Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications

Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenA...

Full description

Saved in:
Bibliographic Details
Published inDrones (Basel) Vol. 7; no. 4; p. 225
Main Authors Abbass, Mahmoud Abdelkader Bashery, Kang, Hyun-Soo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2023
Subjects
Online AccessGet full text
ISSN2504-446X
2504-446X
DOI10.3390/drones7040225

Cover

Abstract Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenAI’s Gym, Unity ML-Agents, PyBullet, DART, MoJoCo, RaiSim, Isaac, and AirSim), that are required to reduce the real-world challenges, suffer from drawbacks (e.g., the limited number of examples and applications, and difficulties in implementation of the RL algorithms, due to difficulties with the programing language). This paper presents an integrated RL framework, based on Python–Unity interaction, to demonstrate the ability to create a new RL platform tool, based on making a stable user datagram protocol (UDP) communication between the RL agent algorithm (developed using the Python programing language as a server), and the simulation environment (created using the Unity simulation software as a client). This Python–Unity integration process, increases the advantage of the overall RL platform (i.e., flexibility, scalability, and robustness), with the ability to create different environment specifications. The challenge of RL algorithms’ implementation and development is also achieved. The proposed framework is validated by applying two popular deep RL algorithms (i.e., Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)), on an elevation control challenge for a quadcopter drone. The validation results for these experimental tests, prove the innovation of the proposed framework, to be used in RL applications, because both implemented algorithms achieve high stability, by achieving convergence to the required performance through the semi-online training process.
AbstractList Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenAI’s Gym, Unity ML-Agents, PyBullet, DART, MoJoCo, RaiSim, Isaac, and AirSim), that are required to reduce the real-world challenges, suffer from drawbacks (e.g., the limited number of examples and applications, and difficulties in implementation of the RL algorithms, due to difficulties with the programing language). This paper presents an integrated RL framework, based on Python–Unity interaction, to demonstrate the ability to create a new RL platform tool, based on making a stable user datagram protocol (UDP) communication between the RL agent algorithm (developed using the Python programing language as a server), and the simulation environment (created using the Unity simulation software as a client). This Python–Unity integration process, increases the advantage of the overall RL platform (i.e., flexibility, scalability, and robustness), with the ability to create different environment specifications. The challenge of RL algorithms’ implementation and development is also achieved. The proposed framework is validated by applying two popular deep RL algorithms (i.e., Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)), on an elevation control challenge for a quadcopter drone. The validation results for these experimental tests, prove the innovation of the proposed framework, to be used in RL applications, because both implemented algorithms achieve high stability, by achieving convergence to the required performance through the semi-online training process.
Audience Academic
Author Kang, Hyun-Soo
Abbass, Mahmoud Abdelkader Bashery
Author_xml – sequence: 1
  givenname: Mahmoud Abdelkader Bashery
  orcidid: 0000-0003-1795-4276
  surname: Abbass
  fullname: Abbass, Mahmoud Abdelkader Bashery
– sequence: 2
  givenname: Hyun-Soo
  orcidid: 0000-0002-4333-2852
  surname: Kang
  fullname: Kang, Hyun-Soo
BookMark eNptUU1PGzEUtCqQSlOOvVvqecG7tte7x5BCiRQJVIHUm-X1R3C6sVPbUOXf85KABBXy4fmNZ8bv4ws6CjFYhL7V5IzSnpybBHkWhJGm4Z_QScMJqxhrfx-9uX9GpzmvCAEO421fn6DVj50OX472SRUfA57FUFIc8YXK1mAAbrflIYbqPviyxfNQ7DKpAk9XSa3tv5j-YBcT_mV9gKjt2oaCF1al4MMSTzeb0eu9c_6Kjp0asz19iRN0f3V5N7uuFjc_57PpotJUkFIZVtdDrw3nTe9cPfCmpZoNjFGijXVd37GBGm6IEFx0PbQ11E3nBu4EcaCjEzQ_-JqoVnKT_FqlrYzKyz0Q01KqVLwerbQtbbmpG9ZTwiw3nTCDMp2igDC-9_p-8Nqk-PfR5iJX8TEFKF82HWmhRME4sM4OrKUC090gSlIajrFrr2G-zgM-FUxAFxw-myB6EOgUc07WSe3Lfkog9KOsidwtVb5bKqiq_1SvzX3MfwZD8aci
CitedBy_id crossref_primary_10_3390_s24072028
crossref_primary_10_1007_s11044_023_09960_2
crossref_primary_10_3390_electronics13020365
crossref_primary_10_1016_j_neucom_2024_128362
crossref_primary_10_3390_drones8110660
crossref_primary_10_1016_j_jobe_2023_107523
crossref_primary_10_1109_ACCESS_2023_3325062
crossref_primary_10_3390_s24041205
Cites_doi 10.15607/RSS.2017.XIII.048
10.1109/ICRA.2018.8461083
10.1109/IROS.2017.8206246
10.3390/app12178429
10.18653/v1/P16-1153
10.1016/j.robot.2008.10.024
10.1038/s41591-018-0320-3
10.1109/TRO.2020.2988642
10.1007/978-1-4842-6503-1
10.1109/IROS.2012.6386109
10.1109/ICASSP.2018.8462272
10.3390/app9245571
10.23919/ICCAS55662.2022.10003832
10.1007/978-1-4842-5127-0
10.15607/RSS.2018.XIV.010
10.1109/ICRA.2017.7989381
10.1109/IC3.2018.00013
10.1609/aaai.v32i1.11687
10.1038/s41591-018-0213-5
10.1109/ICRA.2019.8794179
10.21105/joss.00500
10.3390/app12073220
10.1126/scirobotics.abc5986
10.1109/MCI.2019.2901089
10.1007/978-3-319-67361-5_40
10.1109/LRA.2017.2720851
10.3390/en14175410
10.1177/02783649211047890
10.5753/svr_estendido.2019.8471
10.1109/IROS.2017.8206110
10.1109/IJCNN.2012.6252823
10.1109/LRA.2018.2792536
10.1007/s11042-021-11437-3
10.1109/JETCAS.2019.2932285
10.18653/v1/D17-1062
10.1177/0278364913495721
10.1201/9781351006620-3
10.1126/scirobotics.aau5872
10.1109/ICIP.2018.8451491
10.1109/ACCESS.2020.2971172
10.1126/science.aar6404
10.1561/2300000021
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones7040225
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_e6365d1249304e5d87dbad8a324945cd
A747443549
10_3390_drones7040225
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c370t-d411b9cd5529ff1b5263c4b4430cdef8984b3d5d0775789446b128fb5f70f9cd3
IEDL.DBID BENPR
ISSN 2504-446X
IngestDate Tue Oct 14 18:58:11 EDT 2025
Sun Jul 13 03:08:58 EDT 2025
Mon Oct 20 16:33:22 EDT 2025
Thu Oct 16 04:44:06 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-d411b9cd5529ff1b5263c4b4430cdef8984b3d5d0775789446b128fb5f70f9cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4333-2852
0000-0003-1795-4276
OpenAccessLink https://www.proquest.com/docview/2806529745?pq-origsite=%requestingapplication%&accountid=15518
PQID 2806529745
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_e6365d1249304e5d87dbad8a324945cd
proquest_journals_2806529745
gale_infotracacademiconefile_A747443549
crossref_citationtrail_10_3390_drones7040225
crossref_primary_10_3390_drones7040225
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Lee (ref_63) 2020; 5
Kober (ref_19) 2013; 32
Hwangbo (ref_22) 2019; 4
ref_91
ref_90
ref_14
ref_58
ref_13
Peng (ref_43) 2018; 37
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
Norgeot (ref_2) 2019; 25
ref_51
Hwangbo (ref_24) 2017; 2
Lee (ref_48) 2018; 3
ref_17
ref_16
ref_59
Silver (ref_7) 2018; 362
Deisenroth (ref_20) 2011; 2
ref_25
ref_69
ref_68
ref_23
ref_67
ref_66
ref_21
ref_65
ref_64
Hwangbo (ref_60) 2018; 3
ref_62
ref_29
ref_28
Carius (ref_61) 2022; 41
ref_27
ref_26
Barea (ref_15) 2022; 81
ref_72
ref_71
Abbass (ref_88) 2021; 171
ref_70
ref_36
ref_35
ref_79
ref_34
ref_33
ref_77
ref_32
ref_76
ref_31
ref_75
Georgios (ref_9) 2018; 20
ref_30
ref_74
ref_73
Yoon (ref_78) 2019; 9
Komorowski (ref_3) 2018; 24
ref_39
ref_38
ref_37
Argall (ref_18) 2009; 57
ref_83
ref_82
ref_81
ref_80
ref_47
ref_46
ref_45
ref_89
ref_44
Chatzilygeroudis (ref_53) 2016; 100
ref_87
ref_42
ref_86
ref_85
ref_40
ref_84
ref_1
ref_49
Yu (ref_52) 2017; 5
Zeng (ref_41) 2019; 36
ref_8
ref_5
ref_4
ref_6
References_xml – ident: ref_50
  doi: 10.15607/RSS.2017.XIII.048
– volume: 20
  start-page: 143
  year: 2018
  ident: ref_9
  article-title: Yannakakis and Julian Togelius: Artificial Intelligence and Games
  publication-title: Genet. Program. Evolvable Mach.
– ident: ref_5
– ident: ref_32
– ident: ref_51
  doi: 10.1109/ICRA.2018.8461083
– ident: ref_80
– ident: ref_54
  doi: 10.1109/IROS.2017.8206246
– ident: ref_68
– ident: ref_84
– ident: ref_72
  doi: 10.3390/app12178429
– ident: ref_65
– ident: ref_90
– ident: ref_39
– ident: ref_13
  doi: 10.18653/v1/P16-1153
– volume: 57
  start-page: 469
  year: 2009
  ident: ref_18
  article-title: A survey of robot learning from demonstration
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2008.10.024
– ident: ref_42
– volume: 25
  start-page: 14
  year: 2019
  ident: ref_2
  article-title: A call for deep-learning healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0320-3
– ident: ref_35
– volume: 36
  start-page: 1307
  year: 2019
  ident: ref_41
  article-title: TossingBot: Learning to Throw Arbitrary Objects with Residual Physics
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2020.2988642
– ident: ref_23
– ident: ref_33
  doi: 10.1007/978-1-4842-6503-1
– ident: ref_71
– ident: ref_58
– volume: 171
  start-page: 12
  year: 2021
  ident: ref_88
  article-title: Buildings Energy Prediction Using Artificial Neural Networks
  publication-title: Eng. Res. J. EJR
– ident: ref_8
– ident: ref_57
  doi: 10.1109/IROS.2012.6386109
– ident: ref_4
– ident: ref_31
– ident: ref_56
– ident: ref_10
  doi: 10.1109/ICASSP.2018.8462272
– ident: ref_27
– ident: ref_74
  doi: 10.3390/app9245571
– ident: ref_69
  doi: 10.23919/ICCAS55662.2022.10003832
– ident: ref_83
– ident: ref_26
  doi: 10.1007/978-1-4842-5127-0
– ident: ref_46
  doi: 10.15607/RSS.2018.XIV.010
– ident: ref_66
– ident: ref_21
  doi: 10.1109/ICRA.2017.7989381
– ident: ref_62
– ident: ref_38
– ident: ref_17
– ident: ref_76
  doi: 10.1109/IC3.2018.00013
– ident: ref_59
– ident: ref_28
– ident: ref_30
– ident: ref_49
  doi: 10.1609/aaai.v32i1.11687
– volume: 24
  start-page: 1716
  year: 2018
  ident: ref_3
  article-title: The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0213-5
– ident: ref_34
– ident: ref_47
– ident: ref_82
– ident: ref_11
– ident: ref_86
– ident: ref_45
  doi: 10.1109/ICRA.2019.8794179
– volume: 3
  start-page: 500
  year: 2018
  ident: ref_48
  article-title: DART: Dynamic Animation and Robotics Toolkit
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00500
– ident: ref_40
– ident: ref_75
  doi: 10.3390/app12073220
– volume: 5
  start-page: eabc5986
  year: 2020
  ident: ref_63
  article-title: Learning Quadrupedal Locomotion over Challenging Terrain
  publication-title: Sci Robot.
  doi: 10.1126/scirobotics.abc5986
– ident: ref_67
– ident: ref_14
  doi: 10.1109/MCI.2019.2901089
– ident: ref_37
– ident: ref_73
  doi: 10.1007/978-3-319-67361-5_40
– volume: 2
  start-page: 99
  year: 2017
  ident: ref_24
  article-title: Control of a Quadrotor with Reinforcement Learning
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2720851
– ident: ref_44
– ident: ref_87
  doi: 10.3390/en14175410
– volume: 41
  start-page: 189
  year: 2022
  ident: ref_61
  article-title: Constrained stochastic optimal control with learned importance sampling: A path integral approach
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/02783649211047890
– ident: ref_79
– ident: ref_70
  doi: 10.5753/svr_estendido.2019.8471
– ident: ref_55
  doi: 10.1109/IROS.2017.8206110
– ident: ref_6
– volume: 100
  start-page: 14
  year: 2016
  ident: ref_53
  article-title: Reset-free Trial-and-Error Learning for Robot Damage Recovery
  publication-title: Robot. Auton. Syst.
– ident: ref_16
  doi: 10.1109/IJCNN.2012.6252823
– ident: ref_25
– volume: 3
  start-page: 895
  year: 2018
  ident: ref_60
  article-title: Per-Contact Iteration Method for Solving Contact Dynamics
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2792536
– ident: ref_81
– volume: 81
  start-page: 3553
  year: 2022
  ident: ref_15
  article-title: Deep reinforcement learning based control for Autonomous Vehicles in CARLA
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-11437-3
– volume: 9
  start-page: 485
  year: 2019
  ident: ref_78
  article-title: Hierarchical Memory System With STT-MRAM and SRAM to Support Transfer and Real-Time Reinforcement Learning in Autonomous Drones
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2019.2932285
– ident: ref_85
– ident: ref_12
  doi: 10.18653/v1/D17-1062
– volume: 32
  start-page: 1238
  year: 2013
  ident: ref_19
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– ident: ref_89
– ident: ref_64
– ident: ref_1
  doi: 10.1201/9781351006620-3
– ident: ref_91
– volume: 4
  start-page: eaau5872
  year: 2019
  ident: ref_22
  article-title: Learning agile and dynamic motor skills for legged robots
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau5872
– ident: ref_36
– ident: ref_29
  doi: 10.1109/ICIP.2018.8451491
– ident: ref_77
  doi: 10.1109/ACCESS.2020.2971172
– volume: 37
  start-page: 1
  year: 2018
  ident: ref_43
  article-title: DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
  publication-title: ACM Trans. Graph.
– volume: 362
  start-page: 1140
  year: 2018
  ident: ref_7
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
– volume: 2
  start-page: 1
  year: 2011
  ident: ref_20
  article-title: A Survey on Policy Search for Robotics
  publication-title: Found. Trends Robot.
  doi: 10.1561/2300000021
– volume: 5
  start-page: 257
  year: 2017
  ident: ref_52
  article-title: Multi-task Learning with Gradient Guided Policy Specialization
  publication-title: CoRR Abs
SSID ssj0002245691
Score 2.2831168
Snippet Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 225
SubjectTerms Algorithms
Autonomous vehicles
C plus plus
Competition
Control systems
Drone aircraft
Linux
Machine learning
Methods
Online instruction
Operating systems
Physics
Programming languages
Python (Programming language)
Reagents
Reinforcement learning (Machine learning)
reinforcement learning agent
Robotics
Robots
Simulation
simulation platform
Training
UDP communication protocol
Unity simulation software
Unmanned aerial vehicles
Vanilla Policy Gradient algorithm
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq6ukoPoxWLSNGlzXFeXVVBEFLyF5kuQZZF1Pey_dyZtpR7Ei7cS0jadmWbmJZM3hJwo5RSrC5upCFgVK8FmleAyq7nlXrKQ5-mE3N29mj4Xty_ypVfqC3PCGnrgRnAXQQklPZZIBuAdpK9Kb2tf1RAI6EI6j7Mvq3QPTL0lUhcIDDRvSDUF4PoLv0Du-xJsNsey2D0nlLj6f5uRk5uZbJHNNj6ko2Zc22QtzHfI2xU-ll7PQrOASsdNgjm9BB_kKTQ8rJADIMMIckVvOgoITydd7hWF4JQ-hsST6tKSIG2pVV_pqLeJvUueJ9dP42nWFknInCjZMvMF51Y7L2WuY-RW5kq4whaFYM6HWOmqsMJLj1R3ZaUB_VlwSdHKWLII94k9sj6Hb9gn1LoA3jywWvMacBPXMmclXGkWVSnyOCDnndSMaxnEsZDFzACSQCGbH0IekNPv7u8NdcZvHS9RBd-dkPE6NYAdmNYOzF92MCBnqECDcoRBubo9XgDvQYYrMwLcBEIBODwgw07Hpv1hP0zaYM4BXMmD_xjNIdnAuvRNis-QrC8Xn-EIopelPU6G-gXqSO0g
  priority: 102
  providerName: Directory of Open Access Journals
Title Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications
URI https://www.proquest.com/docview/2806529745
https://doaj.org/article/e6365d1249304e5d87dbad8a324945cd
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ja9wwFH4kEwq9hK500nTQobSXmmixZPtQykwy07TQIYQGchPWFighSSfTQ_5935PtaXpIbkaWsf20vFXfB_DeGG94W7rCJPRViQm2qJXQRSucCJpHKfMJuR9Lc3xWfj_X51uwHM7CUFnlsCfmjTpce4qRH-QMoETrV3-5-V0QaxRlVwcKjbanVgifM8TYNuxIQsYawc5svjw53URdJOX5GtGBbSr09w_CijDxK5zLkuiy7ymnjOH_0E6d1c_iGez2diObdgP9HLbi1Qt4kus3_e1L-HVEL2Dzy9iFWNlhV4LOZqilAsOGkztCCSjIxrxj3waQiMAWQ3UWQ_OVncaMpOpz0JD14KsXbHovzf0Kzhbzn4fHRU-jUHhV8XURSiFc44NG8aUknJZG-dKVpeI-xFQ3delU0IHA8Kq6Qf_QodJKTqeKJ3xOvYbRFf7DG2DOR9T3kbeNaNGzEo2WvMKrhidTKZnG8GmQn_U9xjhRXVxa9DVI3PY_cY_hw6b7TQeu8VDHGQ3GphNhYueG69WF7ZeYjUYZHYhMW_Ey6lBXwbWhbtFkbErtwxg-0lBakiN-lG_7Awj4HsLAslP0rFAo6DCPYX8Ybdsv6Vv7bwLuPX77LTwlTvquvGcfRuvVn_gOLZe1m8B2vfg66SflJPv_fwFaVPBD
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxFMsLeADjwtRHT-S-FCh3XZXu7RdVVUr9WbiRyqhqo_dRWj_HL-NGcdZyqHceoscx0lm_JixZ76PkA9F4QpWS5sVDfiqyASbVSJXWZ3b3CsWOI8ZcofTYnwqv52pszXyu8uFwbDKbk6ME7W_crhHvh1PADlYv-rr9U2GrFF4utpRaNSJWsHvRIixlNixH5a_wIWb70z2QN8fOR8NT3bHWWIZyJwo2SLzMs-tdl5B602TW8UL4aSVUjDnQ1PpSlrhlUesuLLS4D5ZmNMbq5qSNfCcgHYfkA0ppAbnb2MwnB4dr3Z5OJ4r6rwF9xRCs20_Qwz-EsYOR3ruW4th5Ay4a2WIy93oKXmS7FTabzvWM7IWLp-ThzFe1M1fkB97-AI6vAjtli7dbUPe6QBWRU-h4GiJqAQZ2rRLOulAKTwdddFgFMxlehwicquLm5Q0gb2e0_6tY_WX5PReBPqKrF_CP7wm1LoA9kVgtc5r8ORyrTgr4UqzpigFb3rkSyc_4xKmOVJrXBjwbVDc5h9x98inVfXrFszjrooDVMaqEmJwx4Kr2blJQ9qEQhTKI3m3YDIoX5Xe1r6qwUTVUjnfI59RlQblCB_l6pTwAO9BzC3TB08OhAIOeo9sddo2aQqZm78d_s3_b78nj8YnhwfmYDLd3ySPOVhhbWjRFllfzH6Gt2A1Ley71DUp-X7fo-EPBWUq_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMsbcEHHheidew4j0NVbbsNXQpVhajUmxu_KqGqj91FaP8av64zTrKUQ7n1FjmOk4xn7Hn5G4B3eW5z3mQmyQPaqlQJNillqpImNalT3AsRT8h9O8j3jrIvx-p4Bf70Z2EorbJfE-NC7S4s-ciHMQIoUPtVw9ClRRyO663Lq4QqSFGktS-n0bLIvl_8RvNttjkZ41y_F6Le_bGzl3QVBhIrCz5PXJamprJO4cghpEaJXNrMZJnk1vlQVmVmpFOOcOKKskLTyeB6HowKBQ_4nMRx78H9glDc6ZR6_Xnp3xEUUazSFtZTyooP3ZTQ9wuUGkGFuW9sg7FawG17Qtzo6ifwuNNQ2ahlqaew4s-fwYOYKWpnz-HnmF7Ads9868xlO22yO9vG_dAxbDhcEB5BQtrsgk16OArH6j4PjKGizL77iNlqo3uSdTCvp2x0I6D-Ao7uhJwvYfUc_-EVMGM9ahaeN1XaoA2XVkrwAq8qHvJCijCATz39tO3QzKmoxplGq4bIrf8h9wA-LLtftjAet3XcpslYdiL07dhwMT3VnTBrn8tcOSrbLXnmlSsLZxpXNqicVpmybgAfaSo10RE_yjbdUQd8D6Ft6RHacEgUNM0HsN7Ptu4Wj5n-y-qv_3_7LTxEGdBfJwf7a_BIoPrV5hStw-p8-stvoLo0N28iXzI4uWtBuAbhTSiX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone+Elevation+Control+Based+on+Python-Unity+Integrated+Framework+for+Reinforcement+Learning+Applications&rft.jtitle=Drones+%28Basel%29&rft.au=Abbass%2C+Mahmoud+Abdelkader+Bashery&rft.au=Kang%2C+Hyun-Soo&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=7&rft.issue=4&rft_id=info:doi/10.3390%2Fdrones7040225&rft.externalDocID=A747443549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon