Cooling performance analysis and structural parameter optimization of X-type truss array channel based on neural networks and genetic algorithm

•An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were dis...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 186; p. 122452
Main Authors Xi, Lei, Xu, Liang, Gao, Jianmin, Zhao, Zhen, Li, Yunlong
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2021.122452

Cover

Abstract •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were discussed.•A multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channel was established.•The optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945, respectively.•The heat transfer coefficient of the optimized X-type truss array channel increases by 44.50% to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56%. This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades.
AbstractList •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord region.•The comprehensive effects of each structural parameter and reynolds number on the cooling performance of X-type truss array channels were discussed.•A multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channel was established.•The optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945, respectively.•The heat transfer coefficient of the optimized X-type truss array channel increases by 44.50% to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56%. This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades.
This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the cooling performance of the mid-chord region of gas turbine blades. In this study, the design of experiment (DOE) for influence parameters of X-type truss array channels was carried out, the variation ranges of influence parameters are as follows: Reynolds number (ReH, 10,000 to 60,000), truss rod diameter ratio (d/H, 0.1 to 0.3), transverse spacing ratio (Xs/C, 0.1 to 0.3) and streamwise spacing ratio (Zs/C, 0.1 to 0.3). The comprehensive effects of each structural parameter and Reynolds number on the flow and heat transfer performance of X-type truss array channels were analyzed. Then the multi-input and multi-output neural network model with prediction deviations less than 3% for the X-type truss array channels was established. Finally, the optimal structure parameters and arrangement of the X-type truss array channels were obtained by optimization design based on the genetic algorithm method, and have been verified by experimental measurement. The results show that the average Nusselt numbers and the friction coefficients of the X-type truss array cooling channel both rise with increasing d/H, drop with increasing Xs/C, and first rise then drop with increasing Zs/C; the comprehensive thermal coefficients first rise and then drop with increasing d/H, Xs/C, and Zs/C. Based on the maximization of average Nusselt number, the optimal values of d/H and Xs/C are 0.3 and 1, the optimal values of Zs/C increase from 1.179 to 2.201, as ReH increases from 10,000 to 60,000. According to the optimization results of maximization of comprehensive thermal coefficient, the optimal values of d/H, Xs/C and Zs/C increase from 0.186 to 0.248, 1.696 to 2.482 and 1.0 to 1.945 respectively with increasing ReH. Compared with the reference channel, the average Nusselt number of the optimized X-type truss array channel increases by 44.50 to 145.49% and the comprehensive thermal coefficient increases by 4.16–9.56% at different Reynolds numbers. The results may provide new ideas for the design of internal cooling structure in future advanced gas turbine blades.
ArticleNumber 122452
Author Zhao, Zhen
Xu, Liang
Li, Yunlong
Gao, Jianmin
Xi, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Xi
  fullname: Xi, Lei
– sequence: 2
  givenname: Liang
  surname: Xu
  fullname: Xu, Liang
  email: xuliang@mail.xjtu.edu.cn
– sequence: 3
  givenname: Jianmin
  surname: Gao
  fullname: Gao, Jianmin
– sequence: 4
  givenname: Zhen
  surname: Zhao
  fullname: Zhao, Zhen
– sequence: 5
  givenname: Yunlong
  surname: Li
  fullname: Li, Yunlong
BookMark eNqVkcFu1DAQhi1UJLaFd7DEhUu2tpM4yQ20oi2oEheQuFkTZ7zrkNjB9lItL8Er19twggucxiN_80kz_yW5cN4hIW8423LG5fW4teMBIc0QYwrgosGwFUzwLReiqsUzsuFt0xWCt90F2TDGm6IrOXtBLmMczy2r5Ib82nk_WbenCwbjwwxOIwUH0ynamB8DzfajTscAE10gwIwJA_VLsrP9Ccl6R72hX4t0WpBmNOapEOBE9QGcw4n2EHGgGXP4JHGYHnz4tsr3mFurKUx7H2w6zC_JcwNTxFe_6xX5cvP-8-6uuP90-2H37r7QZcNSgUwMVSuwrmXN-6pvkUlTSYGsFWB6Xnem72upM9Qi7wdtGgldJXrRd2Ul6_KKvF69S_DfjxiTGv0x5L2jErLsZFs1rM3UzUrp4GMMaJS26WnpfHI7Kc7UOQw1qr_DUOcw1BpGFr39Q7QEO0M4_Y_i46rAfJYfNv9GbTHHNdiAOqnB23-XPQIpnbvb
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124699
crossref_primary_10_1016_j_applthermaleng_2022_119952
crossref_primary_10_1016_j_csite_2024_105289
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124007
crossref_primary_10_1016_j_icheatmasstransfer_2024_107248
crossref_primary_10_1016_j_matdes_2023_111969
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126644
crossref_primary_10_1016_j_icheatmasstransfer_2025_108646
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125543
crossref_primary_10_1016_j_jtice_2023_104704
crossref_primary_10_2298_TSCI220302110X
crossref_primary_10_3390_aerospace9020087
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125144
crossref_primary_10_1016_j_applthermaleng_2022_119792
crossref_primary_10_3390_aerospace9100533
crossref_primary_10_1016_j_applthermaleng_2024_124364
crossref_primary_10_3390_aerospace9080405
crossref_primary_10_1016_j_ijthermalsci_2024_109647
crossref_primary_10_1016_j_matdes_2024_112773
crossref_primary_10_1016_j_actamat_2024_120557
crossref_primary_10_1016_j_csite_2025_105954
crossref_primary_10_3390_en17133177
Cites_doi 10.1016/j.proeng.2014.12.652
10.1016/j.ijmecsci.2017.10.045
10.1016/j.applthermaleng.2015.02.012
10.1016/j.matlet.2017.05.073
10.1016/j.cja.2020.12.035
10.1016/j.ijheatmasstransfer.2017.07.073
10.1615/HeatTransRes.2016010210
10.1016/j.ijheatmasstransfer.2018.07.087
10.1126/science.1211649
10.1016/j.ijthermalsci.2016.02.017
10.1016/j.applthermaleng.2017.08.081
10.1016/j.csite.2021.101034
10.1016/j.compstruct.2017.11.069
10.3390/app11135838
10.1007/s40430-016-0698-0
10.3390/en14133954
10.1016/j.ijheatmasstransfer.2003.10.012
10.1115/1.3104615
10.1080/01457631003640453
10.1016/j.applthermaleng.2018.06.080
10.1016/j.ijheatmasstransfer.2020.119579
10.1016/j.ijheatmasstransfer.2018.08.115
10.1016/j.icheatmasstransfer.2018.05.026
10.1002/adem.201400471
10.4028/www.scientific.net/MSF.539-543.242
10.1016/j.applthermaleng.2020.116306
10.1007/s11431-009-0219-9
10.1016/j.csite.2021.101442
10.1016/S0079-6425(00)00016-5
10.1016/j.ijheatmasstransfer.2013.12.085
10.1016/j.compstruct.2017.01.012
10.1080/08916150902718591
10.1016/j.pmatsci.2005.03.001
10.1016/j.ijthermalsci.2016.03.026
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.122452
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_122452
S0017931021015507
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDMP
ABDPE
ABJNI
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
T9H
VOH
WUQ
ZY4
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-e02d482e55651b4b8e06f462e082afb159fbb56cd488e1bdcf76a942b2b934653
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Mon Jul 14 07:41:01 EDT 2025
Wed Oct 01 05:20:02 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Truss array
Turbine blade
Cooling channel
Flow and heat transfer
Neural network
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-e02d482e55651b4b8e06f462e082afb159fbb56cd488e1bdcf76a942b2b934653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2639684708
PQPubID 2045464
ParticipantIDs proquest_journals_2639684708
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_122452
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122452
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_122452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xi, Gao, Xu (bib0030) 2021; 26
Verstraete, Amaral, Braembussche (bib0031) 2010; 132
Karsoliya (bib0040) 2012; 3
Son, Weibel, Kumaresan, Garimella (bib0020) 2017; 115
Yeranee, Yu (bib0001) 2021; 34
Xu, Xi, Zhao, Gao, Li (bib0038) 2018; 96
Xu, Shen, Ruan, Xi, Gao, Li (bib0029) 2021; 11
Xi, Gao, Xu (bib0036) 2018; 127
Liang, Chen, Ju (bib0027) 2021; 185
Joo, Kang, Kang (bib0017) 2009; 22
Liang, Bai, Chen (bib0026) 2020; 153
Jadhav, Balaji (bib0034) 2016; 105
Wadley, Queheillalt (bib0019) 2007; 539-543
Kim, Hodson, Lu (bib0015) 2004; 47
Jin, Shen, Yan, Sunden, Xie (bib0022) 2018; 127
Moon, Kim (bib0033) 2014; 72
Meng, Liao, Li (bib0002) 2015; 99
Gao, Sun (bib0008) 2016; 47
Samad, Lee, Kim (bib0032) 2010; 31
Xu, Ruan, Shen, Xi, Gao, Li (bib0028) 2021; 14
Gebisa, Lemu (bib0003) 2018; 23
Zhang, Jiang, Zhao (bib0010) 2017; 165
Xiong, Mines, Ghosh (bib0007) 2015; 17
Lu, Valdevit, Evans (bib0016) 2005; 50
Xi, Xu, Gao, Zhao, Li (bib0039) 2021; 28
Zhang, Han, Chen (bib0009) 2009; 52
Mongillo, Propheter-Hinckley, Zelesky (bib0025) 2015; 14
Xu, Chen, Xi, Xiong, Gao, Li (bib0037) 2021; 21
Feng, Xiong, Yang (bib0012) 2017; 134
Wei, He, Cheng (bib0021) 2015; 81
Damavandi, Safikhani, Yahyaabadi (bib0035) 2017; 39
Schaedler, Jacobsen, Torrents (bib0005) 2011; 334
Lu, Zhang, Jin (bib0006) 2012; 31
Yan, Yang, Lu (bib0023) 2017; 127
Yan, Zhang, Lu (bib0024) 2016; 107
Huang, Xue, Wang (bib0011) 2017; 202
Zhao, Wen, Li (bib0013) 2018; 185
Evans, Hutchinson, Fleck (bib0004) 2001; 46
Shen, Hongbin, Hongqian (bib0018) 2018; 142
Hoffmann, Hodson, Lu (bib0014) 2003
Moon (10.1016/j.ijheatmasstransfer.2021.122452_bib0033) 2014; 72
Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0028) 2021; 14
Lu (10.1016/j.ijheatmasstransfer.2021.122452_bib0016) 2005; 50
Yan (10.1016/j.ijheatmasstransfer.2021.122452_bib0023) 2017; 127
Gebisa (10.1016/j.ijheatmasstransfer.2021.122452_bib0003) 2018; 23
Shen (10.1016/j.ijheatmasstransfer.2021.122452_bib0018) 2018; 142
Hoffmann (10.1016/j.ijheatmasstransfer.2021.122452_bib0014) 2003
Xiong (10.1016/j.ijheatmasstransfer.2021.122452_bib0007) 2015; 17
Verstraete (10.1016/j.ijheatmasstransfer.2021.122452_bib0031) 2010; 132
Kim (10.1016/j.ijheatmasstransfer.2021.122452_bib0015) 2004; 47
Wadley (10.1016/j.ijheatmasstransfer.2021.122452_bib0019) 2007; 539-543
Feng (10.1016/j.ijheatmasstransfer.2021.122452_bib0012) 2017; 134
Evans (10.1016/j.ijheatmasstransfer.2021.122452_bib0004) 2001; 46
Huang (10.1016/j.ijheatmasstransfer.2021.122452_bib0011) 2017; 202
Yan (10.1016/j.ijheatmasstransfer.2021.122452_bib0024) 2016; 107
Meng (10.1016/j.ijheatmasstransfer.2021.122452_bib0002) 2015; 99
Liang (10.1016/j.ijheatmasstransfer.2021.122452_bib0027) 2021; 185
Damavandi (10.1016/j.ijheatmasstransfer.2021.122452_bib0035) 2017; 39
Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0030) 2021; 26
Son (10.1016/j.ijheatmasstransfer.2021.122452_bib0020) 2017; 115
Karsoliya (10.1016/j.ijheatmasstransfer.2021.122452_bib0040) 2012; 3
Jadhav (10.1016/j.ijheatmasstransfer.2021.122452_bib0034) 2016; 105
Schaedler (10.1016/j.ijheatmasstransfer.2021.122452_bib0005) 2011; 334
Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0038) 2018; 96
Liang (10.1016/j.ijheatmasstransfer.2021.122452_bib0026) 2020; 153
Zhang (10.1016/j.ijheatmasstransfer.2021.122452_bib0009) 2009; 52
Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0039) 2021; 28
Lu (10.1016/j.ijheatmasstransfer.2021.122452_bib0006) 2012; 31
Wei (10.1016/j.ijheatmasstransfer.2021.122452_bib0021) 2015; 81
Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0029) 2021; 11
Jin (10.1016/j.ijheatmasstransfer.2021.122452_bib0022) 2018; 127
Joo (10.1016/j.ijheatmasstransfer.2021.122452_bib0017) 2009; 22
Xu (10.1016/j.ijheatmasstransfer.2021.122452_bib0037) 2021; 21
Yeranee (10.1016/j.ijheatmasstransfer.2021.122452_bib0001) 2021; 34
Mongillo (10.1016/j.ijheatmasstransfer.2021.122452_bib0025) 2015; 14
Samad (10.1016/j.ijheatmasstransfer.2021.122452_bib0032) 2010; 31
Xi (10.1016/j.ijheatmasstransfer.2021.122452_bib0036) 2018; 127
Gao (10.1016/j.ijheatmasstransfer.2021.122452_bib0008) 2016; 47
Zhao (10.1016/j.ijheatmasstransfer.2021.122452_bib0013) 2018; 185
Zhang (10.1016/j.ijheatmasstransfer.2021.122452_bib0010) 2017; 165
References_xml – volume: 165
  start-page: 130
  year: 2017
  end-page: 137
  ident: bib0010
  article-title: A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis
  publication-title: Compos. Struct.
– volume: 50
  start-page: 789
  year: 2005
  end-page: 815
  ident: bib0016
  article-title: Active cooling by metallic sandwich structures with periodic cores
  publication-title: Prog. Mater Sci.
– volume: 46
  start-page: 309
  year: 2001
  end-page: 327
  ident: bib0004
  article-title: The topological design of multifunctional cellular metals
  publication-title: Prog. Mater. Sci.
– volume: 132
  start-page: 021014.1
  year: 2010
  end-page: 021014.9
  ident: bib0031
  article-title: Design and optimization of the internal cooling channels of a high pressure turbine blade-part II: optimization
  publication-title: J. Turbomach.
– volume: 153
  year: 2020
  ident: bib0026
  article-title: Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 14
  year: 2012
  end-page: 35
  ident: bib0006
  article-title: Recent progress in the development of lightweight porous materials and structures
  publication-title: Mater. China
– volume: 21
  year: 2021
  ident: bib0037
  article-title: Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels
  publication-title: Heat Mass Transf.
– volume: 22
  start-page: 99
  year: 2009
  end-page: 116
  ident: bib0017
  article-title: Experimental studies on friction coefficient and heat transfer characteristics through wire-woven bulk kagome structure
  publication-title: Exp. Heat Transf.
– volume: 127
  start-page: 1110
  year: 2018
  end-page: 1123
  ident: bib0036
  article-title: Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms
  publication-title: Int. J. Heat Mass Transf.
– volume: 47
  start-page: 1129
  year: 2004
  end-page: 1140
  ident: bib0015
  article-title: Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material
  publication-title: Int. J. Heat Mass Transf.
– volume: 81
  start-page: 10
  year: 2015
  end-page: 17
  ident: bib0021
  article-title: Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 714
  year: 2012
  end-page: 717
  ident: bib0040
  article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
  publication-title: Int. J. Eng. Trends Technol.
– volume: 127
  start-page: 268
  year: 2018
  end-page: 282
  ident: bib0022
  article-title: Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores
  publication-title: Int. J. Heat Mass Transf.
– volume: 202
  start-page: 54
  year: 2017
  end-page: 58
  ident: bib0011
  article-title: Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures
  publication-title: Mater. Lett.
– volume: 115
  start-page: 619
  year: 2017
  end-page: 629
  ident: bib0020
  article-title: Design of multifunctional lattice-frame materials for compact heat exchangers
  publication-title: Int. J. Heat Mass Transf.
– volume: 28
  year: 2021
  ident: bib0039
  article-title: Numerical analysis and optimization on flow and heat transfer performance of a steam-cooled ribbed channel
  publication-title: Case Stud. Therm. Eng.
– volume: 23
  start-page: 362
  year: 2018
  end-page: 373
  ident: bib0003
  article-title: Additive manufacturing for the manufacture of gas turbine engine components: literature review and future perspectives
  publication-title: Addit Manuf
– volume: 142
  start-page: 79
  year: 2018
  end-page: 88
  ident: bib0018
  article-title: The effects of geometrical topology on fluid flow and thermal performance in kagome cored sandwich panels
  publication-title: Appl. Therm. Eng.
– volume: 52
  start-page: 2147
  year: 2009
  end-page: 2154
  ident: bib0009
  article-title: Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization
  publication-title: Sci. China Ser. E Technol. Sci.
– volume: 47
  year: 2016
  ident: bib0008
  article-title: Active cooling performance of all-composite lattice truss core sandwich structure
  publication-title: Heat Trans. Res.
– volume: 14
  start-page: 3954
  year: 2021
  ident: bib0028
  article-title: Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade
  publication-title: Energies
– volume: 72
  start-page: 148
  year: 2014
  end-page: 162
  ident: bib0033
  article-title: Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 17
  start-page: 1252
  year: 2015
  end-page: 1264
  ident: bib0007
  article-title: Advanced micro-lattice materials
  publication-title: Adv. Eng. Mater.
– volume: 134
  start-page: 589
  year: 2017
  end-page: 598
  ident: bib0012
  article-title: Shear and bending performance of new type enhanced lattice truss structures
  publication-title: Int. J. Mech. Sci.
– volume: 26
  year: 2021
  ident: bib0030
  article-title: Study on flow and heat transfer performance of X-type truss array cooling channel
  publication-title: Case Stud. Therm. Eng.
– volume: 105
  start-page: 57
  year: 2016
  end-page: 74
  ident: bib0034
  article-title: Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls
  publication-title: Int. J. Therm. Sci.
– volume: 11
  start-page: 5838
  year: 2021
  ident: bib0029
  article-title: Optimization design of lattice structures in internal cooling channel of turbine blade
  publication-title: Appl. Sci.
– volume: 14
  start-page: 654
  year: 2015
  end-page: 676
  ident: bib0025
  article-title: Gas turbine engine component having vascular engineered lattice structure, U.S
  publication-title: Patent Application
– volume: 31
  start-page: 1113
  year: 2010
  end-page: 1124
  ident: bib0032
  article-title: Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model
  publication-title: Heat Transf. Eng.
– volume: 185
  start-page: 715
  year: 2018
  end-page: 727
  ident: bib0013
  article-title: Vibration analysis of multi-span lattice sandwich beams using the assumed mode method
  publication-title: Compos. Struct.
– volume: 34
  start-page: 85
  year: 2021
  end-page: 113
  ident: bib0001
  article-title: A review of recent studies on rotating internal cooling for gas turbine blades
  publication-title: Chin. J. Aeronaut
– volume: 539-543
  start-page: 242
  year: 2007
  end-page: 247
  ident: bib0019
  article-title: Thermal applications of cellular lattice structures
  publication-title: Mater. Sci. Forum
– volume: 107
  start-page: 39
  year: 2016
  end-page: 55
  ident: bib0024
  article-title: Heat transfer enhancement by X-type lattice in ventilated brake disc
  publication-title: Int. J. Therm. Sci.
– volume: 39
  start-page: 2319
  year: 2017
  end-page: 2329
  ident: bib0035
  article-title: Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 99
  start-page: 1228
  year: 2015
  end-page: 1233
  ident: bib0002
  article-title: Topology optimization method research on hollow wide-chord fan blade of a high-bypass turbofan engine
  publication-title: Procedia Eng.
– year: 2003
  ident: bib0014
  article-title: Heat Transfer Performance and Pressure Drop of Kagome core Metal Truss Panels
– volume: 185
  year: 2021
  ident: bib0027
  article-title: Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays
  publication-title: Appl. Therm. Eng.
– volume: 96
  start-page: 98
  year: 2018
  end-page: 108
  ident: bib0038
  article-title: Numerical prediction of heat loss from a test ribbed rectangular channel using the conjugate calculations
  publication-title: Int. Commun. Heat Mass
– volume: 334
  start-page: 962
  year: 2011
  end-page: 965
  ident: bib0005
  article-title: Ultralight metallic microlattices
  publication-title: Science
– volume: 127
  start-page: 1293
  year: 2017
  end-page: 1304
  ident: bib0023
  article-title: Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core
  publication-title: Appl. Therm. Eng.
– volume: 99
  start-page: 1228
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0002
  article-title: Topology optimization method research on hollow wide-chord fan blade of a high-bypass turbofan engine
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.12.652
– volume: 31
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0006
  article-title: Recent progress in the development of lightweight porous materials and structures
  publication-title: Mater. China
– volume: 134
  start-page: 589
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0012
  article-title: Shear and bending performance of new type enhanced lattice truss structures
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.10.045
– volume: 81
  start-page: 10
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0021
  article-title: Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.012
– volume: 202
  start-page: 54
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0011
  article-title: Effect of cross sectional shape of struts on the mechanical properties of aluminum based pyramidal lattice structures
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.05.073
– volume: 34
  start-page: 85
  issue: 7
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0001
  article-title: A review of recent studies on rotating internal cooling for gas turbine blades
  publication-title: Chin. J. Aeronaut
  doi: 10.1016/j.cja.2020.12.035
– volume: 115
  start-page: 619
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0020
  article-title: Design of multifunctional lattice-frame materials for compact heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.07.073
– volume: 47
  issue: 12
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0008
  article-title: Active cooling performance of all-composite lattice truss core sandwich structure
  publication-title: Heat Trans. Res.
  doi: 10.1615/HeatTransRes.2016010210
– volume: 127
  start-page: 268
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0022
  article-title: Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.087
– volume: 3
  start-page: 714
  issue: 6
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0040
  article-title: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
  publication-title: Int. J. Eng. Trends Technol.
– volume: 334
  start-page: 962
  issue: 6058
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0005
  article-title: Ultralight metallic microlattices
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 105
  start-page: 57
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0034
  article-title: Fluid flow and heat transfer characteristics of a vertical channel with detached pin-fin arrays arranged in staggered manner on two opposite endwalls
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.02.017
– volume: 127
  start-page: 1293
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0023
  article-title: Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.081
– volume: 26
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0030
  article-title: Study on flow and heat transfer performance of X-type truss array cooling channel
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101034
– volume: 185
  start-page: 715
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0013
  article-title: Vibration analysis of multi-span lattice sandwich beams using the assumed mode method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.069
– volume: 11
  start-page: 5838
  issue: 13
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0029
  article-title: Optimization design of lattice structures in internal cooling channel of turbine blade
  publication-title: Appl. Sci.
  doi: 10.3390/app11135838
– volume: 39
  start-page: 2319
  issue: 6
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0035
  article-title: Multi-objective optimization of asymmetric v-shaped ribs in a cooling channel using CFD, artificial neural networks and genetic algorithms
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-016-0698-0
– volume: 14
  start-page: 3954
  issue: 13
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0028
  article-title: Optimization design of lattice structures in internal cooling channel with variable aspect ratio of gas turbine blade
  publication-title: Energies
  doi: 10.3390/en14133954
– volume: 47
  start-page: 1129
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0015
  article-title: Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2003.10.012
– volume: 132
  start-page: 021014.1
  issue: 2
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0031
  article-title: Design and optimization of the internal cooling channels of a high pressure turbine blade-part II: optimization
  publication-title: J. Turbomach.
  doi: 10.1115/1.3104615
– volume: 31
  start-page: 1113
  issue: 13
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0032
  article-title: Shape optimization of a dimpled channel to enhance heat transfer using a weighted-average surrogate model
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457631003640453
– volume: 142
  start-page: 79
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0018
  article-title: The effects of geometrical topology on fluid flow and thermal performance in kagome cored sandwich panels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.080
– volume: 153
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0026
  article-title: Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119579
– year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0014
– volume: 127
  start-page: 1110
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0036
  article-title: Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.08.115
– volume: 21
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0037
  article-title: Flow and heat transfer characteristics of a staggered array of Kagome lattice structures in rectangular channels
  publication-title: Heat Mass Transf.
– volume: 23
  start-page: 362
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0003
  article-title: Additive manufacturing for the manufacture of gas turbine engine components: literature review and future perspectives
  publication-title: Addit Manuf
– volume: 96
  start-page: 98
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0038
  article-title: Numerical prediction of heat loss from a test ribbed rectangular channel using the conjugate calculations
  publication-title: Int. Commun. Heat Mass
  doi: 10.1016/j.icheatmasstransfer.2018.05.026
– volume: 14
  start-page: 654
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0025
  article-title: Gas turbine engine component having vascular engineered lattice structure, U.S
  publication-title: Patent Application
– volume: 17
  start-page: 1252
  issue: 9
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0007
  article-title: Advanced micro-lattice materials
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201400471
– volume: 539-543
  start-page: 242
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0019
  article-title: Thermal applications of cellular lattice structures
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.539-543.242
– volume: 185
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0027
  article-title: Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116306
– volume: 52
  start-page: 2147
  issue: 8
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0009
  article-title: Ultralight X-type lattice sandwich structure (I): concept, fabrication and experimental characterization
  publication-title: Sci. China Ser. E Technol. Sci.
  doi: 10.1007/s11431-009-0219-9
– volume: 28
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0039
  article-title: Numerical analysis and optimization on flow and heat transfer performance of a steam-cooled ribbed channel
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101442
– volume: 46
  start-page: 309
  issue: 2–4
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0004
  article-title: The topological design of multifunctional cellular metals
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(00)00016-5
– volume: 72
  start-page: 148
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0033
  article-title: Analysis and optimization of fan-shaped pin–fin in a rectangular cooling channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.12.085
– volume: 165
  start-page: 130
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0010
  article-title: A study of the effective elastic modulus of a lattice truss panel structure by experimental and theoretical analysis
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.01.012
– volume: 22
  start-page: 99
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0017
  article-title: Experimental studies on friction coefficient and heat transfer characteristics through wire-woven bulk kagome structure
  publication-title: Exp. Heat Transf.
  doi: 10.1080/08916150902718591
– volume: 50
  start-page: 789
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0016
  article-title: Active cooling by metallic sandwich structures with periodic cores
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2005.03.001
– volume: 107
  start-page: 39
  issue: C
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.122452_bib0024
  article-title: Heat transfer enhancement by X-type lattice in ventilated brake disc
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.03.026
SSID ssj0017046
Score 2.4943004
Snippet •An innovative cooling channel filled with a novel X-type truss array structure was suggested to improve the cooling effect of turbine blade mid-chord...
This study aims to optimize the structural parameters of an innovative cooling channel filled with a novel X-type truss array structure, so as to improve the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122452
SubjectTerms Arrays
Channels
Coefficient of friction
Cooling
Cooling channel
Design of experiments
Design optimization
Diameters
Flow and heat transfer
Fluid dynamics
Fluid flow
Gas turbine engines
Genetic algorithms
Maximization
Neural network
Neural networks
Nusselt number
Optimization
Parameters
Reynolds number
Truss array
Trusses
Turbine blade
Turbine blades
Title Cooling performance analysis and structural parameter optimization of X-type truss array channel based on neural networks and genetic algorithm
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122452
https://www.proquest.com/docview/2639684708
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCMSC-BTlSx4YWEIT13GSCVUVqFDRAVHRzYodB1o1SVW6sPAX-MvcJQ4VIIZKTIki24l8l7un5N47Qs610pyxxIDzGo6UHN9RSgWOFoGJEs0hYyFR-L4vugN-N_SHK6RTc2GwrNLG_iqml9HaXmna3WxORyPk-KJzYWvqEmcjo5zzALsYXL5_lXl4gVuRdTAa4-gNcrGo8RqNMeJlAFPnJUw0qBDKvEv83eSzv1LVj6BdZqKbbbJlISRtV0-5Q1ZMvkvWy1JO_bpHPjoFNuJ5ptMFJ4DGVnsEThJaacai3gZF5e8MK2JoAbEjs6RMWqR06ODXWYqcDJg1m8VvFEnCuZlQzHwJhWEohgmL5FUpebU4OCTyImk8eS5mo_lLtk8GN9ePna5j2y44uhW4c8e4LOEhMz5gPU9xFRpXpFwwA2ghThXgn1QpX2gYFBpPJToNRBxxppiKWijXdkBW8yI3h4SqIEXqr59wD0V8XJgmYhWGLSG4H0Rug1zVOyy11STH1hgTWRefjeVvG0m0kaxs1CDR1wrTSp9jibmd2qjym89JSCdLrHJS-4O07_-rZAD8BCR-Nzz6l5sck02GvIuy0vKErILxzSmgobk6K939jKy1b3vdPh57D0-9Tw6pEvA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1REC0XxFfVUAp74NCLwd6sd-0TqqKi8HkiUm4r73oNQYkdJbn0wl_gLzNjr0FQ9RCpN8vaHVue0cyzPe8NwLE1VnCeOwxeJ4iSEwfGGBVYqVyaW4EVi4jCN7eyPxCXw3i4Ar2WC0NtlT73Nzm9ztb-zKl_mqfT0Yg4vhRcNJq6xtnqE6yJmCt6Azt5eu3ziFTYsHUoHdPyz_Dzrclr9Egpb4I4dVHjREcSoTw6of9NMf9XrfqQtetSdL4Fmx5Dsl_NbW7Diit3YL3u5bTzXXjuVTSJ555N30gBLPPiI3iQs0Y0lgQ3GEl_T6glhlWYPCaelcmqgg0D-jzLiJSBu2az7A8jlnDpxoxKX85wGalhopGy6SVvjGNEEjGSZeP7ajZaPEz2YHD--67XD_zchcB2VbgIXMhzkXAXI9iLjDCJC2UhJHcIF7LCIAAqjImlxUWJi0xuCyWzVHDDTdolvbavsFpWpfsGzKiCuL9xLiJS8Qlxm8xMknSlFLFKww6ctU9YWy9KTrMxxrrtPnvUf_tIk49046MOpK8Wpo1AxxJ7e61T9bug01hPlrBy0MaD9glgrjkiP4mVP0z2_8tFjuBL_-7mWl9f3F59hw1OJIy67fIAVjEQ3A-ERgtzWIf-C6lSEuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooling+performance+analysis+and+structural+parameter+optimization+of+X-type+truss+array+channel+based+on+neural+networks+and+genetic+algorithm&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Xi%2C+Lei&rft.au=Xu%2C+Liang&rft.au=Gao%2C+Jianmin&rft.au=Zhao%2C+Zhen&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.122452&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon