Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications
Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenA...
Saved in:
| Published in | Drones (Basel) Vol. 7; no. 4; p. 225 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2504-446X 2504-446X |
| DOI | 10.3390/drones7040225 |
Cover
| Abstract | Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenAI’s Gym, Unity ML-Agents, PyBullet, DART, MoJoCo, RaiSim, Isaac, and AirSim), that are required to reduce the real-world challenges, suffer from drawbacks (e.g., the limited number of examples and applications, and difficulties in implementation of the RL algorithms, due to difficulties with the programing language). This paper presents an integrated RL framework, based on Python–Unity interaction, to demonstrate the ability to create a new RL platform tool, based on making a stable user datagram protocol (UDP) communication between the RL agent algorithm (developed using the Python programing language as a server), and the simulation environment (created using the Unity simulation software as a client). This Python–Unity integration process, increases the advantage of the overall RL platform (i.e., flexibility, scalability, and robustness), with the ability to create different environment specifications. The challenge of RL algorithms’ implementation and development is also achieved. The proposed framework is validated by applying two popular deep RL algorithms (i.e., Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)), on an elevation control challenge for a quadcopter drone. The validation results for these experimental tests, prove the innovation of the proposed framework, to be used in RL applications, because both implemented algorithms achieve high stability, by achieving convergence to the required performance through the semi-online training process. |
|---|---|
| AbstractList | Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during interactions between the RL agent and the environment, in the online training process. In addition, the RL platform tools (e.g., Python OpenAI’s Gym, Unity ML-Agents, PyBullet, DART, MoJoCo, RaiSim, Isaac, and AirSim), that are required to reduce the real-world challenges, suffer from drawbacks (e.g., the limited number of examples and applications, and difficulties in implementation of the RL algorithms, due to difficulties with the programing language). This paper presents an integrated RL framework, based on Python–Unity interaction, to demonstrate the ability to create a new RL platform tool, based on making a stable user datagram protocol (UDP) communication between the RL agent algorithm (developed using the Python programing language as a server), and the simulation environment (created using the Unity simulation software as a client). This Python–Unity integration process, increases the advantage of the overall RL platform (i.e., flexibility, scalability, and robustness), with the ability to create different environment specifications. The challenge of RL algorithms’ implementation and development is also achieved. The proposed framework is validated by applying two popular deep RL algorithms (i.e., Vanilla Policy Gradient (VPG) and Actor-Critic (A2C)), on an elevation control challenge for a quadcopter drone. The validation results for these experimental tests, prove the innovation of the proposed framework, to be used in RL applications, because both implemented algorithms achieve high stability, by achieving convergence to the required performance through the semi-online training process. |
| Audience | Academic |
| Author | Kang, Hyun-Soo Abbass, Mahmoud Abdelkader Bashery |
| Author_xml | – sequence: 1 givenname: Mahmoud Abdelkader Bashery orcidid: 0000-0003-1795-4276 surname: Abbass fullname: Abbass, Mahmoud Abdelkader Bashery – sequence: 2 givenname: Hyun-Soo orcidid: 0000-0002-4333-2852 surname: Kang fullname: Kang, Hyun-Soo |
| BookMark | eNptUU1PGzEUtCqQSlOOvVvqecG7tte7x5BCiRQJVIHUm-X1R3C6sVPbUOXf85KABBXy4fmNZ8bv4ws6CjFYhL7V5IzSnpybBHkWhJGm4Z_QScMJqxhrfx-9uX9GpzmvCAEO421fn6DVj50OX472SRUfA57FUFIc8YXK1mAAbrflIYbqPviyxfNQ7DKpAk9XSa3tv5j-YBcT_mV9gKjt2oaCF1al4MMSTzeb0eu9c_6Kjp0asz19iRN0f3V5N7uuFjc_57PpotJUkFIZVtdDrw3nTe9cPfCmpZoNjFGijXVd37GBGm6IEFx0PbQ11E3nBu4EcaCjEzQ_-JqoVnKT_FqlrYzKyz0Q01KqVLwerbQtbbmpG9ZTwiw3nTCDMp2igDC-9_p-8Nqk-PfR5iJX8TEFKF82HWmhRME4sM4OrKUC090gSlIajrFrr2G-zgM-FUxAFxw-myB6EOgUc07WSe3Lfkog9KOsidwtVb5bKqiq_1SvzX3MfwZD8aci |
| CitedBy_id | crossref_primary_10_3390_s24072028 crossref_primary_10_1007_s11044_023_09960_2 crossref_primary_10_3390_electronics13020365 crossref_primary_10_1016_j_neucom_2024_128362 crossref_primary_10_3390_drones8110660 crossref_primary_10_1016_j_jobe_2023_107523 crossref_primary_10_1109_ACCESS_2023_3325062 crossref_primary_10_3390_s24041205 |
| Cites_doi | 10.15607/RSS.2017.XIII.048 10.1109/ICRA.2018.8461083 10.1109/IROS.2017.8206246 10.3390/app12178429 10.18653/v1/P16-1153 10.1016/j.robot.2008.10.024 10.1038/s41591-018-0320-3 10.1109/TRO.2020.2988642 10.1007/978-1-4842-6503-1 10.1109/IROS.2012.6386109 10.1109/ICASSP.2018.8462272 10.3390/app9245571 10.23919/ICCAS55662.2022.10003832 10.1007/978-1-4842-5127-0 10.15607/RSS.2018.XIV.010 10.1109/ICRA.2017.7989381 10.1109/IC3.2018.00013 10.1609/aaai.v32i1.11687 10.1038/s41591-018-0213-5 10.1109/ICRA.2019.8794179 10.21105/joss.00500 10.3390/app12073220 10.1126/scirobotics.abc5986 10.1109/MCI.2019.2901089 10.1007/978-3-319-67361-5_40 10.1109/LRA.2017.2720851 10.3390/en14175410 10.1177/02783649211047890 10.5753/svr_estendido.2019.8471 10.1109/IROS.2017.8206110 10.1109/IJCNN.2012.6252823 10.1109/LRA.2018.2792536 10.1007/s11042-021-11437-3 10.1109/JETCAS.2019.2932285 10.18653/v1/D17-1062 10.1177/0278364913495721 10.1201/9781351006620-3 10.1126/scirobotics.aau5872 10.1109/ICIP.2018.8451491 10.1109/ACCESS.2020.2971172 10.1126/science.aar6404 10.1561/2300000021 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/drones7040225 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Collection (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_e6365d1249304e5d87dbad8a324945cd A747443549 10_3390_drones7040225 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c370t-d411b9cd5529ff1b5263c4b4430cdef8984b3d5d0775789446b128fb5f70f9cd3 |
| IEDL.DBID | BENPR |
| ISSN | 2504-446X |
| IngestDate | Tue Oct 14 18:58:11 EDT 2025 Sun Jul 13 03:08:58 EDT 2025 Mon Oct 20 16:33:22 EDT 2025 Thu Oct 16 04:44:06 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-d411b9cd5529ff1b5263c4b4430cdef8984b3d5d0775789446b128fb5f70f9cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4333-2852 0000-0003-1795-4276 |
| OpenAccessLink | https://www.proquest.com/docview/2806529745?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2806529745 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e6365d1249304e5d87dbad8a324945cd proquest_journals_2806529745 gale_infotracacademiconefile_A747443549 crossref_citationtrail_10_3390_drones7040225 crossref_primary_10_3390_drones7040225 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Lee (ref_63) 2020; 5 Kober (ref_19) 2013; 32 Hwangbo (ref_22) 2019; 4 ref_91 ref_90 ref_14 ref_58 ref_13 Peng (ref_43) 2018; 37 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 ref_54 Norgeot (ref_2) 2019; 25 ref_51 Hwangbo (ref_24) 2017; 2 Lee (ref_48) 2018; 3 ref_17 ref_16 ref_59 Silver (ref_7) 2018; 362 Deisenroth (ref_20) 2011; 2 ref_25 ref_69 ref_68 ref_23 ref_67 ref_66 ref_21 ref_65 ref_64 Hwangbo (ref_60) 2018; 3 ref_62 ref_29 ref_28 Carius (ref_61) 2022; 41 ref_27 ref_26 Barea (ref_15) 2022; 81 ref_72 ref_71 Abbass (ref_88) 2021; 171 ref_70 ref_36 ref_35 ref_79 ref_34 ref_33 ref_77 ref_32 ref_76 ref_31 ref_75 Georgios (ref_9) 2018; 20 ref_30 ref_74 ref_73 Yoon (ref_78) 2019; 9 Komorowski (ref_3) 2018; 24 ref_39 ref_38 ref_37 Argall (ref_18) 2009; 57 ref_83 ref_82 ref_81 ref_80 ref_47 ref_46 ref_45 ref_89 ref_44 Chatzilygeroudis (ref_53) 2016; 100 ref_87 ref_42 ref_86 ref_85 ref_40 ref_84 ref_1 ref_49 Yu (ref_52) 2017; 5 Zeng (ref_41) 2019; 36 ref_8 ref_5 ref_4 ref_6 |
| References_xml | – ident: ref_50 doi: 10.15607/RSS.2017.XIII.048 – volume: 20 start-page: 143 year: 2018 ident: ref_9 article-title: Yannakakis and Julian Togelius: Artificial Intelligence and Games publication-title: Genet. Program. Evolvable Mach. – ident: ref_5 – ident: ref_32 – ident: ref_51 doi: 10.1109/ICRA.2018.8461083 – ident: ref_80 – ident: ref_54 doi: 10.1109/IROS.2017.8206246 – ident: ref_68 – ident: ref_84 – ident: ref_72 doi: 10.3390/app12178429 – ident: ref_65 – ident: ref_90 – ident: ref_39 – ident: ref_13 doi: 10.18653/v1/P16-1153 – volume: 57 start-page: 469 year: 2009 ident: ref_18 article-title: A survey of robot learning from demonstration publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2008.10.024 – ident: ref_42 – volume: 25 start-page: 14 year: 2019 ident: ref_2 article-title: A call for deep-learning healthcare publication-title: Nat. Med. doi: 10.1038/s41591-018-0320-3 – ident: ref_35 – volume: 36 start-page: 1307 year: 2019 ident: ref_41 article-title: TossingBot: Learning to Throw Arbitrary Objects with Residual Physics publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2020.2988642 – ident: ref_23 – ident: ref_33 doi: 10.1007/978-1-4842-6503-1 – ident: ref_71 – ident: ref_58 – volume: 171 start-page: 12 year: 2021 ident: ref_88 article-title: Buildings Energy Prediction Using Artificial Neural Networks publication-title: Eng. Res. J. EJR – ident: ref_8 – ident: ref_57 doi: 10.1109/IROS.2012.6386109 – ident: ref_4 – ident: ref_31 – ident: ref_56 – ident: ref_10 doi: 10.1109/ICASSP.2018.8462272 – ident: ref_27 – ident: ref_74 doi: 10.3390/app9245571 – ident: ref_69 doi: 10.23919/ICCAS55662.2022.10003832 – ident: ref_83 – ident: ref_26 doi: 10.1007/978-1-4842-5127-0 – ident: ref_46 doi: 10.15607/RSS.2018.XIV.010 – ident: ref_66 – ident: ref_21 doi: 10.1109/ICRA.2017.7989381 – ident: ref_62 – ident: ref_38 – ident: ref_17 – ident: ref_76 doi: 10.1109/IC3.2018.00013 – ident: ref_59 – ident: ref_28 – ident: ref_30 – ident: ref_49 doi: 10.1609/aaai.v32i1.11687 – volume: 24 start-page: 1716 year: 2018 ident: ref_3 article-title: The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care publication-title: Nat. Med. doi: 10.1038/s41591-018-0213-5 – ident: ref_34 – ident: ref_47 – ident: ref_82 – ident: ref_11 – ident: ref_86 – ident: ref_45 doi: 10.1109/ICRA.2019.8794179 – volume: 3 start-page: 500 year: 2018 ident: ref_48 article-title: DART: Dynamic Animation and Robotics Toolkit publication-title: J. Open Source Softw. doi: 10.21105/joss.00500 – ident: ref_40 – ident: ref_75 doi: 10.3390/app12073220 – volume: 5 start-page: eabc5986 year: 2020 ident: ref_63 article-title: Learning Quadrupedal Locomotion over Challenging Terrain publication-title: Sci Robot. doi: 10.1126/scirobotics.abc5986 – ident: ref_67 – ident: ref_14 doi: 10.1109/MCI.2019.2901089 – ident: ref_37 – ident: ref_73 doi: 10.1007/978-3-319-67361-5_40 – volume: 2 start-page: 99 year: 2017 ident: ref_24 article-title: Control of a Quadrotor with Reinforcement Learning publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2720851 – ident: ref_44 – ident: ref_87 doi: 10.3390/en14175410 – volume: 41 start-page: 189 year: 2022 ident: ref_61 article-title: Constrained stochastic optimal control with learned importance sampling: A path integral approach publication-title: Int. J. Rob. Res. doi: 10.1177/02783649211047890 – ident: ref_79 – ident: ref_70 doi: 10.5753/svr_estendido.2019.8471 – ident: ref_55 doi: 10.1109/IROS.2017.8206110 – ident: ref_6 – volume: 100 start-page: 14 year: 2016 ident: ref_53 article-title: Reset-free Trial-and-Error Learning for Robot Damage Recovery publication-title: Robot. Auton. Syst. – ident: ref_16 doi: 10.1109/IJCNN.2012.6252823 – ident: ref_25 – volume: 3 start-page: 895 year: 2018 ident: ref_60 article-title: Per-Contact Iteration Method for Solving Contact Dynamics publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2792536 – ident: ref_81 – volume: 81 start-page: 3553 year: 2022 ident: ref_15 article-title: Deep reinforcement learning based control for Autonomous Vehicles in CARLA publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11437-3 – volume: 9 start-page: 485 year: 2019 ident: ref_78 article-title: Hierarchical Memory System With STT-MRAM and SRAM to Support Transfer and Real-Time Reinforcement Learning in Autonomous Drones publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2019.2932285 – ident: ref_85 – ident: ref_12 doi: 10.18653/v1/D17-1062 – volume: 32 start-page: 1238 year: 2013 ident: ref_19 article-title: Reinforcement learning in robotics: A survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – ident: ref_89 – ident: ref_64 – ident: ref_1 doi: 10.1201/9781351006620-3 – ident: ref_91 – volume: 4 start-page: eaau5872 year: 2019 ident: ref_22 article-title: Learning agile and dynamic motor skills for legged robots publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau5872 – ident: ref_36 – ident: ref_29 doi: 10.1109/ICIP.2018.8451491 – ident: ref_77 doi: 10.1109/ACCESS.2020.2971172 – volume: 37 start-page: 1 year: 2018 ident: ref_43 article-title: DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills publication-title: ACM Trans. Graph. – volume: 362 start-page: 1140 year: 2018 ident: ref_7 article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play publication-title: Science doi: 10.1126/science.aar6404 – volume: 2 start-page: 1 year: 2011 ident: ref_20 article-title: A Survey on Policy Search for Robotics publication-title: Found. Trends Robot. doi: 10.1561/2300000021 – volume: 5 start-page: 257 year: 2017 ident: ref_52 article-title: Multi-task Learning with Gradient Guided Policy Specialization publication-title: CoRR Abs |
| SSID | ssj0002245691 |
| Score | 2.2831168 |
| Snippet | Reinforcement learning (RL) applications require a huge effort to become established in real-world environments, due to the injury and break down risks during... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 225 |
| SubjectTerms | Algorithms Autonomous vehicles C plus plus Competition Control systems Drone aircraft Linux Machine learning Methods Online instruction Operating systems Physics Programming languages Python (Programming language) Reagents Reinforcement learning (Machine learning) reinforcement learning agent Robotics Robots Simulation simulation platform Training UDP communication protocol Unity simulation software Unmanned aerial vehicles Vanilla Policy Gradient algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYsoKq6ukoPoxWLSNGlzXFeXVVBEFLyF5kuQZZF1Pey_dyZtpR7Ei7cS0jadmWbmJZM3hJwo5RSrC5upCFgVK8FmleAyq7nlXrKQ5-mE3N29mj4Xty_ypVfqC3PCGnrgRnAXQQklPZZIBuAdpK9Kb2tf1RAI6EI6j7Mvq3QPTL0lUhcIDDRvSDUF4PoLv0Du-xJsNsey2D0nlLj6f5uRk5uZbJHNNj6ko2Zc22QtzHfI2xU-ll7PQrOASsdNgjm9BB_kKTQ8rJADIMMIckVvOgoITydd7hWF4JQ-hsST6tKSIG2pVV_pqLeJvUueJ9dP42nWFknInCjZMvMF51Y7L2WuY-RW5kq4whaFYM6HWOmqsMJLj1R3ZaUB_VlwSdHKWLII94k9sj6Hb9gn1LoA3jywWvMacBPXMmclXGkWVSnyOCDnndSMaxnEsZDFzACSQCGbH0IekNPv7u8NdcZvHS9RBd-dkPE6NYAdmNYOzF92MCBnqECDcoRBubo9XgDvQYYrMwLcBEIBODwgw07Hpv1hP0zaYM4BXMmD_xjNIdnAuvRNis-QrC8Xn-EIopelPU6G-gXqSO0g priority: 102 providerName: Directory of Open Access Journals |
| Title | Drone Elevation Control Based on Python-Unity Integrated Framework for Reinforcement Learning Applications |
| URI | https://www.proquest.com/docview/2806529745 https://doaj.org/article/e6365d1249304e5d87dbad8a324945cd |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-446X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ja9wwFH4kEwq9hK500nTQobSXmmixZPtQykwy07TQIYQGchPWFighSSfTQ_5935PtaXpIbkaWsf20vFXfB_DeGG94W7rCJPRViQm2qJXQRSucCJpHKfMJuR9Lc3xWfj_X51uwHM7CUFnlsCfmjTpce4qRH-QMoETrV3-5-V0QaxRlVwcKjbanVgifM8TYNuxIQsYawc5svjw53URdJOX5GtGBbSr09w_CijDxK5zLkuiy7ymnjOH_0E6d1c_iGez2diObdgP9HLbi1Qt4kus3_e1L-HVEL2Dzy9iFWNlhV4LOZqilAsOGkztCCSjIxrxj3waQiMAWQ3UWQ_OVncaMpOpz0JD14KsXbHovzf0Kzhbzn4fHRU-jUHhV8XURSiFc44NG8aUknJZG-dKVpeI-xFQ3delU0IHA8Kq6Qf_QodJKTqeKJ3xOvYbRFf7DG2DOR9T3kbeNaNGzEo2WvMKrhidTKZnG8GmQn_U9xjhRXVxa9DVI3PY_cY_hw6b7TQeu8VDHGQ3GphNhYueG69WF7ZeYjUYZHYhMW_Ey6lBXwbWhbtFkbErtwxg-0lBakiN-lG_7Awj4HsLAslP0rFAo6DCPYX8Ybdsv6Vv7bwLuPX77LTwlTvquvGcfRuvVn_gOLZe1m8B2vfg66SflJPv_fwFaVPBD |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxFMsLeADjwtRHT-S-FCh3XZXu7RdVVUr9WbiRyqhqo_dRWj_HL-NGcdZyqHceoscx0lm_JixZ76PkA9F4QpWS5sVDfiqyASbVSJXWZ3b3CsWOI8ZcofTYnwqv52pszXyu8uFwbDKbk6ME7W_crhHvh1PADlYv-rr9U2GrFF4utpRaNSJWsHvRIixlNixH5a_wIWb70z2QN8fOR8NT3bHWWIZyJwo2SLzMs-tdl5B602TW8UL4aSVUjDnQ1PpSlrhlUesuLLS4D5ZmNMbq5qSNfCcgHYfkA0ppAbnb2MwnB4dr3Z5OJ4r6rwF9xRCs20_Qwz-EsYOR3ruW4th5Ay4a2WIy93oKXmS7FTabzvWM7IWLp-ThzFe1M1fkB97-AI6vAjtli7dbUPe6QBWRU-h4GiJqAQZ2rRLOulAKTwdddFgFMxlehwicquLm5Q0gb2e0_6tY_WX5PReBPqKrF_CP7wm1LoA9kVgtc5r8ORyrTgr4UqzpigFb3rkSyc_4xKmOVJrXBjwbVDc5h9x98inVfXrFszjrooDVMaqEmJwx4Kr2blJQ9qEQhTKI3m3YDIoX5Xe1r6qwUTVUjnfI59RlQblCB_l6pTwAO9BzC3TB08OhAIOeo9sddo2aQqZm78d_s3_b78nj8YnhwfmYDLd3ySPOVhhbWjRFllfzH6Gt2A1Ley71DUp-X7fo-EPBWUq_Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMsbcEHHheidew4j0NVbbsNXQpVhajUmxu_KqGqj91FaP8av64zTrKUQ7n1FjmOk4xn7Hn5G4B3eW5z3mQmyQPaqlQJNillqpImNalT3AsRT8h9O8j3jrIvx-p4Bf70Z2EorbJfE-NC7S4s-ciHMQIoUPtVw9ClRRyO663Lq4QqSFGktS-n0bLIvl_8RvNttjkZ41y_F6Le_bGzl3QVBhIrCz5PXJamprJO4cghpEaJXNrMZJnk1vlQVmVmpFOOcOKKskLTyeB6HowKBQ_4nMRx78H9glDc6ZR6_Xnp3xEUUazSFtZTyooP3ZTQ9wuUGkGFuW9sg7FawG17Qtzo6ifwuNNQ2ahlqaew4s-fwYOYKWpnz-HnmF7Ads9868xlO22yO9vG_dAxbDhcEB5BQtrsgk16OArH6j4PjKGizL77iNlqo3uSdTCvp2x0I6D-Ao7uhJwvYfUc_-EVMGM9ahaeN1XaoA2XVkrwAq8qHvJCijCATz39tO3QzKmoxplGq4bIrf8h9wA-LLtftjAet3XcpslYdiL07dhwMT3VnTBrn8tcOSrbLXnmlSsLZxpXNqicVpmybgAfaSo10RE_yjbdUQd8D6Ft6RHacEgUNM0HsN7Ptu4Wj5n-y-qv_3_7LTxEGdBfJwf7a_BIoPrV5hStw-p8-stvoLo0N28iXzI4uWtBuAbhTSiX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drone+Elevation+Control+Based+on+Python-Unity+Integrated+Framework+for+Reinforcement+Learning+Applications&rft.jtitle=Drones+%28Basel%29&rft.au=Abbass%2C+Mahmoud+Abdelkader+Bashery&rft.au=Kang%2C+Hyun-Soo&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=7&rft.issue=4&rft_id=info:doi/10.3390%2Fdrones7040225&rft.externalDocID=A747443549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |