Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India
Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have...
        Saved in:
      
    
          | Published in | Atmosphere Vol. 12; no. 12; p. 1654 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2073-4433 2073-4433  | 
| DOI | 10.3390/atmos12121654 | 
Cover
| Abstract | Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have examined the performance of models employing four meta-heuristic algorithms, namely, support vector machine (SVM), random tree (RT), reduced error pruning tree (REPTree), and random subspace (RSS) for simulating daily pan evaporation (EPd) at two different locations in north India representing semi-arid climate (New Delhi) and sub-humid climate (Ludhiana). The most suitable combinations of meteorological input variables as covariates to estimate EPd were ascertained through the subset regression technique followed by sensitivity analyses. The statistical indicators such as root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), Willmott index (WI), and correlation coefficient (r) followed by graphical interpretations, were utilized for model evaluation. The SVM algorithm successfully performed in reconstructing the EPd time series with acceptable statistical criteria (i.e., NSE = 0.937, 0.795; WI = 0.984, 0.943; r = 0.968, 0.902; MAE = 0.055, 0.993 mm/day; and RMSE = 0.092, 1.317 mm/day) compared with the other applied algorithms during the testing phase at the New Delhi and Ludhiana stations, respectively. This study also demonstrated and discussed the potential of meta-heuristic algorithms for producing reasonable estimates of daily evaporation using minimal meteorological input variables with applicability of the best candidate model vetted in two diverse agro-climatic settings. | 
    
|---|---|
| AbstractList | Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years, the data-driven models using meta-heuristics algorithms have attracted the attention of researchers worldwide. In this investigation, we have examined the performance of models employing four meta-heuristic algorithms, namely, support vector machine (SVM), random tree (RT), reduced error pruning tree (REPTree), and random subspace (RSS) for simulating daily pan evaporation (EPd) at two different locations in north India representing semi-arid climate (New Delhi) and sub-humid climate (Ludhiana). The most suitable combinations of meteorological input variables as covariates to estimate EPd were ascertained through the subset regression technique followed by sensitivity analyses. The statistical indicators such as root mean square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), Willmott index (WI), and correlation coefficient (r) followed by graphical interpretations, were utilized for model evaluation. The SVM algorithm successfully performed in reconstructing the EPd time series with acceptable statistical criteria (i.e., NSE = 0.937, 0.795; WI = 0.984, 0.943; r = 0.968, 0.902; MAE = 0.055, 0.993 mm/day; and RMSE = 0.092, 1.317 mm/day) compared with the other applied algorithms during the testing phase at the New Delhi and Ludhiana stations, respectively. This study also demonstrated and discussed the potential of meta-heuristic algorithms for producing reasonable estimates of daily evaporation using minimal meteorological input variables with applicability of the best candidate model vetted in two diverse agro-climatic settings. | 
    
| Author | Kushwaha, Nand Lal Rajput, Jitendra Vishwakarma, Dinesh Kumar Sena, Dipaka Ranjan Elbeltagi, Ahmed Hussein, Enas E. Elnaggar, Ashraf Y. Mani, Indra  | 
    
| Author_xml | – sequence: 1 givenname: Nand Lal orcidid: 0000-0001-8171-1602 surname: Kushwaha fullname: Kushwaha, Nand Lal – sequence: 2 givenname: Jitendra orcidid: 0000-0001-8299-9900 surname: Rajput fullname: Rajput, Jitendra – sequence: 3 givenname: Ahmed orcidid: 0000-0002-5506-9502 surname: Elbeltagi fullname: Elbeltagi, Ahmed – sequence: 4 givenname: Ashraf Y. orcidid: 0000-0001-7168-7709 surname: Elnaggar fullname: Elnaggar, Ashraf Y. – sequence: 5 givenname: Dipaka Ranjan surname: Sena fullname: Sena, Dipaka Ranjan – sequence: 6 givenname: Dinesh Kumar orcidid: 0000-0002-2421-6995 surname: Vishwakarma fullname: Vishwakarma, Dinesh Kumar – sequence: 7 givenname: Indra surname: Mani fullname: Mani, Indra – sequence: 8 givenname: Enas E. orcidid: 0000-0002-8943-2154 surname: Hussein fullname: Hussein, Enas E.  | 
    
| BookMark | eNp9kc9vFCEUxyemJtbao3cSz1NhYH55W7fVbtKqifXihbwZHlM2LKzAtNn_xT9W2jFGTRQOvJD3_eQD73lx5LzDonjJ6BnnPX0Naecjq_JuavGkOK5oy0shOD_6rX5WnMa4pXmJnldcHBffzyEB2biE1poJ3Yjk2iu0BJwi15igvMQ5mJjMSFZ28sGk210s30JERT6BIxd3sPcBkvFuSVrjJmIcubn35NxojQFdIqsp-HJtzQ4eSF-ze3xDVmSdOeRzmtWB6OB35IMP6RaDy0bKwIviqQYb8fTneVJ8eXdxs74srz6-36xXV-XIW5pK1IDDyITmgiKonvYdVf1QNz1Ubds1Ywddi1SoEStBWy06AUjHrm1Q4MBGflJsFq7ysJX7kC3DQXow8vHCh0lCyN4WJW1qWvNOIxuUqLkAxocKW1BadTAwmllnC2t2ezjcg7W_gIzKh1HJP0aVA6-WwD74bzPGJLd-Di6_V1YNq9qadbzJXXzpGoOPMaCWo0mPv54CGPtPdvlX6v8uPwD2Orcs | 
    
| CitedBy_id | crossref_primary_10_1007_s00477_023_02549_3 crossref_primary_10_1007_s00477_022_02277_0 crossref_primary_10_1007_s11600_023_01107_3 crossref_primary_10_3390_w15213822 crossref_primary_10_1007_s00024_022_03189_4 crossref_primary_10_1016_j_nhres_2025_03_006 crossref_primary_10_3390_atmos14030534 crossref_primary_10_1007_s00477_022_02254_7 crossref_primary_10_1007_s00704_024_04940_8 crossref_primary_10_1007_s11356_023_25194_3 crossref_primary_10_1016_j_heliyon_2023_e16290 crossref_primary_10_3390_su14031150 crossref_primary_10_1007_s44288_024_00089_z crossref_primary_10_1007_s10668_023_03978_4 crossref_primary_10_2166_wpt_2024_144 crossref_primary_10_1007_s00477_022_02196_0 crossref_primary_10_1007_s00477_022_02228_9 crossref_primary_10_1016_j_ecoinf_2023_102122 crossref_primary_10_1007_s11356_023_25221_3 crossref_primary_10_1155_2022_4488446 crossref_primary_10_1016_j_jenvman_2024_122535 crossref_primary_10_1080_07055900_2022_2087589 crossref_primary_10_3390_atmos13081322 crossref_primary_10_2166_wcc_2022_385 crossref_primary_10_3390_w15061149 crossref_primary_10_1016_j_ecoinf_2023_102093 crossref_primary_10_1038_s41598_024_60616_3 crossref_primary_10_1007_s11269_023_03440_0 crossref_primary_10_3390_land11112040 crossref_primary_10_1007_s41101_025_00348_1 crossref_primary_10_1007_s00477_022_02235_w crossref_primary_10_1038_s41598_024_83859_6 crossref_primary_10_1007_s12517_023_11387_0 crossref_primary_10_1007_s41748_024_00373_5 crossref_primary_10_3390_w15061117 crossref_primary_10_1002_agj2_21504 crossref_primary_10_1007_s11356_022_21596_x crossref_primary_10_1007_s13201_022_01846_6 crossref_primary_10_1007_s13201_024_02200_8 crossref_primary_10_2166_ws_2024_063 crossref_primary_10_1016_j_jenvman_2023_118697 crossref_primary_10_1007_s00704_024_04953_3 crossref_primary_10_1016_j_heliyon_2024_e31085 crossref_primary_10_1016_j_aiia_2022_09_007 crossref_primary_10_1038_s41598_024_63490_1 crossref_primary_10_3390_su14138209 crossref_primary_10_2166_wst_2023_253 crossref_primary_10_2166_wst_2023_137 crossref_primary_10_1007_s00704_024_04862_5 crossref_primary_10_1038_s41598_023_32838_4 crossref_primary_10_1007_s00521_023_08466_4 crossref_primary_10_1016_j_jastp_2024_106340 crossref_primary_10_3390_su15021109 crossref_primary_10_3390_w15040765 crossref_primary_10_1007_s00271_022_00826_7 crossref_primary_10_1007_s13201_023_02005_1 crossref_primary_10_2139_ssrn_4050027 crossref_primary_10_1007_s12145_023_01078_5 crossref_primary_10_1007_s11269_023_03565_2 crossref_primary_10_1007_s13201_022_01667_7 crossref_primary_10_3390_su14042287  | 
    
| Cites_doi | 10.3390/atmos11010066 10.1007/s00704-021-03760-4 10.1007/s10333-016-0571-x 10.1145/507338.507355 10.3390/atmos12060701 10.1007/978-1-4419-9326-7 10.2166/nh.2017.153 10.1007/s00704-017-2244-0 10.3390/w12051508 10.1007/s00704-019-02871-3 10.1080/00401706.1996.10484565 10.3390/atmos11060553 10.1201/9781315139470 10.1016/j.ejrh.2021.100847 10.1002/hyp.9428 10.1007/s00704-008-0096-3 10.1007/s00271-011-0295-z 10.1016/j.jhydrol.2020.125241 10.1139/x87-177 10.1016/j.jhydrol.2018.11.069 10.3390/su13010297 10.1016/j.compag.2019.105041 10.1016/j.jhydrol.2020.125662 10.1145/130385.130401 10.1109/TKDE.2017.2691702 10.1080/02626667.2019.1599487 10.1007/BF00994018 10.1007/s100440200011 10.1007/s00704-015-1392-3 10.1029/2019GL083875 10.1007/s00477-015-1153-y 10.1061/(ASCE)HE.1943-5584.0000445 10.1109/34.709601 10.1007/s00704-013-0985-y 10.1007/s00704-021-03724-8 10.1007/978-3-642-12127-2_6 10.1007/s00271-019-00659-x 10.1007/s00704-020-03283-4  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/atmos12121654 | 
    
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology Statistics  | 
    
| EISSN | 2073-4433 | 
    
| ExternalDocumentID | oai_doaj_org_article_0650538fe1bd4534a13b2e7adfd8ab10 10.3390/atmos12121654 10_3390_atmos12121654  | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX ADMLS AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO ITC K6- KQ8 MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c370t-efaebc14f340ead90980d9b569a27786c8a87e04dce2407f484ae0c876e4eb1c3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2073-4433 | 
    
| IngestDate | Tue Oct 14 19:04:05 EDT 2025 Sun Oct 26 04:16:16 EDT 2025 Mon Jun 30 07:28:17 EDT 2025 Thu Apr 24 22:51:11 EDT 2025 Thu Oct 16 04:35:59 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c370t-efaebc14f340ead90980d9b569a27786c8a87e04dce2407f484ae0c876e4eb1c3 | 
    
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3  | 
    
| ORCID | 0000-0001-8171-1602 0000-0001-7168-7709 0000-0002-8943-2154 0000-0002-2421-6995 0000-0002-5506-9502 0000-0001-8299-9900  | 
    
| OpenAccessLink | https://doaj.org/article/0650538fe1bd4534a13b2e7adfd8ab10 | 
    
| PQID | 2612751836 | 
    
| PQPubID | 2032431 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0650538fe1bd4534a13b2e7adfd8ab10 unpaywall_primary_10_3390_atmos12121654 proquest_journals_2612751836 crossref_citationtrail_10_3390_atmos12121654 crossref_primary_10_3390_atmos12121654  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-12-01 | 
    
| PublicationDateYYYYMMDD | 2021-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Atmosphere | 
    
| PublicationYear | 2021 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Kumar (ref_34) 2012; 17 Kushwaha (ref_3) 2016; 36 Rahimikhoob (ref_14) 2009; 98 Devanand (ref_42) 2019; 46 ref_35 Malik (ref_45) 2021; 15 Guan (ref_13) 2020; 142 ref_33 Salam (ref_40) 2020; 590 Kim (ref_11) 2013; 117 Kisi (ref_6) 2019; 64 Sain (ref_24) 1996; 38 Witten (ref_36) 2002; 31 Khosravi (ref_27) 2019; 167 ref_39 ref_16 Deo (ref_20) 2016; 30 Verbyla (ref_31) 1987; 17 Mu (ref_29) 2017; 29 (ref_12) 2021; 146 Tabari (ref_17) 2013; 31 Tezel (ref_18) 2016; 124 Ghaderpour (ref_22) 2021; 36 Cortes (ref_25) 1995; 20 Chen (ref_19) 2019; 138 ref_23 Lin (ref_46) 2012; 27 Yaseen (ref_15) 2019; 569 ref_43 Penman (ref_9) 1948; 193 ref_41 Joseph (ref_30) 2012; 6 Sarwar (ref_44) 2019; 38 Ghorbani (ref_1) 2021; 145 ref_28 Skurichina (ref_38) 2002; 5 ref_26 Ho (ref_37) 1998; 20 ref_8 Ghorbani (ref_10) 2018; 133 ref_5 ref_4 Pammar (ref_21) 2017; 15 Malik (ref_2) 2020; 14 Bharti (ref_32) 2017; 48 Elbeltagi (ref_7) 2021; 594  | 
    
| References_xml | – ident: ref_41 doi: 10.3390/atmos11010066 – volume: 146 start-page: 961 year: 2021 ident: ref_12 article-title: Modeling of pan evaporation based on the development of machine learning methods publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-021-03760-4 – volume: 15 start-page: 711 year: 2017 ident: ref_21 article-title: Daily pan evaporation modeling in climatically contrasting zones with hybridization of wavelet transform and support vector machines publication-title: Paddy Water Environ. doi: 10.1007/s10333-016-0571-x – volume: 31 start-page: 76 year: 2002 ident: ref_36 article-title: Practical Machine Learning Tools and Techniques with Java Implementations publication-title: ACM Sigmod Rec. doi: 10.1145/507338.507355 – ident: ref_8 doi: 10.3390/atmos12060701 – volume: 36 start-page: 17 year: 2016 ident: ref_3 article-title: Hydrologic Response of Takarla-Ballowal Watershed in Shivalik Foot-Hills Based on Morphometric Analysis Using Remote Sensing and GIS publication-title: J. Indian Water Resour. Soc. – ident: ref_28 doi: 10.1007/978-1-4419-9326-7 – volume: 48 start-page: 1489 year: 2017 ident: ref_32 article-title: Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models publication-title: Hydrol. Res. doi: 10.2166/nh.2017.153 – volume: 133 start-page: 1119 year: 2018 ident: ref_10 article-title: Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-017-2244-0 – ident: ref_4 doi: 10.3390/w12051508 – volume: 138 start-page: 1095 year: 2019 ident: ref_19 article-title: Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-019-02871-3 – volume: 38 start-page: 409 year: 1996 ident: ref_24 article-title: The Nature of Statistical Learning Theory publication-title: Technometrics doi: 10.1080/00401706.1996.10484565 – ident: ref_5 doi: 10.3390/atmos11060553 – ident: ref_33 doi: 10.1201/9781315139470 – volume: 36 start-page: 100847 year: 2021 ident: ref_22 article-title: Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2021.100847 – ident: ref_35 – volume: 15 start-page: 1075 year: 2021 ident: ref_45 article-title: Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 27 start-page: 3115 year: 2012 ident: ref_46 article-title: Development of a support-vector-machine-based model for daily pan evaporation estimation publication-title: Hydrol. Process. doi: 10.1002/hyp.9428 – volume: 193 start-page: 120 year: 1948 ident: ref_9 article-title: Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A publication-title: Math. Phys. Sci. – volume: 6 start-page: 312 year: 2012 ident: ref_30 article-title: A Comparative Evaluation of Software Effort Estimation Using REPTree and K* in Handling with Missing Values publication-title: Aust. J. Basic Appl. Sci. – ident: ref_23 – volume: 98 start-page: 101 year: 2009 ident: ref_14 article-title: Estimating daily pan evaporation using artificial neural network in a semi-arid environment publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-008-0096-3 – volume: 31 start-page: 107 year: 2013 ident: ref_17 article-title: Comparative analysis of 31 reference evapotranspiration methods under humid conditions publication-title: Irrig. Sci. doi: 10.1007/s00271-011-0295-z – volume: 590 start-page: 125241 year: 2020 ident: ref_40 article-title: Potential of RT, bagging and RS ensemble learning algorithms for reference evapotranspiration prediction using climatic data-limited humid region in Bangladesh publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125241 – volume: 17 start-page: 1150 year: 1987 ident: ref_31 article-title: Classification trees: A new discrimination tool publication-title: Can. J. For. Res. doi: 10.1139/x87-177 – volume: 569 start-page: 387 year: 2019 ident: ref_15 article-title: An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.069 – ident: ref_16 doi: 10.3390/su13010297 – volume: 167 start-page: 105041 year: 2019 ident: ref_27 article-title: Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105041 – volume: 594 start-page: 125662 year: 2021 ident: ref_7 article-title: Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125662 – ident: ref_26 doi: 10.1145/130385.130401 – volume: 29 start-page: 1605 year: 2017 ident: ref_29 article-title: Classification Under Streaming Emerging New Classes: A Solution Using Completely-Random Trees publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2691702 – volume: 14 start-page: 323 year: 2020 ident: ref_2 article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 64 start-page: 653 year: 2019 ident: ref_6 article-title: Evaporation modelling by heuristic regression approaches using only temperature data publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2019.1599487 – volume: 20 start-page: 273 year: 1995 ident: ref_25 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 5 start-page: 121 year: 2002 ident: ref_38 article-title: Bagging, Boosting and the Random Subspace Method for Linear Classifiers publication-title: Pattern Anal. Appl. doi: 10.1007/s100440200011 – volume: 124 start-page: 69 year: 2016 ident: ref_18 article-title: Monthly evaporation forecasting using artificial neural networks and support vector machines publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-015-1392-3 – volume: 46 start-page: 9126 year: 2019 ident: ref_42 article-title: Choice of Irrigation Water Management Practice Affects Indian Summer Monsoon Rainfall and Its Extremes publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL083875 – volume: 30 start-page: 1769 year: 2016 ident: ref_20 article-title: Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-015-1153-y – volume: 17 start-page: 394 year: 2012 ident: ref_34 article-title: Modeling of Suspended Sediment Concentration at Kasol in India Using ANN, Fuzzy Logic, and Decision Tree Algorithms publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000445 – volume: 20 start-page: 832 year: 1998 ident: ref_37 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 117 start-page: 1 year: 2013 ident: ref_11 article-title: Evaluation of pan evaporation modeling with two different neural networks and weather station data publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-013-0985-y – volume: 145 start-page: 1521 year: 2021 ident: ref_1 article-title: Solving the pan evaporation process complexity using the development of multiple mode of neurocomputing models publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-021-03724-8 – ident: ref_39 doi: 10.1007/978-3-642-12127-2_6 – ident: ref_43 – volume: 38 start-page: 177 year: 2019 ident: ref_44 article-title: Linear mixed modeling and artificial neural network techniques for predicting wind drift and evaporation losses under moving sprinkler irrigation systems publication-title: Irrig. Sci. doi: 10.1007/s00271-019-00659-x – volume: 142 start-page: 349 year: 2020 ident: ref_13 article-title: A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-020-03283-4  | 
    
| SSID | ssj0000493234 | 
    
| Score | 2.4716475 | 
    
| Snippet | Precise quantification of evaporation has a vital role in effective crop modelling, irrigation scheduling, and agricultural water management. In recent years,... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1654 | 
    
| SubjectTerms | Agricultural management Algorithms Arid climates Aridity Artificial intelligence Climatic zones Correlation coefficient Correlation coefficients Datasets Error reduction Evaporation Gene expression Heuristic Heuristic methods Humid climates Humidity Hydrology Intelligence Irrigation scheduling Irrigation water Mars Modelling Pan evaporation Problem solving Rain random subspace random tree Root-mean-square errors Semiarid climates Sensitivity analysis Statistical analysis Statistics Subhumid climates support vector machine Support vector machines Water management Wavelet transforms Weather  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9EAvCAoIQ0FzQOXCqrZ37dhICCVpq4DUqEKtVHGx9uW0kmsHx1HV_8KPZcZ2QnOgR1vj0Vgzu_PNPr5h7KNLcyEQ6HPjZM5lGqRcY6HBhckjm7sYMz4VimezeHopf1xFVztstr4LQ8cq13NiO1HbytAa-RFRXdEWgYi_LX5z6hpFu6vrFhqqb61gv7YUY0_YbkjMWAO2Oz6Znf_crLogHhahkB3ZpsB6_0g1t9UyIOk4klvJqeXw3wKeT1flQt3fqaJ4kINOn7NnPXiEUeftF2zHlfvMO0PcW9Xt8jgcwqS4QRDaPu2zPcKSHRXzS_bnWDUKvj_g4ATqhFaAKi2gEsWnbtURN8OomOPPN9e3Sz7GPGfhXJWAqHvRR0z3JV1lh5sSLu4qOO47rTQwmtcV78xATb-oGcAXGMEE9QAdW7wHutMC7Y6Rq0u0CGP0Fbs8PbmYTHnfnIEbMfQb7nLltAlkLqSP0Zj6aeLbVEdxqkLipDOJSobOl9Y4KhpzmUjlfIOTr5OYH4x4zQYlWvCGgYuDIHbW6YjwDSKkMImG1kZKCx0KLTz2ee2VzPTM5dRAo8iwgiEnZltO9NjhRnzRUXb8T3BMLt4IEdN2-6Kq51k_cDOCsJgUchdoKyMhVYBGuaGyuU2UDnyPHawDJOuH_zL7F6we-7QJmsetefu4ondsL6TjNO1JmgM2aOqVe494qNEf-iD_C_oIDPk priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagO8CF34jAQD6gccFrEttpwgVlHVNB2rTDKg0ukR3bpSJLqjRlGn8LfyzvJWnVIoGQkHJJZDsvyhe_7znP3yPktU0c50D0WW6FYyIJEqYh0GA8d9I4G4HHx0Dx9CyaTMWnS3m5tYsf0yohFJ-3k3QI-GNCcD4MwvaIpBgujHv_vV9LAjKRYOn4UN4me5EENj4ge9Oz8_Qz1pRb9-6kNTlE90PVXFXLAKZrHGrHFbWK_Ts0886qXKiba1UUWx7n5D5Ra1u7RJNvh6tGH-Y_fpNx_J-HeUDu9XSUph1-HpJbtnxEvFNg0lXdLrjTAzou5kBr27PH5OexahT9uCXkSbGcWkFVaSj0U2xiV536M02LWVXPm69XS3YEztLQc1VSoO6LHnZdT9wPT-clvbiu6HFfrqWh6ayuWHdnGOkLVhR4R1M6hnEo5j7eUNwYQ9vfTrYuwSIA-hMyPflwMZ6wvsIDy_nIb5h1yuo8EI4LHyCd-Ensm0TLKFEhCtvlsYpH1hcmtxh5OhELZf0cZnArwMnk_CkZlGDBM0JtFASRNVZLJElAs8JYjoyRSnMdcs098nb9srO8lz_HKhxFBmEQYiPbwYZHDjbNF53ux58aHiFyNo1Qrru9UNWzrP_6M-TB4FmcDbQRkgsVgFF2pIwzsdKB75H9Ne6yfg5ZZijuhj_FeOSRNxss_t2a5__c8gW5G2J6TpuZs08GTb2yL4FfNfpV_wn9AgmcIVI priority: 102 providerName: Unpaywall  | 
    
| Title | Data Intelligence Model and Meta-Heuristic Algorithms-Based Pan Evaporation Modelling in Two Different Agro-Climatic Zones: A Case Study from Northern India | 
    
| URI | https://www.proquest.com/docview/2612751836 https://www.mdpi.com/2073-4433/12/12/1654/pdf?version=1639105625 https://doaj.org/article/0650538fe1bd4534a13b2e7adfd8ab10  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: ADMLS dateStart: 20110701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4433 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAF8SkCpZoDKhesJrGTTbhlt60WpK5WqCsVLpEdO2VRmqyyWVX9L_xYZuJ0tXsALhwd2c4oM7bfxDNvGHtv01IIBPq8sLLkMg1SrtHR4KIoI1PaGE98chQvZvF0Ib9cRVc7pb4oJszRA7sPd0IQAhdlaQNtZCSkCoQO7UiZ0iRKu-QqP0l3nKmfDveKUEhHqinQrz9R3U2zDnCjpvSdvUOo5-rfA5iPNvVK3d2qqto5a86fsicDSITMCfeMPbD1c-ZdIL5t2v43OBzDpFoi2OxbL9ivU9Up-LxDrwlU5KwCVRvAcYpP7cZxMkNWXTftsvtxs-ZjPMIMzFUNCKhXgzG4kZSlDssaLm8bOB2KqHSQXbcNd2_Gmb4Tz_8nyGCC8wBFJN4BpatAfxlk2xolQvN7yRbnZ5eTKR_qLvBCjPyO21JZXQSyFNJHQ0v9NPFNqqM4VSHRzRWJSkbWl6aw5A-WMpHK-gXuq1bi1l-IV-ygRgleM7BxEMTWWB0RdEHwEybRyJhIadSi0MJjH-8VkRcDKTnVxqhydE5Ib_me3jx2vO2-cmwcf-o4Jq1uOxGJdv8ATSsfTCv_l2l57PDeJvJhZa9zolyjqyoRe-zD1k7-Ls2b_yHNW_Y4pHiaPpTmkB107ca-Q0DU6SP2cHw2m3896tcAthazefbtNyGPDko | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9tBeEBQQoQXmAOXCqrZ37dhIFcpPq4Q2UYVSqeJi1t51qOTaaeIoyrvwLDwbM7YTmgO99WhrPRp5Zme-2Z9vGPtggkQIBPo8NjLhMrADHmGhwUWcuDoxHmZ8KhQHQ693Jb9du9db7M_qLgwdq1zFxDJQ6zymNfJjorqiLQLhfZ3cceoaRburqxYaqm6toE9KirH6Yse5WS6whJud9Lto74-Oc3Y66vR43WWAx6JpFdwkykSxLRMhLfytgRX4lg4i1wuUQ-Rqsa_8prGkjg1VP4n0pTJWjFHESAx0sUC5T9iOFDLA4m-nfTq8_L5e5UH8LRwhK3JPIQLrWBW3-czGhEHXiDaSYdkzYAPo7s6ziVouVJrey3lnz9jTGqxCq_Ku52zLZPusMUCcnU_L5Xg4gk56g6C3fNpne4RdK-rnF-x3VxUK-vc4P4E6r6WgMg0oRPGemVdE0dBKx_izi1-3M97GvKrhUmWAKH9Se2j1JV2dh5sMRoscunVnlwJa42nOKzVQ0g9qPvAFWtBBOUDHJJdAd2ig3KEy0ww1wjnxkl09iplese0MNXjNwHi27RltIpfwFCIyx3ebWrsqEpEjItFgn1dWCeOaKZ0adqQhVkxkxHDDiA12tB4-qShC_jewTSZeDyJm7_JFPh2HdaAICTJjEkqMHWnpCqlsVMo0lU60ryLbarDDlYOEdbiZhf8mR4N9WjvNw9q8eVjQe7bbGw0uwov-8PyA7Tl0lKc8xXPItovp3LxFLFZE72qHB_bzsefYX81pSu8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVoJeEBQQhgJ7gHJhFdu7dmykCuWnUUJpFKFWqri4a-86VHLt4DiK8i48EU_FjL0JzYHeerS1Ho08szPf7M4PIe91mHIOQJ8lWqRMhE7IYgg0GE9ST6XaB4-PgeLZ2B9eiK-X3uUO-bOuhcG0yrVNrA21KhI8I29hqyu8IuB-KzVpEZP-4MvsF8MJUnjTuh6nIc2YBXVctxszRR6nerWEcG5-POqD7D-47uDkvDdkZuIAS3jbrphOpY4TR6Rc2PCLQzsMbBXGnh9KFxutJYEM2toWKtEYCaUiEFLbCVgULcDoJRzoPiB7ePkFRmKvezKefN-c-AAW5y4XTaNPzkO7JaubYu6A88CSoi3HWM8P2AK9jxb5TK6WMstu-b_BE_LYAFfaaTTtKdnR-QGxzgBzF2V9NE-PaC-7BgBcPx2QfcSxTRvoZ-R3X1aSjm71_6Q4hS2jMlcUiEg21IumaTTtZFP42dXPmznrgo9VdCJzCoh_ZrS1-RLL6Ol1Ts-XBe2bKS8V7UzLgjVsAKUfOIjgM-3QHtChmDK5olhPQ-vbKl3mwBHsj-fk4l7E9ILs5sDBS0K17zi-Vjr2EFsBOnMDr62UJ2MeuzzmFvm0lkqUmK7pOLwjiyB6QiFGW0K0yNFm-axpF_K_hV0U8WYRdvmuXxTlNDJGI0L4DA4p1U6shMeFdIAp3ZYqVYGMHdsih2sFiYzpmUf_NopFPm6U5m5uXt1N6B15CHst-jYan74m-y5m9dQJPYdktyoX-g3Asip-a_Sdkqv73mJ_AeFlTx4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagO8CF34jAQD6gccFrEttpwgVlHVNB2rTDKg0ukR3bpSJLqjRlGn8LfyzvJWnVIoGQkHJJZDsvyhe_7znP3yPktU0c50D0WW6FYyIJEqYh0GA8d9I4G4HHx0Dx9CyaTMWnS3m5tYsf0yohFJ-3k3QI-GNCcD4MwvaIpBgujHv_vV9LAjKRYOn4UN4me5EENj4ge9Oz8_Qz1pRb9-6kNTlE90PVXFXLAKZrHGrHFbWK_Ts0886qXKiba1UUWx7n5D5Ra1u7RJNvh6tGH-Y_fpNx_J-HeUDu9XSUph1-HpJbtnxEvFNg0lXdLrjTAzou5kBr27PH5OexahT9uCXkSbGcWkFVaSj0U2xiV536M02LWVXPm69XS3YEztLQc1VSoO6LHnZdT9wPT-clvbiu6HFfrqWh6ayuWHdnGOkLVhR4R1M6hnEo5j7eUNwYQ9vfTrYuwSIA-hMyPflwMZ6wvsIDy_nIb5h1yuo8EI4LHyCd-Ensm0TLKFEhCtvlsYpH1hcmtxh5OhELZf0cZnArwMnk_CkZlGDBM0JtFASRNVZLJElAs8JYjoyRSnMdcs098nb9srO8lz_HKhxFBmEQYiPbwYZHDjbNF53ux58aHiFyNo1Qrru9UNWzrP_6M-TB4FmcDbQRkgsVgFF2pIwzsdKB75H9Ne6yfg5ZZijuhj_FeOSRNxss_t2a5__c8gW5G2J6TpuZs08GTb2yL4FfNfpV_wn9AgmcIVI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Intelligence+Model+and+Meta-Heuristic+Algorithms-Based+Pan+Evaporation+Modelling+in+Two+Different+Agro-Climatic+Zones%3A+A+Case+Study+from+Northern+India&rft.jtitle=Atmosphere&rft.au=Kushwaha%2C+Nand+Lal&rft.au=Rajput%2C+Jitendra&rft.au=Elbeltagi%2C+Ahmed&rft.au=Elnaggar%2C+Ashraf+Y.&rft.date=2021-12-01&rft.issn=2073-4433&rft.eissn=2073-4433&rft.volume=12&rft.issue=12&rft.spage=1654&rft_id=info:doi/10.3390%2Fatmos12121654&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_atmos12121654 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |