Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images

Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13
Main Authors Shamsolmoali, Pourya, Chanussot, Jocelyn, Zareapoor, Masoumeh, Zhou, Huiyu, Yang, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2021.3106442

Cover

Abstract Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak performance when analyzing small ones or getting stuck in the local minima (e.g., false object parts). Two possible issues stand in their way. First, the existing methods struggle to perform stably on the detection of small objects because of the complicated background. Second, most of the standard methods used handcrafted features and do not work well on the detection of objects parts that are missing. We here address the above issues and propose a new architecture with a multipatch feature pyramid network (MPFP-Net). Different from the current models that, during training, only pursue the most discriminative patches, in MPFP-Net, the patches are divided into class-affiliated subsets, in which the patches are related, and based on the primary loss function, a sequence of smooth loss functions is determined for the subsets to improve the model for collecting small object parts. To enhance the feature representation for patch selection, we introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving. The network contains bottom-up and crosswise connections to fuse the features of different scales to achieve better accuracy compared to several state-of-the-art object detection models. Also, the developed architecture is more efficient than the baselines.
AbstractList Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak performance when analyzing small ones or getting stuck in the local minima (e.g., false object parts). Two possible issues stand in their way. First, the existing methods struggle to perform stably on the detection of small objects because of the complicated background. Second, most of the standard methods used handcrafted features and do not work well on the detection of objects parts that are missing. We here address the above issues and propose a new architecture with a multipatch feature pyramid network (MPFP-Net). Different from the current models that, during training, only pursue the most discriminative patches, in MPFP-Net, the patches are divided into class-affiliated subsets, in which the patches are related, and based on the primary loss function, a sequence of smooth loss functions is determined for the subsets to improve the model for collecting small object parts. To enhance the feature representation for patch selection, we introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving. The network contains bottom-up and crosswise connections to fuse the features of different scales to achieve better accuracy compared to several state-of-the-art object detection models. Also, the developed architecture is more efficient than the baselines.
Author Chanussot, Jocelyn
Shamsolmoali, Pourya
Yang, Jie
Zareapoor, Masoumeh
Zhou, Huiyu
Author_xml – sequence: 1
  givenname: Pourya
  orcidid: 0000-0002-0263-1661
  surname: Shamsolmoali
  fullname: Shamsolmoali, Pourya
  email: pshams@sjtu.edu.cn
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Jocelyn
  orcidid: 0000-0003-4817-2875
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn.chanussot@grenoble-inp.fr
  organization: GIPSA-lab, Université Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
– sequence: 3
  givenname: Masoumeh
  orcidid: 0000-0002-3991-0584
  surname: Zareapoor
  fullname: Zareapoor, Masoumeh
  email: mzarea@sjtu.edu.cn
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Huiyu
  orcidid: 0000-0003-1634-9840
  surname: Zhou
  fullname: Zhou, Huiyu
  email: hz143@leicester.ac.uk
  organization: School of Informatics, University of Leicester, Leicester, U.K
– sequence: 5
  givenname: Jie
  orcidid: 0000-0003-4801-7162
  surname: Yang
  fullname: Yang, Jie
  email: jieyang@sjtu.edu.cn
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
BackLink https://hal.science/hal-03932256$$DView record in HAL
BookMark eNptkV1r2zAUhsXoYGm3HzB2I9jVLpzpy5Z9Wbr1A7JlNB27FCfKcarUsVxJbsm_n41LB2FXB4nnObx6dUpOWt8iIR85m3POqq93V7eruWCCzyVnhVLiDZnxPC-z8XBCZoxXRSbKSrwjpzHuGOMq53pGdj_6JrkOkr2nlwipD0h_HQLs3Yb-xPTswwOtfaB_EB6aA131HYYnF3FDl-sd2kS_YRqG8y11LV12yVlo6C3ufUK6wja6dktv9rDF-J68raGJ-OFlnpHfl9_vLq6zxfLq5uJ8kVmpWcosAK82qhRS8EoxJjW3Zc1tLtZCWSmtgFKvgUutC14LyTQoW8lK14LlOVvLMyKmvX3bweEZmsZ0we0hHAxnZmzLpG2IZmzLvLQ1SF8m6R7-4R6cuT5fmPGOyUoKkRdPfGA_T2wX_GOPMZmd70M7vMmIQkilx50DpSfKBh9jwNpYl2BsKgVwzWuW8eeOs_Aj8zj__5xPk-MQ8ZWvcqFKpeRfvUCjDg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_LGRS_2022_3167530
crossref_primary_10_1109_TGRS_2022_3208618
crossref_primary_10_2478_rgg_2022_0005
crossref_primary_10_3390_drones7060402
crossref_primary_10_1109_TIM_2024_3451572
crossref_primary_10_1109_TGRS_2023_3327253
crossref_primary_10_1109_ACCESS_2022_3143847
crossref_primary_10_1109_JSTARS_2023_3265700
crossref_primary_10_1109_TGRS_2021_3112481
crossref_primary_10_1109_TGRS_2024_3354999
crossref_primary_10_1109_JSTARS_2023_3347561
crossref_primary_10_3390_rs14010206
crossref_primary_10_1007_s11042_023_14655_z
crossref_primary_10_1109_JSTARS_2022_3184637
crossref_primary_10_3390_rs14215362
crossref_primary_10_3389_fmars_2022_1073615
crossref_primary_10_1109_TGRS_2023_3328908
crossref_primary_10_1109_MGRS_2023_3312347
Cites_doi 10.1109/CVPR.2017.106
10.1109/TGRS.2017.2703621
10.1016/j.isprsjprs.2018.04.003
10.1109/CVPR.2018.00418
10.1109/MGRS.2016.2637824
10.1109/TGRS.2019.2897139
10.1109/CVPR.2019.00230
10.1109/TGRS.2019.2904868
10.1109/TGRS.2020.3016086
10.1109/LGRS.2015.2498644
10.1109/TGRS.2019.2957251
10.1109/CVPR.2016.90
10.1109/TGRS.2020.2969979
10.1109/TGRS.2019.2925070
10.1007/s10115-013-0706-y
10.1109/CVPR.2018.00141
10.1109/TGRS.2014.2363548
10.1109/TIP.2018.2878958
10.1109/CVPR.2018.00913
10.1007/s11263-013-0620-5
10.1109/TGRS.2020.3015157
10.1109/LGRS.2017.2731863
10.1109/TIP.2017.2773199
10.1109/TGRS.2016.2601622
10.1109/CVPR.2016.311
10.1109/CVPRW.2014.131
10.1016/j.isprsjprs.2016.03.014
10.1007/s11263-009-0275-4
10.24963/ijcai.2019/110
10.1109/CVPR42600.2020.01079
10.1109/TGRS.2019.2921396
10.1109/ICCV.2015.169
10.1109/CVPR.2019.00720
10.1109/LGRS.2018.2889247
10.1109/TGRS.2020.3016820
10.1109/CVPR.2017.326
10.1109/LGRS.2013.2246538
10.1609/aaai.v33i01.33014780
10.1109/TGRS.2018.2848901
10.1109/TPAMI.2016.2577031
10.1109/TIP.2019.2942505
10.1145/3355612
10.1109/TPAMI.2015.2437384
10.1109/LGRS.2019.2919755
10.1109/TGRS.2019.2963243
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
ADTOC
UNPAY
DOI 10.1109/TGRS.2021.3106442
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-0644
EndPage 13
ExternalDocumentID oai:figshare.com:article/15186348
oai:HAL:hal-03932256v1
10_1109_TGRS_2021_3106442
9524844
Genre orig-research
GrantInformation_xml – fundername: Committee of Science and Technology, Shanghai
  grantid: 19510711200
– fundername: NSFC
  grantid: 61876107; U1803261
  funderid: 10.13039/501100001809
– fundername: National Key Program of China
  grantid: 2019YFB1311503
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c370t-caa19d4823219400371c8f1c52b24c33c2a87ba137761f2307a4c9397f20550b3
IEDL.DBID UNPAY
ISSN 0196-2892
1558-0644
IngestDate Tue Aug 19 09:00:27 EDT 2025
Tue Oct 14 21:00:30 EDT 2025
Tue Aug 26 15:40:25 EDT 2025
Wed Oct 01 02:20:09 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Wed Aug 27 03:00:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Training
Multiprotocol label switching
Semantics
Object detection
Detectors
Feature extraction
Standards
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-caa19d4823219400371c8f1c52b24c33c2a87ba137761f2307a4c9397f20550b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1634-9840
0000-0003-4801-7162
0000-0002-3991-0584
0000-0003-4817-2875
0000-0002-0263-1661
OpenAccessLink https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Multi-patch_Feature_Pyramid_Network_for_Weakly_Supervised_Object_Detection_in_Optical_Remote_Sensing_Images/15186348
PQID 2623471064
PQPubID 85465
PageCount 13
ParticipantIDs crossref_primary_10_1109_TGRS_2021_3106442
hal_primary_oai_HAL_hal_03932256v1
ieee_primary_9524844
crossref_citationtrail_10_1109_TGRS_2021_3106442
proquest_journals_2623471064
unpaywall_primary_10_1109_tgrs_2021_3106442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Kingma (ref48) 2014
ref24
ref46
ref23
ref45
ref26
ref25
Oh Song (ref35) 2014
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
Ding (ref27) 2020
ref3
ref6
ref5
ref40
References_xml – ident: ref14
  doi: 10.1109/CVPR.2017.106
– ident: ref1
  doi: 10.1109/TGRS.2017.2703621
– ident: ref33
  doi: 10.1016/j.isprsjprs.2018.04.003
– ident: ref44
  doi: 10.1109/CVPR.2018.00418
– ident: ref21
  doi: 10.1109/MGRS.2016.2637824
– ident: ref30
  doi: 10.1109/TGRS.2019.2897139
– year: 2014
  ident: ref35
  article-title: On learning to localize objects with minimal supervision
  publication-title: arXiv:1403.1024
– ident: ref38
  doi: 10.1109/CVPR.2019.00230
– ident: ref19
  doi: 10.1109/TGRS.2019.2904868
– ident: ref22
  doi: 10.1109/TGRS.2020.3016086
– year: 2014
  ident: ref48
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref45
  doi: 10.1109/LGRS.2015.2498644
– ident: ref12
  doi: 10.1109/TGRS.2019.2957251
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref13
  doi: 10.1109/TGRS.2020.2969979
– ident: ref18
  doi: 10.1109/TGRS.2019.2925070
– ident: ref6
  doi: 10.1007/s10115-013-0706-y
– ident: ref34
  doi: 10.1109/CVPR.2018.00141
– ident: ref2
  doi: 10.1109/TGRS.2014.2363548
– ident: ref5
  doi: 10.1109/TIP.2018.2878958
– ident: ref15
  doi: 10.1109/CVPR.2018.00913
– ident: ref11
  doi: 10.1007/s11263-013-0620-5
– ident: ref4
  doi: 10.1109/TGRS.2020.3015157
– ident: ref28
  doi: 10.1109/LGRS.2017.2731863
– ident: ref43
  doi: 10.1109/TIP.2017.2773199
– ident: ref31
  doi: 10.1109/TGRS.2016.2601622
– ident: ref36
  doi: 10.1109/CVPR.2016.311
– ident: ref10
  doi: 10.1109/CVPRW.2014.131
– ident: ref3
  doi: 10.1016/j.isprsjprs.2016.03.014
– ident: ref39
  doi: 10.1007/s11263-009-0275-4
– ident: ref40
  doi: 10.24963/ijcai.2019/110
– ident: ref41
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref32
  doi: 10.1109/TGRS.2019.2921396
– ident: ref25
  doi: 10.1109/ICCV.2015.169
– ident: ref16
  doi: 10.1109/CVPR.2019.00720
– ident: ref46
  doi: 10.1109/LGRS.2018.2889247
– year: 2020
  ident: ref27
  article-title: Weakly supervised attention pyramid convolutional neural network for fine-grained visual classification
  publication-title: arXiv:2002.03353
– ident: ref20
  doi: 10.1109/TGRS.2020.3016820
– ident: ref37
  doi: 10.1109/CVPR.2017.326
– ident: ref9
  doi: 10.1109/LGRS.2013.2246538
– ident: ref42
  doi: 10.1609/aaai.v33i01.33014780
– ident: ref17
  doi: 10.1109/TGRS.2018.2848901
– ident: ref26
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref7
  doi: 10.1109/TIP.2019.2942505
– ident: ref8
  doi: 10.1145/3355612
– ident: ref24
  doi: 10.1109/TPAMI.2015.2437384
– ident: ref29
  doi: 10.1109/LGRS.2019.2919755
– ident: ref47
  doi: 10.1109/TGRS.2019.2963243
SSID ssj0014517
Score 2.5356154
Snippet Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously...
SourceID unpaywall
hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computer Science
Detection
Detectors
Feature extraction
Feature fusion
Methods
multiple patch learning (MPL)
Multiprotocol label switching
multiscale object detection
Object detection
Object recognition
Patches (structures)
Remote sensing
remote sensing images (RSIs)
Semantics
Signal and Image Processing
Training
Transition layers
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6tkxDwMGADkTGQhXgC0sWO8-txAkZBsKF1E3uLHMfZxrosahJQ-eu5c9JoBYR4qyLHdXKXu-_O350BXsQ6CIqQ524eaONK9KFkBxNXe6EJTaGKILME2YNwciI_ngana_B6qIUxxljymRnTT7uXn1_rllJlu0kgZCzlCEZRHHa1WsOOgQx4XxoduhhEiH4Hk3vJ7vH7oylGgoJjgIoeWIoVHzQ6JwakPVplBWXebstKLX6o2eyGw9m_B5-XS-14JpfjtsnG-udvXRz_91nuw0aPPNlepyoPYM2Um3D3Rj_CTbhl-aC63oJvtjC3Qjt9zggltnPDvizm6uoiZwcdc5wh3GVfjbqcLdi0rcjm1CZnhxlldthb01iSV8kuSnZY2Yw5OzKoGIZNiTRfnrEPV2jM6odwsv_u-M3E7Y9lcLUfeY2rleJJLmPEYpyOVfcjruOC60BkQmrf10LFUaaolWHICyKaK6kTxD2F8DAeyvxHsF5el-YxMBMlsTY4T5wLWUSeKrTGqcNcxxzfWOSAtxRUqvue5XR0xiy1sYuXpCTblGSb9rJ14OVwS9U17PjX4Oco_WEctdqe7H1K6RrVLKOtC79zB7ZIfMOoXnIO7CyVJe2_-zoViCbR3ePkDrwaFOiPhTRn83plIdt__48ncEdQuYVN-ezAejNvzVMEQU32zGr_L-crAHg
  priority: 102
  providerName: IEEE
Title Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images
URI https://ieeexplore.ieee.org/document/9524844
https://www.proquest.com/docview/2623471064
https://hal.science/hal-03932256
https://figshare.com/articles/journal_contribution/Multi-patch_Feature_Pyramid_Network_for_Weakly_Supervised_Object_Detection_in_Optical_Remote_Sensing_Images/15186348
UnpaywallVersion submittedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 1558-0644
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLW2Tgh44GMbIjAmC_EEypoPJ3EeK2AUhLppXcV4unIcpy3rQtSmoPKH-Cv8LK4dN6wgIfHIa-JYR9a9vsfOufcS8ozLKCpiP3fzSCqXYQzV-2DqSi9WsSpEEWVGIDuI-yP27iK62CLf17kwxXS8mIh5c5G01oZ17bqCkW_bPlBdk6HqVrhjTUDzpeVcwelqLq6mOQwaDTUg8YMPSlzOVjBcVtr7FiqHk0zfccArVRu5UwnTEk4qc3cMZwqXSMFQy8fLMby9QrdedDEu8jhkfJvsxBGS_g7ZGQ1Oex-bZOzYxWOL-a8aRdzFIM_s_1PfS7v1eK7Lggc-Ho_1q2AjAm5PtP7SNHbZ4Lg3l2UlVl_FbHYt3B3fJT_WC9WoXC6PlnV2JL_9VkPyP1jJe-SOpdy014C7T7ZUuUtuXyvEuEtuGCGsXOyRTwalAUktSGpBUguSIkjagKS_QNIGJG1B0mlJLUjagKQWJG1A7pPR8evzl33X9qNwZZh4tSuF8NOccSShvu4nHya-5IUvoyALmAxDGQieZELXcIz9QivsBZMpEr4i8PAgmIUPSKf8XKqHhKok5VLhPDwPWJF4opASp45zyX00hcQh3tpGQNpi7bpnyAzMoc1L4fzN2RC0WYE1K4c8bz-pmkolfxv8FA2vHadrjPd770E_08nauMnHX3yH7Gm7bEelUcA4Yw45WNspWHNaQIA0GnkOTu6QF63t_gFEO8MGkEf_NPoxuRXo9BNzBXZAOvV8qZ4gKayzQ5O5eWjd8ifrjG1H
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ2jsgY8NRGCAhXgC0sWOnY_HCRgddB1aO21vkeM4--qyqklA5a_n7KTRCgjxFkWO4-TO9-Xf3QG8iZQQeUAzNxNKuxx1qJGDsau8QAc6l7lILUB2GPSP-ZdTcboC77tcGK21BZ_pnrm0Z_nZjapNqGwnFoxHnK_CHcE5F022VndmwAVtk6MDF90I1p5hUi_eGX8-GqEvyCi6qKiDOVvSQqvnBgNpm6ss2ZnrdTGV8x9yMrmlcvYewMFisQ3S5KpXV2lP_fytjuP_fs1DuN_anmS3YZZHsKKLTdi4VZFwE-5aRKgqt-DSpuZOUVKfE2Mn1jNNvs1n8voiI8MGO07Q4CUnWl5N5mRUT43UKXVGDlMT2yEfdWVhXgW5KMjh1MbMyZFG1tBkZGDzxRnZv0ZxVj6G471P4w99t23M4Co_9CpXSUnjjEdojVHTWN0PqYpyqgRLGVe-r5iMwlSaYoYBzQ3UXHIVo-WTMw89otR_AmvFTaGfAtFhHCmN80QZ43noyVwpnDrIVETxj4UOeAtCJaqtWm6aZ0wS6714cWJomxjaJi1tHXjbPTJtSnb8a_BrpH43zhTb7u8OEnPPZC2jtAu-Uwe2DPm6US3lHNheMEvS7vwyYWhPosLHyR141zHQHwupzmbl0kKe_f0dr2C9Pz4YJIP94dfncI-Z5AsbANqGtWpW6xdoElXpS7sTfgF3jAPF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5tnRDwwI8NRGEgC_EEypofTuI8VsAoCHXTuonxdHIcpy3rQtWmoPIP8a_wZ3F23LKChMQjr4ljfbLufJ-d7-4AngkVx2USFF4RK-1xiqFmH8w85Sc60aUs49wKZPtJ74y_O4_Pt-D7KhemHA_nIzlrLpJW2rCOW1e08m3XB6pjM1S9Ke1YIzR8aTHTeLycyctxgf1GQ41E_PCDlheTJQ4WU-N9c13gUW7uOPCVrq3cqcJxhUdTe3eMJ5qWSOPAyMerIb69JLeedyguiiTiYht2kphIfwt2zvrH3Y9NMnbi0bHF_leNY-FRkOfu_2ngZ516ODNlwcOAjsfmVbgRAbdHRn9pG7tscNzri2oql1_lZHIl3B3ehh-rhWpULhcHizo_UN9-qyH5H6zkHbjlKDfrNuDuwpauduHmlUKMu3DNCmHVfA8-WZQWJHMgmQPJHEhGIFkDkv0CyRqQbA2SjSvmQLIGJHMgWQPyHpwdvj592fNcPwpPRalfe0rKICu4IBIamH7yURooUQYqDvOQqyhSoRRpLk0NxyQojcJecpUR4StDnw6CeXQfWtXnSj8AptNMKE3ziCLkZerLUimaOimUCMgU0jb4KxtB5Yq1m54hE7SHNj_D0zcnAzRmhc6s2vB8_cm0qVTyt8FPyfDW40yN8V73PZpnJlmbNvnkS9CGPWOX61FZHHLBeRv2V3aKzpzmGBKNJp5Dk7fhxdp2_wBinGEDyMN_Gv0IboQm_cRege1Dq54t9GMihXX-xDnkT2FVbEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multipatch+Feature+Pyramid+Network+for+Weakly+Supervised+Object+Detection+in+Optical+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Shamsolmoali%2C+Pourya&rft.au=Chanussot%2C+Jocelyn&rft.au=Zareapoor%2C+Masoumeh&rft.au=Zhou%2C+Huiyu&rft.date=2022-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=60&rft_id=info:doi/10.1109%2FTGRS.2021.3106442&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03932256v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon