A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions

This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the infl...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 2; pp. 728 - 739
Main Authors Le Rhun, Arthur, Bonnans, Frederic, De Nunzio, Giovanni, Leroy, Thomas, Martinon, Pierre
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
2374-0159
1558-0865
DOI10.1109/TCST.2021.3073607

Cover

Abstract This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.
AbstractList This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.
This work proposes a new approach for the optimal energy management of a hybrid electric vehicle taking into account traffic conditions. The method is based on a bi-level decomposition. At the microscopic level, the offline part computes cost maps thanks to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment, using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data, and compare the proposed bi-level method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for the energy management of a hybrid electric vehicle. The solutions show a reasonable over-consumption compared with deterministic optimization, and manageable computational times for both the offline and online part.
Author Bonnans, Frederic
Martinon, Pierre
Le Rhun, Arthur
De Nunzio, Giovanni
Leroy, Thomas
Author_xml – sequence: 1
  givenname: Arthur
  surname: Le Rhun
  fullname: Le Rhun, Arthur
  email: arthur.le-rhun@ifpen.fr
  organization: IFP Energies nouvelles, Rueil-Malmaison, France
– sequence: 2
  givenname: Frederic
  surname: Bonnans
  fullname: Bonnans, Frederic
  email: frederic.bonnans@inria.fr
  organization: Inria Saclay and CMAP Ecole Polytechnique, Palaiseau, France
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0003-1179-8735
  surname: De Nunzio
  fullname: De Nunzio, Giovanni
  email: giovanni.de-nunzio@ifpen.fr
  organization: IFP Energies nouvelles, Rueil-Malmaison, France
– sequence: 4
  givenname: Thomas
  surname: Leroy
  fullname: Leroy, Thomas
  email: thomas.leroy@ifpen.fr
  organization: IFP Energies nouvelles, Rueil-Malmaison, France
– sequence: 5
  givenname: Pierre
  orcidid: 0000-0003-0571-2376
  surname: Martinon
  fullname: Martinon, Pierre
  email: pierre.martinon@inria.fr
  organization: Laboratoire Jacques-Louis Lions (LJLL), Inria Paris and Sorbonne-Université, CNRS, Université de Paris, Paris, France
BackLink https://ifp.hal.science/hal-03608048$$DView record in HAL
BookMark eNptkV9rFDEUxYNUsK1-APFlwCcfZs3fSeZxXVZXWFHo1NeQydypKdNkTbKV_fZmmFJh8emGy-8czj25Qhc-eEDoLcErQnD7sdvcdCuKKVkxLFmD5Qt0SYRQNVaNuChv3LC6Eax5ha5SuseYcEHlJerW1Sc3wSNM1dZDvDtV34w3d_AAPlc3OZoMZTeGWO22P1N16weI1Y8YetO7yaXsbNVFM45lboIfXHbBp9fo5WimBG-e5jW6_bztNrt6__3L1816X1smca6B435gkrVAMbdNP_a8HbhgQo2US2t6bEZuTMutASAKWN-0FhRhygzUip5dI7r4Hv3BnP6YadKH6B5MPGmC9dyLzjZlPfein3opog-L6Jf5hwfj9G691_MOF0xhrh5JYd8v7CGG30coVvfhGH25SdOGSsWkYLOjXCgbQ0oRRm1dNnMTpT83PWeZ_-g8CzlTnuf_n-bdonEA8My3nLSSCfYX7KWcnw
CODEN IETTE2
CitedBy_id crossref_primary_10_1109_TTE_2022_3227334
crossref_primary_10_1109_ACCESS_2022_3224458
crossref_primary_10_1007_s11768_022_00092_0
crossref_primary_10_1109_TTE_2024_3385547
Cites_doi 10.3141/2421-12
10.1109/TCST.2010.2043736
10.1109/TITS.2013.2294342
10.1109/IVS.2017.7995939
10.1109/TITS.2019.2923292
10.1016/j.trd.2018.11.018
10.17159/2410-972x/2016/v26n2a4
10.1109/TEVC.2017.2712906
10.1016/j.jclepro.2016.07.203
10.1109/TVT.2016.2582721
10.1109/TCST.2014.2359176
10.1137/0325071
10.1109/TVT.2019.2926733
10.1016/S0196-8904(01)00148-0
10.1007/3-540-28853-8
10.1016/S1352-2310(00)00217-X
10.1016/j.rser.2018.03.055
10.1016/j.jpowsour.2016.11.106
10.1109/ChiCC.2016.7553745
10.1016/j.pecs.2019.04.002
10.1787/weo-2018-en
10.23919/ACC.2004.1384056
10.1016/j.ifacol.2017.08.1775
10.1002/asjc.1759
10.3390/en7074648
10.1007/978-0-8176-4755-1
10.1109/TVT.2018.2862945
10.1109/TITS.2014.2309674
10.1109/TCST.2014.2361294
10.1137/1.9781611973051
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1109/TCST.2021.3073607
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 739
ExternalDocumentID oai:HAL:hal-03608048v1
10_1109_TCST_2021_3073607
9419735
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3
IEDL.DBID UNPAY
ISSN 1063-6536
1558-0865
2374-0159
IngestDate Sun Oct 26 04:14:48 EDT 2025
Sun Oct 26 08:22:46 EDT 2025
Sun Jun 29 16:34:12 EDT 2025
Wed Oct 01 03:14:44 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Aug 27 02:49:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Torque
Stochastic processes
bi-level optimization
traffic data clustering
Batteries
Hybrid electric vehicles
Energy management
Engines
Optimization
stochastic dynamic programming
Electric motors
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1179-8735
0000-0003-0571-2376
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ifp.hal.science/hal-03608048
PQID 2627837537
PQPubID 85425
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03608048v1
proquest_journals_2627837537
crossref_citationtrail_10_1109_TCST_2021_3073607
unpaywall_primary_10_1109_tcst_2021_3073607
ieee_primary_9419735
crossref_primary_10_1109_TCST_2021_3073607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-March
2022-3-00
20220301
2022-03
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref35
(ref34) 2019
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref19
ref18
Karbowski (ref16)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Liu (ref12) 2019
(ref3) 2019
ref9
ref4
ref6
ref5
References_xml – ident: ref11
  doi: 10.3141/2421-12
– ident: ref5
  article-title: Driving into 2025: The future of electric vehicles
– ident: ref19
  doi: 10.1109/TCST.2010.2043736
– volume-title: Geco Air
  year: 2019
  ident: ref34
– ident: ref14
  doi: 10.1109/TITS.2013.2294342
– ident: ref33
  doi: 10.1109/IVS.2017.7995939
– ident: ref18
  doi: 10.1109/TITS.2019.2923292
– volume-title: Post-2020 CO₂ Emission Performance Standards for Cars and Vans
  year: 2019
  ident: ref3
– ident: ref8
  doi: 10.1016/j.trd.2018.11.018
– ident: ref1
  doi: 10.17159/2410-972x/2016/v26n2a4
– ident: ref24
  doi: 10.1109/TEVC.2017.2712906
– ident: ref17
  doi: 10.1016/j.jclepro.2016.07.203
– ident: ref9
  doi: 10.1109/TVT.2016.2582721
– volume-title: arXiv:1907.01747
  year: 2019
  ident: ref12
  article-title: Statistical characteristics of driver accelerating behavior and its probability model
– ident: ref15
  doi: 10.1109/TCST.2014.2359176
– ident: ref35
  doi: 10.1137/0325071
– ident: ref26
  doi: 10.1109/TVT.2019.2926733
– ident: ref29
  doi: 10.1016/S0196-8904(01)00148-0
– ident: ref30
  doi: 10.1007/3-540-28853-8
– ident: ref7
  doi: 10.1016/S1352-2310(00)00217-X
– ident: ref4
  doi: 10.1016/j.rser.2018.03.055
– ident: ref23
  doi: 10.1016/j.jpowsour.2016.11.106
– ident: ref21
  doi: 10.1109/ChiCC.2016.7553745
– ident: ref10
  doi: 10.1016/j.pecs.2019.04.002
– start-page: 5
  volume-title: Proc. ITS World Congr.
  ident: ref16
  article-title: Vehicle energy management optimisation through digital maps and connectivity
– ident: ref2
  doi: 10.1787/weo-2018-en
– ident: ref22
  doi: 10.23919/ACC.2004.1384056
– ident: ref13
  doi: 10.1016/j.ifacol.2017.08.1775
– ident: ref28
  doi: 10.1002/asjc.1759
– ident: ref20
  doi: 10.3390/en7074648
– ident: ref32
  doi: 10.1007/978-0-8176-4755-1
– ident: ref25
  doi: 10.1109/TVT.2018.2862945
– ident: ref6
  doi: 10.1109/TITS.2014.2309674
– ident: ref27
  doi: 10.1109/TCST.2014.2361294
– ident: ref31
  doi: 10.1137/1.9781611973051
SSID ssj0014527
Score 2.4016972
Snippet This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a...
This work proposes a new approach for the optimal energy management of a hybrid electric vehicle taking into account traffic conditions. The method is based on...
SourceID unpaywall
hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 728
SubjectTerms Acceleration
Algorithms
Batteries
Bilevel optimization
Computing costs
Driving conditions
Electric motors
Electric power
Energy management
Engineering Sciences
Engines
Hybrid electric vehicles
hybrid electric vehicles (EVs)
Mechanics
Optimization
State of charge
Statistical analysis
stochastic dynamic programming (SDP)
Stochastic processes
Torque
Traffic
traffic data clustering
Traffic information
Traffic management
Traffic speed
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5RXrY9jA02kY1N1rSnbSlJ7NjxY6mKKgQT0srEW2Q7rpCoWgQpE_v1u3PSrIwJ8RZFduLovvjufHffAXzOEoN6XfNYCY8OinFZbLyysa_QHDHocRSWqpFPvsvxmTg6z8834FtXC-O9D8lnvk-XIZZfLdySjsr2tUi14nkPeqqQTa1WFzEQTXtW9HB4LENIMmr5NPcnwx8T9ASztE-AltQ5dk0H9S4oAzK0VrlnZT5bzq_M3S8zm60pnMMtOFkttckzuewva9t3v_9hcXzqt7yCl63lyQYNVF7Dhp9vw4s1PsIdmAzYAe4St37GRqEmkP3NjmEtj-0dQzOXjUc_b1jomcROr3FLoBRbYnxmqPuIlIINFxQLJ0y_gbPD0WQ4jtu2C7HjKqljLxJbccW1zxLhpJ1aoSuR87yYZkI5YxMzFcZo4Yz3aeG5ldr5IuWFqTKXW_4WNueLud8FhvhQlRIVT6VEzyjVVaqtsDhRcCPcNIJkJYjStZzk1BpjVgbfJNElya4k2ZWt7CL40k25agg5Hhv8CaXbjSMq7fHguKR7qLnRWBbFbRrBDomnG9VKJoK9FRjK9r--KTNJnUnQxcNHf-0A8mAhtcNJ6wt59_93vIfnGZVThJy2Pdisr5f-Axo5tf0Y0P0HQAH2ew
  priority: 102
  providerName: IEEE
Title A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions
URI https://ieeexplore.ieee.org/document/9419735
https://www.proquest.com/docview/2627837537
https://ifp.hal.science/hal-03608048
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1558-0865
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_a9GHsYV_dWEZXxOjThlPLkiXrMQspYWylsGR0T0aSZQoLaWicju6v352jeOkGG3sz5mRk38_3ge5-B3CSpRb9uhGJlgETFOuzxAbtklBhOGIx4ygcdSN_OleTmfxwmV_uwUnXC1MvB1cYdUb7f4rXCRpZjGtksQ8HKseIuwcHs_OL4df2IFOJROXtJED0jES23E6PzISm4orcxINMnprTxq-oeDLjA8K1ogGyO65o_4oKIdsJK_eCzQfrxdLefbfz-Y7fOXsM4-2ON-Um3wbrxg38j9_IHP_1Sk_gUQw82XCDlKewFxbP4OEOHeEhTIfsPRqJ2zBn47YlkP0qjmGRxvaOYZTLJuMvK9aOTGIXN2gRqMKWCJ8Zuj7ipGCjazoKJ0g_h9nZeDqaJHHqQuKFTpskyNRVQgsTslR65WonTSVzkRd1JrW3LrW1tNZIb0PgRRBOGR8KLgpbZT534gX0FteL8BIYwkNXWlaCK4WJETcVN046XCiFlb7uQ7pVQOkjJTlNxpiXbWqSmnI6-jwtSWdl1Fkf3nZLlhs-jr8Jv8GP3ckRk_Zk-LGke1sF3PI-HJLSOykjudEi78PRFgRl_K1XZaZoMAlmePjodx0w_tgIIe3eRl79l_QR9JqbdXiN0U7jjtuWxOMI-Z8tg_iM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t42HwwNdABDawEE9AuiS-fPixqzoFaCckMrS3yHZcIVG105YOjb-euyQN3UCItyiyE0f3i-_Od_c7gDdRoEmvK-mn6MhB0TbytUuN7yoyRzR5HJnhauTpSZKf4sez-GwL3ve1MM65JvnMDfiyieVXS7vio7JDhaFKZbwNd2JEjNtqrT5mgG2DVvJxpJ80QUmvY9Q8LEZfCvIFo3DAkE64d-yGFtr-xjmQTXOVG3bm7mpxrq9_6Pl8Q-UcP4DperFtpsn3wao2A_vzFo_j_37NQ7jf2Z5i2ILlEWy5xWO4t8FIuAfFUBzRPnHl5mLcVAWK3_kxomOyvRZk6Ip8_PVSNF2TxOcL2hQ4yZY5nwVpP6alEKMlR8MZ1U_g9HhcjHK_a7zgW5kGte8wMJVMpXJRgDYxM4OqwljG2SzC1GoT6BlqrdBq58LMSZMo67JQZrqKbGzkU9hZLBfuGQhCSFqlWMkwScg3ClUVKoOGJqLUaGceBGtBlLZjJefmGPOy8U4CVbLsSpZd2cnOg7f9lPOWkuNfg1-TdPtxTKadDycl3yPdTeYyZlehB3ssnn5UJxkP9tdgKLs_-7KMEu5NQk4ePfpdD5A_FlJbmrS5kOd_f8cr2M2L6aScfDj59ALuRlxc0WS47cNOfbFyB2Ty1OZlg_RfTCn5yA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a9GHsYb-6sYxuiNGnDaeWJUvWYxZSwthKYcnonowkyxQa0tA4Hd1fvztH8dINNvZmjGRk3-e779DpO4DjLLUY141ItAyYoFifJTZol4QK6YjFjKNwdBr585mazOTHi_xiD467szD1cnCJrDP6_xO8TtDJIq-RxT4cqBwZdw8OZmfnw2_tRqYSicrbToAYGUlsue0emQlNxRW5iRuZPDUnjV9R8WTGB4RrRQ1kd0LR_iUVQrYdVu6RzQfrxdLefbfz-U7cOX0M4-2KN-UmV4N14wb-x29ijv96pSfwKBJPNtwg5SnshcUzeLgjR3gI0yH7gE7iNszZuD0SyH4Vx7AoY3vHkOWyyfjrirUtk9j5DXoEqrAlwWeGoY80KdjomrbCCdLPYXY6no4mSey6kHih0yYJMnWV0MKELJVeudpJU8lc5EWdSe2tS20trTXS2xB4EYRTxoeCi8JWmc-deAG9xfUivASG8NCVlpXgSmFixE3FjZMOJ0phpa_7kG4NUPooSU6dMeZlm5qkppyOvkxLslkZbdaHd92U5UaP42-D3-LH7saRkvZk-Kmke1sD3PI-HJLRu1FGcqNF3oejLQjK-FuvykxRYxLM8PDR7ztg_LEQQtq9hbz6r9FH0Gtu1uE1sp3GvYlg_wlfcveL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bilevel+Energy+Management+Strategy+for+HEVs+Under+Probabilistic+Traffic+Conditions&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Le+Rhun%2C+Arthur&rft.au=Bonnans%2C+Frederic&rft.au=De+Nunzio%2C+Giovanni&rft.au=Leroy%2C+Thomas&rft.date=2022-03-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=2&rft.spage=728&rft.epage=739&rft_id=info:doi/10.1109%2FTCST.2021.3073607&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2021_3073607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon