  start-page: 120
  year: 1948
  ident: ref_9
  article-title: Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A
  publication-title: Math. Phys. Sci.
– volume: 6
  start-page: 312
  year: 2012
  ident: ref_30
  article-title: A Comparative Evaluation of Software Effort Estimation Using REPTree and K* in Handling with Missing Values
  publication-title: Aust. J. Basic Appl. Sci.
– ident: ref_23
– volume: 98
  start-page: 101
  year: 2009
  ident: ref_14
  article-title: Estimating daily pan evaporation using artificial neural network in a semi-arid environment
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-008-0096-3
– volume: 31
  start-page: 107
  year: 2013
  ident: ref_17
  article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-011-0295-z
– volume: 590
  start-page: 125241
  year: 2020
  ident: ref_40
  article-title: Potential of RT, bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125241
– volume: 17
  start-page: 1150
  year: 1987
  ident: ref_31
  article-title: Classification trees: A new discrimination tool
  publication-title: Can. J. For. Res.
  doi: 10.1139/x87-177
– volume: 569
  start-page: 387
  year: 2019
  ident: ref_15
  article-title: An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.069
– ident: ref_16
  doi: 10.3390/su13010297
– volume: 167
  start-page: 105041
  year: 2019
  ident: ref_27
  article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105041
– volume: 594
  start-page: 125662
  year: 2021
  ident: ref_7
  article-title: Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125662
– ident: ref_26
  doi: 10.1145/130385.130401
– volume: 29
  start-page: 1605
  year: 2017
  ident: ref_29
  article-title: Classification Under Streaming Emerging New Classes: A Solution Using Completely-Random Trees
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2691702
– volume: 14
  start-page: 323
  year: 2020
  ident: ref_2
  article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 64
  start-page: 653
  year: 2019
  ident: ref_6
  article-title: Evaporation modelling by heuristic regression approaches using only temperature data
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1599487
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_25
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 5
  start-page: 121
  year: 2002
  ident: ref_38
  article-title: Bagging, Boosting and the Random Subspace Method for Linear Classifiers
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s100440200011
– volume: 124
  start-page: 69
  year: 2016
  ident: ref_18
  article-title: Monthly evaporation forecasting using artificial neural networks and support vector machines
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-015-1392-3
– volume: 46
  start-page: 9126
  year: 2019
  ident: ref_42
  article-title: Choice of Irrigation Water Management Practice Affects Indian Summer Monsoon Rainfall and Its Extremes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL083875
– volume: 30
  start-page: 1769
  year: 2016
  ident: ref_20
  article-title: Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1153-y
– volume: 17
  start-page: 394
  year: 2012
  ident: ref_34
  article-title: Modeling of Suspended Sediment Concentration at Kasol in India Using ANN, Fuzzy Logic, and Decision Tree Algorithms
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000445
– volume: 20
  start-page: 832
  year: 1998
  ident: ref_37
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 117
  start-page: 1
  year: 2013
  ident: ref_11
  article-title: Evaluation of pan evaporation modeling with two different neural networks and weather station data
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-013-0985-y
– volume: 145
  start-page: 1521
  year: 2021
  ident: ref_1
  article-title: Solving the pan evaporation process complexity using the development of multiple mode of neurocomputing models
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-021-03724-8
– ident: ref_39
  doi: 10.1007/978-3-642-12127-2_6
– ident: ref_43
– volume: 38
  start-page: 177
  year: 2019
  ident: ref_44
  article-title: Linear mixed modeling and artificial neural network techniques for predicting wind drift and evaporation losses under moving sprinkler irrigation systems
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-019-00659-x
– volume: 142
  start-page: 349
  year: 2020
  ident: ref_13
  article-title: A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-020-03283-4
SSID ssj0000493234
Score 2.4716475
Snippet Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years,...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1654
SubjectTerms Agricultural management
Algorithms
Arid climates
Aridity
Artificial intelligence
Climatic zones
Correlation coefficient
Correlation coefficients
Datasets
Error reduction
Evaporation
Gene expression
Heuristic
Heuristic methods
Humid climates
Humidity
Hydrology
Intelligence
Irrigation scheduling
Irrigation water
Mars
Modelling
Pan evaporation
Problem solving
Rain
random subspace
random tree
Root-mean-square errors
Semiarid climates
Sensitivity analysis
Statistical analysis
Statistics
Subhumid climates
support vector machine
Support vector machines
Water management
Wavelet transforms
Weather
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9EAvCAoIQ0FzQOXCqrZ37dhICCVpq4DUqEKtVHGx9uW0kmsHx1HV_8KPZcZ2QnOgR1vj0Vgzu_PNPr5h7KNLcyEQ6HPjZM5lGqRcY6HBhckjm7sYMz4VimezeHopf1xFVztstr4LQ8cq13NiO1HbytAa-RFRXdEWgYi_LX5z6hpFu6vrFhqqb61gv7YUY0_YbkjMWAO2Oz6Znf_crLogHhahkB3ZpsB6_0g1t9UyIOk4klvJqeXw3wKeT1flQt3fqaJ4kINOn7NnPXiEUeftF2zHlfvMO0PcW9Xt8jgcwqS4QRDaPu2zPcKSHRXzS_bnWDUKvj_g4ATqhFaAKi2gEsWnbtURN8OomOPPN9e3Sz7GPGfhXJWAqHvRR0z3JV1lh5sSLu4qOO47rTQwmtcV78xATb-oGcAXGMEE9QAdW7wHutMC7Y6Rq0u0CGP0Fbs8PbmYTHnfnIEbMfQb7nLltAlkLqSP0Zj6aeLbVEdxqkLipDOJSobOl9Y4KhpzmUjlfIOTr5OYH4x4zQYlWvCGgYuDIHbW6YjwDSKkMImG1kZKCx0KLTz2ee2VzPTM5dRAo8iwgiEnZltO9NjhRnzRUXb8T3BMLt4IEdN2-6Kq51k_cDOCsJgUchdoKyMhVYBGuaGyuU2UDnyPHawDJOuH_zL7F6we-7QJmsetefu4ondsL6TjNO1JmgM2aOqVe494qNEf-iD_C_oIDPk
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagO8CF34jAQD6gccFrEttpwgVlHVNB2rTDKg0ukR3bpSJLqjRlGn8LfyzvJWnVIoGQkHJJZDsvyhe_7znP3yPktU0c50D0WW6FYyIJEqYh0GA8d9I4G4HHx0Dx9CyaTMWnS3m5tYsf0yohFJ-3k3QI-GNCcD4MwvaIpBgujHv_vV9LAjKRYOn4UN4me5EENj4ge9Oz8_Qz1pRb9-6kNTlE90PVXFXLAKZrHGrHFbWK_Ts0886qXKiba1UUWx7n5D5Ra1u7RJNvh6tGH-Y_fpNx_J-HeUDu9XSUph1-HpJbtnxEvFNg0lXdLrjTAzou5kBr27PH5OexahT9uCXkSbGcWkFVaSj0U2xiV536M02LWVXPm69XS3YEztLQc1VSoO6LHnZdT9wPT-clvbiu6HFfrqWh6ayuWHdnGOkLVhR4R1M6hnEo5j7eUNwYQ9vfTrYuwSIA-hMyPflwMZ6wvsIDy_nIb5h1yuo8EI4LHyCd-Ensm0TLKFEhCtvlsYpH1hcmtxh5OhELZf0cZnArwMnk_CkZlGDBM0JtFASRNVZLJElAs8JYjoyRSnMdcs098nb9srO8lz_HKhxFBmEQYiPbwYZHDjbNF53ux58aHiFyNo1Qrru9UNWzrP_6M-TB4FmcDbQRkgsVgFF2pIwzsdKB75H9Ne6yfg5ZZijuhj_FeOSRNxss_t2a5__c8gW5G2J6TpuZs08GTb2yL4FfNfpV_wn9AgmcIVI
  priority: 102
  providerName: Unpaywall
Title Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India
URI https://www.proquest.com/docview/2612751836
https://www.mdpi.com/2073-4433/12/12/1654/pdf?version=1639105625
https://doaj.org/article/0650538fe1bd4534a13b2e7adfd8ab10
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: ADMLS
  dateStart: 20110701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAF8SkCpZoDKhesJrGTTbhlt60WpK5WqCsVLpEdO2VRmqyyWVX9L_xYZuJ0tXsALhwd2c4oM7bfxDNvGHtv01IIBPq8sLLkMg1SrtHR4KIoI1PaGE98chQvZvF0Ib9cRVc7pb4oJszRA7sPd0IQAhdlaQNtZCSkCoQO7UiZ0iRKu-QqP0l3nKmfDveKUEhHqinQrz9R3U2zDnCjpvSdvUOo5-rfA5iPNvVK3d2qqto5a86fsicDSITMCfeMPbD1c-ZdIL5t2v43OBzDpFoi2OxbL9ivU9Up-LxDrwlU5KwCVRvAcYpP7cZxMkNWXTftsvtxs-ZjPMIMzFUNCKhXgzG4kZSlDssaLm8bOB2KqHSQXbcNd2_Gmb4Tz_8nyGCC8wBFJN4BpatAfxlk2xolQvN7yRbnZ5eTKR_qLvBCjPyO21JZXQSyFNJHQ0v9NPFNqqM4VSHRzRWJSkbWl6aw5A-WMpHK-gXuq1bi1l-IV-ygRgleM7BxEMTWWB0RdEHwEybRyJhIadSi0MJjH-8VkRcDKTnVxqhydE5Ib_me3jx2vO2-cmwcf-o4Jq1uOxGJdv8ATSsfTCv_l2l57PDeJvJhZa9zolyjqyoRe-zD1k7-Ls2b_yHNW_Y4pHiaPpTmkB107ca-Q0DU6SP2cHw2m3896tcAthazefbtNyGPDko
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9tBeEBQQoQXmAOXCqrZ37dhIFcpPq4Q2UYVSqeJi1t51qOTaaeIoyrvwLDwbM7YTmgO99WhrPRp5Zme-2Z9vGPtggkQIBPo8NjLhMrADHmGhwUWcuDoxHmZ8KhQHQ693Jb9du9db7M_qLgwdq1zFxDJQ6zymNfJjorqiLQLhfZ3cceoaRburqxYaqm6toE9KirH6Yse5WS6whJud9Lto74-Oc3Y66vR43WWAx6JpFdwkykSxLRMhLfytgRX4lg4i1wuUQ-Rqsa_8prGkjg1VP4n0pTJWjFHESAx0sUC5T9iOFDLA4m-nfTq8_L5e5UH8LRwhK3JPIQLrWBW3-czGhEHXiDaSYdkzYAPo7s6ziVouVJrey3lnz9jTGqxCq_Ku52zLZPusMUCcnU_L5Xg4gk56g6C3fNpne4RdK-rnF-x3VxUK-vc4P4E6r6WgMg0oRPGemVdE0dBKx_izi1-3M97GvKrhUmWAKH9Se2j1JV2dh5sMRoscunVnlwJa42nOKzVQ0g9qPvAFWtBBOUDHJJdAd2ig3KEy0ww1wjnxkl09iplese0MNXjNwHi27RltIpfwFCIyx3ebWrsqEpEjItFgn1dWCeOaKZ0adqQhVkxkxHDDiA12tB4-qShC_jewTSZeDyJm7_JFPh2HdaAICTJjEkqMHWnpCqlsVMo0lU60ryLbarDDlYOEdbiZhf8mR4N9WjvNw9q8eVjQe7bbGw0uwov-8PyA7Tl0lKc8xXPItovp3LxFLFZE72qHB_bzsefYX81pSu8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVoJeEBQQhgJ7gHJhFdu7dmykCuWnUUJpFKFWqri4a-86VHLt4DiK8i48EU_FjL0JzYHeerS1Ho08szPf7M4PIe91mHIOQJ8lWqRMhE7IYgg0GE9ST6XaB4-PgeLZ2B9eiK-X3uUO-bOuhcG0yrVNrA21KhI8I29hqyu8IuB-KzVpEZP-4MvsF8MJUnjTuh6nIc2YBXVctxszRR6nerWEcG5-POqD7D-47uDkvDdkZuIAS3jbrphOpY4TR6Rc2PCLQzsMbBXGnh9KFxutJYEM2toWKtEYCaUiEFLbCVgULcDoJRzoPiB7ePkFRmKvezKefN-c-AAW5y4XTaNPzkO7JaubYu6A88CSoi3HWM8P2AK9jxb5TK6WMstu-b_BE_LYAFfaaTTtKdnR-QGxzgBzF2V9NE-PaC-7BgBcPx2QfcSxTRvoZ-R3X1aSjm71_6Q4hS2jMlcUiEg21IumaTTtZFP42dXPmznrgo9VdCJzCoh_ZrS1-RLL6Ol1Ts-XBe2bKS8V7UzLgjVsAKUfOIjgM-3QHtChmDK5olhPQ-vbKl3mwBHsj-fk4l7E9ILs5sDBS0K17zi-Vjr2EFsBOnMDr62UJ2MeuzzmFvm0lkqUmK7pOLwjiyB6QiFGW0K0yNFm-axpF_K_hV0U8WYRdvmuXxTlNDJGI0L4DA4p1U6shMeFdIAp3ZYqVYGMHdsih2sFiYzpmUf_NopFPm6U5m5uXt1N6B15CHst-jYan74m-y5m9dQJPYdktyoX-g3Asip-a_Sdkqv73mJ_AeFlTx4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagO8CF34jAQD6gccFrEttpwgVlHVNB2rTDKg0ukR3bpSJLqjRlGn8LfyzvJWnVIoGQkHJJZDsvyhe_7znP3yPktU0c50D0WW6FYyIJEqYh0GA8d9I4G4HHx0Dx9CyaTMWnS3m5tYsf0yohFJ-3k3QI-GNCcD4MwvaIpBgujHv_vV9LAjKRYOn4UN4me5EENj4ge9Oz8_Qz1pRb9-6kNTlE90PVXFXLAKZrHGrHFbWK_Ts0886qXKiba1UUWx7n5D5Ra1u7RJNvh6tGH-Y_fpNx_J-HeUDu9XSUph1-HpJbtnxEvFNg0lXdLrjTAzou5kBr27PH5OexahT9uCXkSbGcWkFVaSj0U2xiV536M02LWVXPm69XS3YEztLQc1VSoO6LHnZdT9wPT-clvbiu6HFfrqWh6ayuWHdnGOkLVhR4R1M6hnEo5j7eUNwYQ9vfTrYuwSIA-hMyPflwMZ6wvsIDy_nIb5h1yuo8EI4LHyCd-Ensm0TLKFEhCtvlsYpH1hcmtxh5OhELZf0cZnArwMnk_CkZlGDBM0JtFASRNVZLJElAs8JYjoyRSnMdcs098nb9srO8lz_HKhxFBmEQYiPbwYZHDjbNF53ux58aHiFyNo1Qrru9UNWzrP_6M-TB4FmcDbQRkgsVgFF2pIwzsdKB75H9Ne6yfg5ZZijuhj_FeOSRNxss_t2a5__c8gW5G2J6TpuZs08GTb2yL4FfNfpV_wn9AgmcIVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Intelligence+Model+and+Meta-Heuristic+Algorithms-Based+Pan+Evaporation+Modelling+in+Two+Different+Agro-Climatic+Zones%3A+A+Case+Study+from+Northern+India&rft.jtitle=Atmosphere&rft.au=Kushwaha%2C+Nand+Lal&rft.au=Rajput%2C+Jitendra&rft.au=Elbeltagi%2C+Ahmed&rft.au=Elnaggar%2C+Ashraf+Y.&rft.date=2021-12-01&rft.issn=2073-4433&rft.eissn=2073-4433&rft.volume=12&rft.issue=12&rft.spage=1654&rft_id=info:doi/10.3390%2Fatmos12121654&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_atmos12121654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon