Cooling performance analysis and structural parameter optimization of X-type truss array channel based on neural networks and genetic algorithm
•An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were dis...
Saved in:
| Published in | International journal of heat and mass transfer Vol. 186; p. 122452 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.05.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0017-9310 1879-2189 |
| DOI | 10.1016/j.ijheatmasstransfer.2021.122452 |
Cover
| Abstract | •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were discussed.•A multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channel was established.•The optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945, respectively.•The heat transfer coefficient of the optimized X-type truss array channel increases by 44.50% to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56%.
This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades. |
|---|---|
| AbstractList | •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were discussed.•A multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channel was established.•The optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945, respectively.•The heat transfer coefficient of the optimized X-type truss array channel increases by 44.50% to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56%.
This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades. This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades. |
| ArticleNumber | 122452 |
| Author | Zhao, Zhen Xu, Liang Li, Yunlong Gao, Jianmin Xi, Lei |
| Author_xml | – sequence: 1 givenname: Lei surname: Xi fullname: Xi, Lei – sequence: 2 givenname: Liang surname: Xu fullname: Xu, Liang email: xuliang@mail.xjtu.edu.cn – sequence: 3 givenname: Jianmin surname: Gao fullname: Gao, Jianmin – sequence: 4 givenname: Zhen surname: Zhao fullname: Zhao, Zhen – sequence: 5 givenname: Yunlong surname: Li fullname: Li, Yunlong |
| BookMark | eNqVkcFu1DAQhi1UJLaFd7DEhUu2tpM4yQ20oi2oEheQuFkTZ7zrkNjB9lItL8Er19twggucxiN_80kz_yW5cN4hIW8423LG5fW4teMBIc0QYwrgosGwFUzwLReiqsUzsuFt0xWCt90F2TDGm6IrOXtBLmMczy2r5Ib82nk_WbenCwbjwwxOIwUH0ynamB8DzfajTscAE10gwIwJA_VLsrP9Ccl6R72hX4t0WpBmNOapEOBE9QGcw4n2EHGgGXP4JHGYHnz4tsr3mFurKUx7H2w6zC_JcwNTxFe_6xX5cvP-8-6uuP90-2H37r7QZcNSgUwMVSuwrmXN-6pvkUlTSYGsFWB6Xnem72upM9Qi7wdtGgldJXrRd2Ul6_KKvF69S_DfjxiTGv0x5L2jErLsZFs1rM3UzUrp4GMMaJS26WnpfHI7Kc7UOQw1qr_DUOcw1BpGFr39Q7QEO0M4_Y_i46rAfJYfNv9GbTHHNdiAOqnB23-XPQIpnbvb |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124699 crossref_primary_10_1016_j_applthermaleng_2022_119952 crossref_primary_10_1016_j_csite_2024_105289 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124007 crossref_primary_10_1016_j_icheatmasstransfer_2024_107248 crossref_primary_10_1016_j_matdes_2023_111969 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126644 crossref_primary_10_1016_j_icheatmasstransfer_2025_108646 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125543 crossref_primary_10_1016_j_jtice_2023_104704 crossref_primary_10_2298_TSCI220302110X crossref_primary_10_3390_aerospace9020087 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125144 crossref_primary_10_1016_j_applthermaleng_2022_119792 crossref_primary_10_3390_aerospace9100533 crossref_primary_10_1016_j_applthermaleng_2024_124364 crossref_primary_10_3390_aerospace9080405 crossref_primary_10_1016_j_ijthermalsci_2024_109647 crossref_primary_10_1016_j_matdes_2024_112773 crossref_primary_10_1016_j_actamat_2024_120557 crossref_primary_10_1016_j_csite_2025_105954 crossref_primary_10_3390_en17133177 |
| Cites_doi | 10.1016/j.proeng.2014.12.652 10.1016/j.ijmecsci.2017.10.045 10.1016/j.applthermaleng.2015.02.012 10.1016/j.matlet.2017.05.073 10.1016/j.cja.2020.12.035 10.1016/j.ijheatmasstransfer.2017.07.073 10.1615/HeatTransRes.2016010210 10.1016/j.ijheatmasstransfer.2018.07.087 10.1126/science.1211649 10.1016/j.ijthermalsci.2016.02.017 10.1016/j.applthermaleng.2017.08.081 10.1016/j.csite.2021.101034 10.1016/j.compstruct.2017.11.069 10.3390/app11135838 10.1007/s40430-016-0698-0 10.3390/en14133954 10.1016/j.ijheatmasstransfer.2003.10.012 10.1115/1.3104615 10.1080/01457631003640453 10.1016/j.applthermaleng.2018.06.080 10.1016/j.ijheatmasstransfer.2020.119579 10.1016/j.ijheatmasstransfer.2018.08.115 10.1016/j.icheatmasstransfer.2018.05.026 10.1002/adem.201400471 10.4028/www.scientific.net/MSF.539-543.242 10.1016/j.applthermaleng.2020.116306 10.1007/s11431-009-0219-9 10.1016/j.csite.2021.101442 10.1016/S0079-6425(00)00016-5 10.1016/j.ijheatmasstransfer.2013.12.085 10.1016/j.compstruct.2017.01.012 10.1080/08916150902718591 10.1016/j.pmatsci.2005.03.001 10.1016/j.ijthermalsci.2016.03.026 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV May 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV May 1, 2022 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2021.122452 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2021_122452 S0017931021015507 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDMP ABDPE ABJNI ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW T9H VOH WUQ ZY4 ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c370t-e02d482e55651b4b8e06f462e082afb159fbb56cd488e1bdcf76a942b2b934653 |
| IEDL.DBID | .~1 |
| ISSN | 0017-9310 |
| IngestDate | Mon Jul 14 07:41:01 EDT 2025 Wed Oct 01 05:20:02 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Fri Feb 23 02:40:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Truss array Turbine blade Cooling channel Flow and heat transfer Neural network Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-e02d482e55651b4b8e06f462e082afb159fbb56cd488e1bdcf76a942b2b934653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2639684708 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2639684708 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_122452 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122452 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_122452 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Xi, Gao, Xu (bib0030) 2021; 26 Verstraete, Amaral, Braembussche (bib0031) 2010; 132 Karsoliya (bib0040) 2012; 3 Son, Weibel, Kumaresan, Garimella (bib0020) 2017; 115 Yeranee, Yu (bib0001) 2021; 34 Xu, Xi, Zhao, Gao, Li (bib0038) 2018; 96 Xu, Shen, Ruan, Xi, Gao, Li (bib0029) 2021; 11 Xi, Gao, Xu (bib0036) 2018; 127 Liang, Chen, Ju (bib0027) 2021; 185 Joo, Kang, Kang (bib0017) 2009; 22 Liang, Bai, Chen (bib0026) 2020; 153 Jadhav, Balaji (bib0034) 2016; 105 Wadley, Queheillalt (bib0019) 2007; 539-543 Kim, Hodson, Lu (bib0015) 2004; 47 Jin, Shen, Yan, Sunden, Xie (bib0022) 2018; 127 Moon, Kim (bib0033) 2014; 72 Meng, Liao, Li (bib0002) 2015; 99 Gao, Sun (bib0008) 2016; 47 Samad, Lee, Kim (bib0032) 2010; 31 Xu, Ruan, Shen, Xi, Gao, Li (bib0028) 2021; 14 Gebisa, Lemu (bib0003) 2018; 23 Zhang, Jiang, Zhao (bib0010) 2017; 165 Xiong, Mines, Ghosh (bib0007) 2015; 17 Lu, Valdevit, Evans (bib0016) 2005; 50 Xi, Xu, Gao, Zhao, Li (bib0039) 2021; 28 Zhang, Han, Chen (bib0009) 2009; 52 Mongillo, Propheter-Hinckley, Zelesky (bib0025) 2015; 14 Xu, Chen, Xi, Xiong, Gao, Li (bib0037) 2021; 21 Feng, Xiong, Yang (bib0012) 2017; 134 Wei, He, Cheng (bib0021) 2015; 81 Damavandi, Safikhani, Yahyaabadi (bib0035) 2017; 39 Schaedler, Jacobsen, Torrents (bib0005) 2011; 334 Lu, Zhang, Jin (bib0006) 2012; 31 Yan, Yang, Lu (bib0023) 2017; 127 Yan, Zhang, Lu (bib0024) 2016; 107 Huang, Xue, Wang (bib0011) 2017; 202 Zhao, Wen, Li (bib0013) 2018; 185 Evans, Hutchinson, Fleck (bib0004) 2001; 46 Shen, Hongbin, Hongqian (bib0018) 2018; 142 Hoffmann, Hodson, Lu (bib0014) 2003 Moon (10.1016/j.ijheatmasstransfer.2021.122452_bib0033) 2014; 72 Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0028) 2021; 14 Lu (10.1016/j.ijheatmasstransfer.2021.122452_bib0016) 2005; 50 Yan (10.1016/j.ijheatmasstransfer.2021.122452_bib0023) 2017; 127 Gebisa (10.1016/j.ijheatmasstransfer.2021.122452_bib0003) 2018; 23 Shen (10.1016/j.ijheatmasstransfer.2021.122452_bib0018) 2018; 142 Hoffmann (10.1016/j.ijheatmasstransfer.2021.122452_bib0014) 2003 Xiong (10.1016/j.ijheatmasstransfer.2021.122452_bib0007) 2015; 17 Verstraete (10.1016/j.ijheatmasstransfer.2021.122452_bib0031) 2010; 132 Kim (10.1016/j.ijheatmasstransfer.2021.122452_bib0015) 2004; 47 Wadley (10.1016/j.ijheatmasstransfer.2021.122452_bib0019) 2007; 539-543 Feng (10.1016/j.ijheatmasstransfer.2021.122452_bib0012) 2017; 134 Evans (10.1016/j.ijheatmasstransfer.2021.122452_bib0004) 2001; 46 Huang (10.1016/j.ijheatmasstransfer.2021.122452_bib0011) 2017; 202 Yan (10.1016/j.ijheatmasstransfer.2021.122452_bib0024) 2016; 107 Meng (10.1016/j.ijheatmasstransfer.2021.122452_bib0002) 2015; 99 Liang (10.1016/j.ijheatmasstransfer.2021.122452_bib0027) 2021; 185 Damavandi (10.1016/j.ijheatmasstransfer.2021.122452_bib0035) 2017; 39 Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0030) 2021; 26 Son (10.1016/j.ijheatmasstransfer.2021.122452_bib0020) 2017; 115 Karsoliya (10.1016/j.ijheatmasstransfer.2021.122452_bib0040) 2012; 3 Jadhav (10.1016/j.ijheatmasstransfer.2021.122452_bib0034) 2016; 105 Schaedler (10.1016/j.ijheatmasstransfer.2021.122452_bib0005) 2011; 334 Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0038) 2018; 96 Liang (10.1016/j.ijheatmasstransfer.2021.122452_bib0026) 2020; 153 Zhang (10.1016/j.ijheatmasstransfer.2021.122452_bib0009) 2009; 52 Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0039) 2021; 28 Lu (10.1016/j.ijheatmasstransfer.2021.122452_bib0006) 2012; 31 Wei (10.1016/j.ijheatmasstransfer.2021.122452_bib0021) 2015; 81 Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0029) 2021; 11 Jin (10.1016/j.ijheatmasstransfer.2021.122452_bib0022) 2018; 127 Joo (10.1016/j.ijheatmasstransfer.2021.122452_bib0017) 2009; 22 Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0037) 2021; 21 Yeranee (10.1016/j.ijheatmasstransfer.2021.122452_bib0001) 2021; 34 Mongillo (10.1016/j.ijheatmasstransfer.2021.122452_bib0025) 2015; 14 Samad (10.1016/j.ijheatmasstransfer.2021.122452_bib0032) 2010; 31 Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0036) 2018; 127 Gao (10.1016/j.ijheatmasstransfer.2021.122452_bib0008) 2016; 47 Zhao (10.1016/j.ijheatmasstransfer.2021.122452_bib0013) 2018; 185 Zhang (10.1016/j.ijheatmasstransfer.2021.122452_bib0010) 2017; 165 |
| References_xml | – volume: 165 start-page: 130 year: 2017 end-page: 137 ident: bib0010 article-title: A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis publication-title: Compos. Struct. – volume: 50 start-page: 789 year: 2005 end-page: 815 ident: bib0016 article-title: Active cooling by metallic sandwich structures with periodic cores publication-title: Prog. Mater Sci. – volume: 46 start-page: 309 year: 2001 end-page: 327 ident: bib0004 article-title: The topological design of multifunctional cellular metals publication-title: Prog. Mater. Sci. – volume: 132 start-page: 021014.1 year: 2010 end-page: 021014.9 ident: bib0031 article-title: Design and optimization of the internal cooling channels of a high pressure turbine blade-part II: optimization publication-title: J. Turbomach. – volume: 153 year: 2020 ident: bib0026 article-title: Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 14 year: 2012 end-page: 35 ident: bib0006 article-title: Recent progress in the development of lightweight porous materials and structures publication-title: Mater. China – volume: 21 year: 2021 ident: bib0037 article-title: Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels publication-title: Heat Mass Transf. – volume: 22 start-page: 99 year: 2009 end-page: 116 ident: bib0017 article-title: Experimental studies on friction coefficient and heat transfer characteristics through wire-woven bulk kagome structure publication-title: Exp. Heat Transf. – volume: 127 start-page: 1110 year: 2018 end-page: 1123 ident: bib0036 article-title: Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 1129 year: 2004 end-page: 1140 ident: bib0015 article-title: Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material publication-title: Int. J. Heat Mass Transf. – volume: 81 start-page: 10 year: 2015 end-page: 17 ident: bib0021 article-title: Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel publication-title: Appl. Therm. Eng. – volume: 3 start-page: 714 year: 2012 end-page: 717 ident: bib0040 article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture publication-title: Int. J. Eng. Trends Technol. – volume: 127 start-page: 268 year: 2018 end-page: 282 ident: bib0022 article-title: Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores publication-title: Int. J. Heat Mass Transf. – volume: 202 start-page: 54 year: 2017 end-page: 58 ident: bib0011 article-title: Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures publication-title: Mater. Lett. – volume: 115 start-page: 619 year: 2017 end-page: 629 ident: bib0020 article-title: Design of multifunctional lattice-frame materials for compact heat exchangers publication-title: Int. J. Heat Mass Transf. – volume: 28 year: 2021 ident: bib0039 article-title: Numerical analysis and optimization on flow and heat transfer performance of a steam-cooled ribbed channel publication-title: Case Stud. Therm. Eng. – volume: 23 start-page: 362 year: 2018 end-page: 373 ident: bib0003 article-title: Additive manufacturing for the manufacture of gas turbine engine components: literature review and future perspectives publication-title: Addit Manuf – volume: 142 start-page: 79 year: 2018 end-page: 88 ident: bib0018 article-title: The effects of geometrical topology on fluid flow and thermal performance in kagome cored sandwich panels publication-title: Appl. Therm. Eng. – volume: 52 start-page: 2147 year: 2009 end-page: 2154 ident: bib0009 article-title: Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization publication-title: Sci. China Ser. E Technol. Sci. – volume: 47 year: 2016 ident: bib0008 article-title: Active cooling performance of all-composite lattice truss core sandwich structure publication-title: Heat Trans. Res. – volume: 14 start-page: 3954 year: 2021 ident: bib0028 article-title: Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade publication-title: Energies – volume: 72 start-page: 148 year: 2014 end-page: 162 ident: bib0033 article-title: Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel publication-title: Int. J. Heat Mass Transf. – volume: 17 start-page: 1252 year: 2015 end-page: 1264 ident: bib0007 article-title: Advanced micro-lattice materials publication-title: Adv. Eng. Mater. – volume: 134 start-page: 589 year: 2017 end-page: 598 ident: bib0012 article-title: Shear and bending performance of new type enhanced lattice truss structures publication-title: Int. J. Mech. Sci. – volume: 26 year: 2021 ident: bib0030 article-title: Study on flow and heat transfer performance of X-type truss array cooling channel publication-title: Case Stud. Therm. Eng. – volume: 105 start-page: 57 year: 2016 end-page: 74 ident: bib0034 article-title: Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls publication-title: Int. J. Therm. Sci. – volume: 11 start-page: 5838 year: 2021 ident: bib0029 article-title: Optimization design of lattice structures in internal cooling channel of turbine blade publication-title: Appl. Sci. – volume: 14 start-page: 654 year: 2015 end-page: 676 ident: bib0025 article-title: Gas turbine engine component having vascular engineered lattice structure, U.S publication-title: Patent Application – volume: 31 start-page: 1113 year: 2010 end-page: 1124 ident: bib0032 article-title: Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model publication-title: Heat Transf. Eng. – volume: 185 start-page: 715 year: 2018 end-page: 727 ident: bib0013 article-title: Vibration analysis of multi-span lattice sandwich beams using the assumed mode method publication-title: Compos. Struct. – volume: 34 start-page: 85 year: 2021 end-page: 113 ident: bib0001 article-title: A review of recent studies on rotating internal cooling for gas turbine blades publication-title: Chin. J. Aeronaut – volume: 539-543 start-page: 242 year: 2007 end-page: 247 ident: bib0019 article-title: Thermal applications of cellular lattice structures publication-title: Mater. Sci. Forum – volume: 107 start-page: 39 year: 2016 end-page: 55 ident: bib0024 article-title: Heat transfer enhancement by X-type lattice in ventilated brake disc publication-title: Int. J. Therm. Sci. – volume: 39 start-page: 2319 year: 2017 end-page: 2329 ident: bib0035 article-title: Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 99 start-page: 1228 year: 2015 end-page: 1233 ident: bib0002 article-title: Topology optimization method research on hollow wide-chord fan blade of a high-bypass turbofan engine publication-title: Procedia Eng. – year: 2003 ident: bib0014 article-title: Heat Transfer Performance and Pressure Drop of Kagome core Metal Truss Panels – volume: 185 year: 2021 ident: bib0027 article-title: Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays publication-title: Appl. Therm. Eng. – volume: 96 start-page: 98 year: 2018 end-page: 108 ident: bib0038 article-title: Numerical prediction of heat loss from a test ribbed rectangular channel using the conjugate calculations publication-title: Int. Commun. Heat Mass – volume: 334 start-page: 962 year: 2011 end-page: 965 ident: bib0005 article-title: Ultralight metallic microlattices publication-title: Science – volume: 127 start-page: 1293 year: 2017 end-page: 1304 ident: bib0023 article-title: Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core publication-title: Appl. Therm. Eng. – volume: 99 start-page: 1228 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0002 article-title: Topology optimization method research on hollow wide-chord fan blade of a high-bypass turbofan engine publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.12.652 – volume: 31 start-page: 14 issue: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0006 article-title: Recent progress in the development of lightweight porous materials and structures publication-title: Mater. China – volume: 134 start-page: 589 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0012 article-title: Shear and bending performance of new type enhanced lattice truss structures publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.10.045 – volume: 81 start-page: 10 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0021 article-title: Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.012 – volume: 202 start-page: 54 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0011 article-title: Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.05.073 – volume: 34 start-page: 85 issue: 7 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0001 article-title: A review of recent studies on rotating internal cooling for gas turbine blades publication-title: Chin. J. Aeronaut doi: 10.1016/j.cja.2020.12.035 – volume: 115 start-page: 619 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0020 article-title: Design of multifunctional lattice-frame materials for compact heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.07.073 – volume: 47 issue: 12 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0008 article-title: Active cooling performance of all-composite lattice truss core sandwich structure publication-title: Heat Trans. Res. doi: 10.1615/HeatTransRes.2016010210 – volume: 127 start-page: 268 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0022 article-title: Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.087 – volume: 3 start-page: 714 issue: 6 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0040 article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture publication-title: Int. J. Eng. Trends Technol. – volume: 334 start-page: 962 issue: 6058 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0005 article-title: Ultralight metallic microlattices publication-title: Science doi: 10.1126/science.1211649 – volume: 105 start-page: 57 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0034 article-title: Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.02.017 – volume: 127 start-page: 1293 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0023 article-title: Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.081 – volume: 26 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0030 article-title: Study on flow and heat transfer performance of X-type truss array cooling channel publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101034 – volume: 185 start-page: 715 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0013 article-title: Vibration analysis of multi-span lattice sandwich beams using the assumed mode method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.11.069 – volume: 11 start-page: 5838 issue: 13 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0029 article-title: Optimization design of lattice structures in internal cooling channel of turbine blade publication-title: Appl. Sci. doi: 10.3390/app11135838 – volume: 39 start-page: 2319 issue: 6 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0035 article-title: Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-016-0698-0 – volume: 14 start-page: 3954 issue: 13 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0028 article-title: Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade publication-title: Energies doi: 10.3390/en14133954 – volume: 47 start-page: 1129 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0015 article-title: Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2003.10.012 – volume: 132 start-page: 021014.1 issue: 2 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0031 article-title: Design and optimization of the internal cooling channels of a high pressure turbine blade-part II: optimization publication-title: J. Turbomach. doi: 10.1115/1.3104615 – volume: 31 start-page: 1113 issue: 13 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0032 article-title: Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model publication-title: Heat Transf. Eng. doi: 10.1080/01457631003640453 – volume: 142 start-page: 79 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0018 article-title: The effects of geometrical topology on fluid flow and thermal performance in kagome cored sandwich panels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.080 – volume: 153 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0026 article-title: Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119579 – year: 2003 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0014 – volume: 127 start-page: 1110 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0036 article-title: Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.08.115 – volume: 21 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0037 article-title: Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels publication-title: Heat Mass Transf. – volume: 23 start-page: 362 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0003 article-title: Additive manufacturing for the manufacture of gas turbine engine components: literature review and future perspectives publication-title: Addit Manuf – volume: 96 start-page: 98 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0038 article-title: Numerical prediction of heat loss from a test ribbed rectangular channel using the conjugate calculations publication-title: Int. Commun. Heat Mass doi: 10.1016/j.icheatmasstransfer.2018.05.026 – volume: 14 start-page: 654 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0025 article-title: Gas turbine engine component having vascular engineered lattice structure, U.S publication-title: Patent Application – volume: 17 start-page: 1252 issue: 9 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0007 article-title: Advanced micro-lattice materials publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201400471 – volume: 539-543 start-page: 242 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0019 article-title: Thermal applications of cellular lattice structures publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.539-543.242 – volume: 185 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0027 article-title: Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116306 – volume: 52 start-page: 2147 issue: 8 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0009 article-title: Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization publication-title: Sci. China Ser. E Technol. Sci. doi: 10.1007/s11431-009-0219-9 – volume: 28 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0039 article-title: Numerical analysis and optimization on flow and heat transfer performance of a steam-cooled ribbed channel publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101442 – volume: 46 start-page: 309 issue: 2–4 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0004 article-title: The topological design of multifunctional cellular metals publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(00)00016-5 – volume: 72 start-page: 148 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0033 article-title: Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.12.085 – volume: 165 start-page: 130 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0010 article-title: A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.01.012 – volume: 22 start-page: 99 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0017 article-title: Experimental studies on friction coefficient and heat transfer characteristics through wire-woven bulk kagome structure publication-title: Exp. Heat Transf. doi: 10.1080/08916150902718591 – volume: 50 start-page: 789 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0016 article-title: Active cooling by metallic sandwich structures with periodic cores publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2005.03.001 – volume: 107 start-page: 39 issue: C year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0024 article-title: Heat transfer enhancement by X-type lattice in ventilated brake disc publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.03.026 |
| SSID | ssj0017046 |
| Score | 2.4943004 |
| Snippet | •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord... This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122452 |
| SubjectTerms | Arrays Channels Coefficient of friction Cooling Cooling channel Design of experiments Design optimization Diameters Flow and heat transfer Fluid dynamics Fluid flow Gas turbine engines Genetic algorithms Maximization Neural network Neural networks Nusselt number Optimization Parameters Reynolds number Truss array Trusses Turbine blade Turbine blades |
| Title | Cooling performance analysis and structural parameter optimization of X-type truss array channel based on neural networks and genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122452 https://www.proquest.com/docview/2639684708 |
| Volume | 186 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCMSC-BTlSx4YWEIT13GSCVUVqFDRAVHRzYodB1o1SVW6sPAX-MvcJQ4VIIZKTIki24l8l7un5N47Qs610pyxxIDzGo6UHN9RSgWOFoGJEs0hYyFR-L4vugN-N_SHK6RTc2GwrNLG_iqml9HaXmna3WxORyPk-KJzYWvqEmcjo5zzALsYXL5_lXl4gVuRdTAa4-gNcrGo8RqNMeJlAFPnJUw0qBDKvEv83eSzv1LVj6BdZqKbbbJlISRtV0-5Q1ZMvkvWy1JO_bpHPjoFNuJ5ptMFJ4DGVnsEThJaacai3gZF5e8MK2JoAbEjs6RMWqR06ODXWYqcDJg1m8VvFEnCuZlQzHwJhWEohgmL5FUpebU4OCTyImk8eS5mo_lLtk8GN9ePna5j2y44uhW4c8e4LOEhMz5gPU9xFRpXpFwwA2ghThXgn1QpX2gYFBpPJToNRBxxppiKWijXdkBW8yI3h4SqIEXqr59wD0V8XJgmYhWGLSG4H0Rug1zVOyy11STH1hgTWRefjeVvG0m0kaxs1CDR1wrTSp9jibmd2qjym89JSCdLrHJS-4O07_-rZAD8BCR-Nzz6l5sck02GvIuy0vKErILxzSmgobk6K939jKy1b3vdPh57D0-9Tw6pEvA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1REC0XxFfVUAp74NCLwd6sd-0TqqKi8HkiUm4r73oNQYkdJbn0wl_gLzNjr0FQ9RCpN8vaHVue0cyzPe8NwLE1VnCeOwxeJ4iSEwfGGBVYqVyaW4EVi4jCN7eyPxCXw3i4Ar2WC0NtlT73Nzm9ztb-zKl_mqfT0Yg4vhRcNJq6xtnqE6yJmCt6Azt5eu3ziFTYsHUoHdPyz_Dzrclr9Egpb4I4dVHjREcSoTw6of9NMf9XrfqQtetSdL4Fmx5Dsl_NbW7Diit3YL3u5bTzXXjuVTSJ555N30gBLPPiI3iQs0Y0lgQ3GEl_T6glhlWYPCaelcmqgg0D-jzLiJSBu2az7A8jlnDpxoxKX85wGalhopGy6SVvjGNEEjGSZeP7ajZaPEz2YHD--67XD_zchcB2VbgIXMhzkXAXI9iLjDCJC2UhJHcIF7LCIAAqjImlxUWJi0xuCyWzVHDDTdolvbavsFpWpfsGzKiCuL9xLiJS8Qlxm8xMknSlFLFKww6ctU9YWy9KTrMxxrrtPnvUf_tIk49046MOpK8Wpo1AxxJ7e61T9bug01hPlrBy0MaD9glgrjkiP4mVP0z2_8tFjuBL_-7mWl9f3F59hw1OJIy67fIAVjEQ3A-ERgtzWIf-C6lSEuI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooling+performance+analysis+and+structural+parameter+optimization+of+X-type+truss+array+channel+based+on+neural+networks+and+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Xi%2C+Lei&rft.au=Xu%2C+Liang&rft.au=Gao%2C+Jianmin&rft.au=Zhao%2C+Zhen&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.122452&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |