A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions
This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the infl...
Saved in:
| Published in | IEEE transactions on control systems technology Vol. 30; no. 2; pp. 728 - 739 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6536 1558-0865 2374-0159 1558-0865 |
| DOI | 10.1109/TCST.2021.3073607 |
Cover
| Abstract | This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part. |
|---|---|
| AbstractList | This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part. This work proposes a new approach for the optimal energy management of a hybrid electric vehicle taking into account traffic conditions. The method is based on a bi-level decomposition. At the microscopic level, the offline part computes cost maps thanks to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment, using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data, and compare the proposed bi-level method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for the energy management of a hybrid electric vehicle. The solutions show a reasonable over-consumption compared with deterministic optimization, and manageable computational times for both the offline and online part. |
| Author | Bonnans, Frederic Martinon, Pierre Le Rhun, Arthur De Nunzio, Giovanni Leroy, Thomas |
| Author_xml | – sequence: 1 givenname: Arthur surname: Le Rhun fullname: Le Rhun, Arthur email: arthur.le-rhun@ifpen.fr organization: IFP Energies nouvelles, Rueil-Malmaison, France – sequence: 2 givenname: Frederic surname: Bonnans fullname: Bonnans, Frederic email: frederic.bonnans@inria.fr organization: Inria Saclay and CMAP Ecole Polytechnique, Palaiseau, France – sequence: 3 givenname: Giovanni orcidid: 0000-0003-1179-8735 surname: De Nunzio fullname: De Nunzio, Giovanni email: giovanni.de-nunzio@ifpen.fr organization: IFP Energies nouvelles, Rueil-Malmaison, France – sequence: 4 givenname: Thomas surname: Leroy fullname: Leroy, Thomas email: thomas.leroy@ifpen.fr organization: IFP Energies nouvelles, Rueil-Malmaison, France – sequence: 5 givenname: Pierre orcidid: 0000-0003-0571-2376 surname: Martinon fullname: Martinon, Pierre email: pierre.martinon@inria.fr organization: Laboratoire Jacques-Louis Lions (LJLL), Inria Paris and Sorbonne-Université, CNRS, Université de Paris, Paris, France |
| BackLink | https://ifp.hal.science/hal-03608048$$DView record in HAL |
| BookMark | eNptkV9rFDEUxYNUsK1-APFlwCcfZs3fSeZxXVZXWFHo1NeQydypKdNkTbKV_fZmmFJh8emGy-8czj25Qhc-eEDoLcErQnD7sdvcdCuKKVkxLFmD5Qt0SYRQNVaNuChv3LC6Eax5ha5SuseYcEHlJerW1Sc3wSNM1dZDvDtV34w3d_AAPlc3OZoMZTeGWO22P1N16weI1Y8YetO7yaXsbNVFM45lboIfXHbBp9fo5WimBG-e5jW6_bztNrt6__3L1816X1smca6B435gkrVAMbdNP_a8HbhgQo2US2t6bEZuTMutASAKWN-0FhRhygzUip5dI7r4Hv3BnP6YadKH6B5MPGmC9dyLzjZlPfein3opog-L6Jf5hwfj9G691_MOF0xhrh5JYd8v7CGG30coVvfhGH25SdOGSsWkYLOjXCgbQ0oRRm1dNnMTpT83PWeZ_-g8CzlTnuf_n-bdonEA8My3nLSSCfYX7KWcnw |
| CODEN | IETTE2 |
| CitedBy_id | crossref_primary_10_1109_TTE_2022_3227334 crossref_primary_10_1109_ACCESS_2022_3224458 crossref_primary_10_1007_s11768_022_00092_0 crossref_primary_10_1109_TTE_2024_3385547 |
| Cites_doi | 10.3141/2421-12 10.1109/TCST.2010.2043736 10.1109/TITS.2013.2294342 10.1109/IVS.2017.7995939 10.1109/TITS.2019.2923292 10.1016/j.trd.2018.11.018 10.17159/2410-972x/2016/v26n2a4 10.1109/TEVC.2017.2712906 10.1016/j.jclepro.2016.07.203 10.1109/TVT.2016.2582721 10.1109/TCST.2014.2359176 10.1137/0325071 10.1109/TVT.2019.2926733 10.1016/S0196-8904(01)00148-0 10.1007/3-540-28853-8 10.1016/S1352-2310(00)00217-X 10.1016/j.rser.2018.03.055 10.1016/j.jpowsour.2016.11.106 10.1109/ChiCC.2016.7553745 10.1016/j.pecs.2019.04.002 10.1787/weo-2018-en 10.23919/ACC.2004.1384056 10.1016/j.ifacol.2017.08.1775 10.1002/asjc.1759 10.3390/en7074648 10.1007/978-0-8176-4755-1 10.1109/TVT.2018.2862945 10.1109/TITS.2014.2309674 10.1109/TCST.2014.2361294 10.1137/1.9781611973051 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M 1XC VOOES ADTOC UNPAY |
| DOI | 10.1109/TCST.2021.3073607 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0865 |
| EndPage | 739 |
| ExternalDocumentID | oai:HAL:hal-03608048v1 10_1109_TCST_2021_3073607 9419735 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7TB 8FD FR3 L7M 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3 |
| IEDL.DBID | UNPAY |
| ISSN | 1063-6536 1558-0865 2374-0159 |
| IngestDate | Sun Oct 26 04:14:48 EDT 2025 Sun Oct 26 08:22:46 EDT 2025 Sun Jun 29 16:34:12 EDT 2025 Wed Oct 01 03:14:44 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Aug 27 02:49:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Torque Stochastic processes bi-level optimization traffic data clustering Batteries Hybrid electric vehicles Energy management Engines Optimization stochastic dynamic programming Electric motors |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1179-8735 0000-0003-0571-2376 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ifp.hal.science/hal-03608048 |
| PQID | 2627837537 |
| PQPubID | 85425 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03608048v1 proquest_journals_2627837537 crossref_citationtrail_10_1109_TCST_2021_3073607 unpaywall_primary_10_1109_tcst_2021_3073607 ieee_primary_9419735 crossref_primary_10_1109_TCST_2021_3073607 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-March 2022-3-00 20220301 2022-03 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-March |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on control systems technology |
| PublicationTitleAbbrev | TCST |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref35 (ref34) 2019 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref19 ref18 Karbowski (ref16) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Liu (ref12) 2019 (ref3) 2019 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.3141/2421-12 – ident: ref5 article-title: Driving into 2025: The future of electric vehicles – ident: ref19 doi: 10.1109/TCST.2010.2043736 – volume-title: Geco Air year: 2019 ident: ref34 – ident: ref14 doi: 10.1109/TITS.2013.2294342 – ident: ref33 doi: 10.1109/IVS.2017.7995939 – ident: ref18 doi: 10.1109/TITS.2019.2923292 – volume-title: Post-2020 CO₂ Emission Performance Standards for Cars and Vans year: 2019 ident: ref3 – ident: ref8 doi: 10.1016/j.trd.2018.11.018 – ident: ref1 doi: 10.17159/2410-972x/2016/v26n2a4 – ident: ref24 doi: 10.1109/TEVC.2017.2712906 – ident: ref17 doi: 10.1016/j.jclepro.2016.07.203 – ident: ref9 doi: 10.1109/TVT.2016.2582721 – volume-title: arXiv:1907.01747 year: 2019 ident: ref12 article-title: Statistical characteristics of driver accelerating behavior and its probability model – ident: ref15 doi: 10.1109/TCST.2014.2359176 – ident: ref35 doi: 10.1137/0325071 – ident: ref26 doi: 10.1109/TVT.2019.2926733 – ident: ref29 doi: 10.1016/S0196-8904(01)00148-0 – ident: ref30 doi: 10.1007/3-540-28853-8 – ident: ref7 doi: 10.1016/S1352-2310(00)00217-X – ident: ref4 doi: 10.1016/j.rser.2018.03.055 – ident: ref23 doi: 10.1016/j.jpowsour.2016.11.106 – ident: ref21 doi: 10.1109/ChiCC.2016.7553745 – ident: ref10 doi: 10.1016/j.pecs.2019.04.002 – start-page: 5 volume-title: Proc. ITS World Congr. ident: ref16 article-title: Vehicle energy management optimisation through digital maps and connectivity – ident: ref2 doi: 10.1787/weo-2018-en – ident: ref22 doi: 10.23919/ACC.2004.1384056 – ident: ref13 doi: 10.1016/j.ifacol.2017.08.1775 – ident: ref28 doi: 10.1002/asjc.1759 – ident: ref20 doi: 10.3390/en7074648 – ident: ref32 doi: 10.1007/978-0-8176-4755-1 – ident: ref25 doi: 10.1109/TVT.2018.2862945 – ident: ref6 doi: 10.1109/TITS.2014.2309674 – ident: ref27 doi: 10.1109/TCST.2014.2361294 – ident: ref31 doi: 10.1137/1.9781611973051 |
| SSID | ssj0014527 |
| Score | 2.4016972 |
| Snippet | This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a... This work proposes a new approach for the optimal energy management of a hybrid electric vehicle taking into account traffic conditions. The method is based on... |
| SourceID | unpaywall hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 728 |
| SubjectTerms | Acceleration Algorithms Batteries Bilevel optimization Computing costs Driving conditions Electric motors Electric power Energy management Engineering Sciences Engines Hybrid electric vehicles hybrid electric vehicles (EVs) Mechanics Optimization State of charge Statistical analysis stochastic dynamic programming (SDP) Stochastic processes Torque Traffic traffic data clustering Traffic information Traffic management Traffic speed |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5RXrY9jA02kY1N1rSnbSlJ7NjxY6mKKgQT0srEW2Q7rpCoWgQpE_v1u3PSrIwJ8RZFduLovvjufHffAXzOEoN6XfNYCY8OinFZbLyysa_QHDHocRSWqpFPvsvxmTg6z8834FtXC-O9D8lnvk-XIZZfLdySjsr2tUi14nkPeqqQTa1WFzEQTXtW9HB4LENIMmr5NPcnwx8T9ASztE-AltQ5dk0H9S4oAzK0VrlnZT5bzq_M3S8zm60pnMMtOFkttckzuewva9t3v_9hcXzqt7yCl63lyQYNVF7Dhp9vw4s1PsIdmAzYAe4St37GRqEmkP3NjmEtj-0dQzOXjUc_b1jomcROr3FLoBRbYnxmqPuIlIINFxQLJ0y_gbPD0WQ4jtu2C7HjKqljLxJbccW1zxLhpJ1aoSuR87yYZkI5YxMzFcZo4Yz3aeG5ldr5IuWFqTKXW_4WNueLud8FhvhQlRIVT6VEzyjVVaqtsDhRcCPcNIJkJYjStZzk1BpjVgbfJNElya4k2ZWt7CL40k25agg5Hhv8CaXbjSMq7fHguKR7qLnRWBbFbRrBDomnG9VKJoK9FRjK9r--KTNJnUnQxcNHf-0A8mAhtcNJ6wt59_93vIfnGZVThJy2Pdisr5f-Axo5tf0Y0P0HQAH2ew priority: 102 providerName: IEEE |
| Title | A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions |
| URI | https://ieeexplore.ieee.org/document/9419735 https://www.proquest.com/docview/2627837537 https://ifp.hal.science/hal-03608048 |
| UnpaywallVersion | submittedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0865 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014527 issn: 1558-0865 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_a9GHsYV_dWEZXxOjThlPLkiXrMQspYWylsGR0T0aSZQoLaWicju6v352jeOkGG3sz5mRk38_3ge5-B3CSpRb9uhGJlgETFOuzxAbtklBhOGIx4ygcdSN_OleTmfxwmV_uwUnXC1MvB1cYdUb7f4rXCRpZjGtksQ8HKseIuwcHs_OL4df2IFOJROXtJED0jES23E6PzISm4orcxINMnprTxq-oeDLjA8K1ogGyO65o_4oKIdsJK_eCzQfrxdLefbfz-Y7fOXsM4-2ON-Um3wbrxg38j9_IHP_1Sk_gUQw82XCDlKewFxbP4OEOHeEhTIfsPRqJ2zBn47YlkP0qjmGRxvaOYZTLJuMvK9aOTGIXN2gRqMKWCJ8Zuj7ipGCjazoKJ0g_h9nZeDqaJHHqQuKFTpskyNRVQgsTslR65WonTSVzkRd1JrW3LrW1tNZIb0PgRRBOGR8KLgpbZT534gX0FteL8BIYwkNXWlaCK4WJETcVN046XCiFlb7uQ7pVQOkjJTlNxpiXbWqSmnI6-jwtSWdl1Fkf3nZLlhs-jr8Jv8GP3ckRk_Zk-LGke1sF3PI-HJLSOykjudEi78PRFgRl_K1XZaZoMAlmePjodx0w_tgIIe3eRl79l_QR9JqbdXiN0U7jjtuWxOMI-Z8tg_iM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t42HwwNdABDawEE9AuiS-fPixqzoFaCckMrS3yHZcIVG105YOjb-euyQN3UCItyiyE0f3i-_Od_c7gDdRoEmvK-mn6MhB0TbytUuN7yoyRzR5HJnhauTpSZKf4sez-GwL3ve1MM65JvnMDfiyieVXS7vio7JDhaFKZbwNd2JEjNtqrT5mgG2DVvJxpJ80QUmvY9Q8LEZfCvIFo3DAkE64d-yGFtr-xjmQTXOVG3bm7mpxrq9_6Pl8Q-UcP4DperFtpsn3wao2A_vzFo_j_37NQ7jf2Z5i2ILlEWy5xWO4t8FIuAfFUBzRPnHl5mLcVAWK3_kxomOyvRZk6Ip8_PVSNF2TxOcL2hQ4yZY5nwVpP6alEKMlR8MZ1U_g9HhcjHK_a7zgW5kGte8wMJVMpXJRgDYxM4OqwljG2SzC1GoT6BlqrdBq58LMSZMo67JQZrqKbGzkU9hZLBfuGQhCSFqlWMkwScg3ClUVKoOGJqLUaGceBGtBlLZjJefmGPOy8U4CVbLsSpZd2cnOg7f9lPOWkuNfg1-TdPtxTKadDycl3yPdTeYyZlehB3ssnn5UJxkP9tdgKLs_-7KMEu5NQk4ePfpdD5A_FlJbmrS5kOd_f8cr2M2L6aScfDj59ALuRlxc0WS47cNOfbFyB2Ty1OZlg_RfTCn5yA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a9GHsYb-6sYxuiNGnDaeWJUvWYxZSwthKYcnonowkyxQa0tA4Hd1fvztH8dINNvZmjGRk3-e779DpO4DjLLUY141ItAyYoFifJTZol4QK6YjFjKNwdBr585mazOTHi_xiD467szD1cnCJrDP6_xO8TtDJIq-RxT4cqBwZdw8OZmfnw2_tRqYSicrbToAYGUlsue0emQlNxRW5iRuZPDUnjV9R8WTGB4RrRQ1kd0LR_iUVQrYdVu6RzQfrxdLefbfz-U7cOX0M4-2KN-UmV4N14wb-x29ijv96pSfwKBJPNtwg5SnshcUzeLgjR3gI0yH7gE7iNszZuD0SyH4Vx7AoY3vHkOWyyfjrirUtk9j5DXoEqrAlwWeGoY80KdjomrbCCdLPYXY6no4mSey6kHih0yYJMnWV0MKELJVeudpJU8lc5EWdSe2tS20trTXS2xB4EYRTxoeCi8JWmc-deAG9xfUivASG8NCVlpXgSmFixE3FjZMOJ0phpa_7kG4NUPooSU6dMeZlm5qkppyOvkxLslkZbdaHd92U5UaP42-D3-LH7saRkvZk-Kmke1sD3PI-HJLRu1FGcqNF3oejLQjK-FuvykxRYxLM8PDR7ztg_LEQQtq9hbz6r9FH0Gtu1uE1sp3GvYlg_wlfcveL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bilevel+Energy+Management+Strategy+for+HEVs+Under+Probabilistic+Traffic+Conditions&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Le+Rhun%2C+Arthur&rft.au=Bonnans%2C+Frederic&rft.au=De+Nunzio%2C+Giovanni&rft.au=Leroy%2C+Thomas&rft.date=2022-03-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=2&rft.spage=728&rft.epage=739&rft_id=info:doi/10.1109%2FTCST.2021.3073607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3073607 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |