Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images
Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 1558-0644 |
| DOI | 10.1109/TGRS.2021.3106442 |
Cover
| Abstract | Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak performance when analyzing small ones or getting stuck in the local minima (e.g., false object parts). Two possible issues stand in their way. First, the existing methods struggle to perform stably on the detection of small objects because of the complicated background. Second, most of the standard methods used handcrafted features and do not work well on the detection of objects parts that are missing. We here address the above issues and propose a new architecture with a multipatch feature pyramid network (MPFP-Net). Different from the current models that, during training, only pursue the most discriminative patches, in MPFP-Net, the patches are divided into class-affiliated subsets, in which the patches are related, and based on the primary loss function, a sequence of smooth loss functions is determined for the subsets to improve the model for collecting small object parts. To enhance the feature representation for patch selection, we introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving. The network contains bottom-up and crosswise connections to fuse the features of different scales to achieve better accuracy compared to several state-of-the-art object detection models. Also, the developed architecture is more efficient than the baselines. |
|---|---|
| AbstractList | Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously learn object locations and detection. Even though the established approaches well perform for the objects of regular sizes, they achieve weak performance when analyzing small ones or getting stuck in the local minima (e.g., false object parts). Two possible issues stand in their way. First, the existing methods struggle to perform stably on the detection of small objects because of the complicated background. Second, most of the standard methods used handcrafted features and do not work well on the detection of objects parts that are missing. We here address the above issues and propose a new architecture with a multipatch feature pyramid network (MPFP-Net). Different from the current models that, during training, only pursue the most discriminative patches, in MPFP-Net, the patches are divided into class-affiliated subsets, in which the patches are related, and based on the primary loss function, a sequence of smooth loss functions is determined for the subsets to improve the model for collecting small object parts. To enhance the feature representation for patch selection, we introduce an effective method to regularize the residual values and make the fusion transition layers strictly norm-preserving. The network contains bottom-up and crosswise connections to fuse the features of different scales to achieve better accuracy compared to several state-of-the-art object detection models. Also, the developed architecture is more efficient than the baselines. |
| Author | Chanussot, Jocelyn Shamsolmoali, Pourya Yang, Jie Zareapoor, Masoumeh Zhou, Huiyu |
| Author_xml | – sequence: 1 givenname: Pourya orcidid: 0000-0002-0263-1661 surname: Shamsolmoali fullname: Shamsolmoali, Pourya email: pshams@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Jocelyn orcidid: 0000-0003-4817-2875 surname: Chanussot fullname: Chanussot, Jocelyn email: jocelyn.chanussot@grenoble-inp.fr organization: GIPSA-lab, Université Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France – sequence: 3 givenname: Masoumeh orcidid: 0000-0002-3991-0584 surname: Zareapoor fullname: Zareapoor, Masoumeh email: mzarea@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Huiyu orcidid: 0000-0003-1634-9840 surname: Zhou fullname: Zhou, Huiyu email: hz143@leicester.ac.uk organization: School of Informatics, University of Leicester, Leicester, U.K – sequence: 5 givenname: Jie orcidid: 0000-0003-4801-7162 surname: Yang fullname: Yang, Jie email: jieyang@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China |
| BackLink | https://hal.science/hal-03932256$$DView record in HAL |
| BookMark | eNptkV1r2zAUhsXoYGm3HzB2I9jVLpzpy5Z9Wbr1A7JlNB27FCfKcarUsVxJbsm_n41LB2FXB4nnObx6dUpOWt8iIR85m3POqq93V7eruWCCzyVnhVLiDZnxPC-z8XBCZoxXRSbKSrwjpzHuGOMq53pGdj_6JrkOkr2nlwipD0h_HQLs3Yb-xPTswwOtfaB_EB6aA131HYYnF3FDl-sd2kS_YRqG8y11LV12yVlo6C3ufUK6wja6dktv9rDF-J68raGJ-OFlnpHfl9_vLq6zxfLq5uJ8kVmpWcosAK82qhRS8EoxJjW3Zc1tLtZCWSmtgFKvgUutC14LyTQoW8lK14LlOVvLMyKmvX3bweEZmsZ0we0hHAxnZmzLpG2IZmzLvLQ1SF8m6R7-4R6cuT5fmPGOyUoKkRdPfGA_T2wX_GOPMZmd70M7vMmIQkilx50DpSfKBh9jwNpYl2BsKgVwzWuW8eeOs_Aj8zj__5xPk-MQ8ZWvcqFKpeRfvUCjDg |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_LGRS_2022_3167530 crossref_primary_10_1109_TGRS_2022_3208618 crossref_primary_10_2478_rgg_2022_0005 crossref_primary_10_3390_drones7060402 crossref_primary_10_1109_TIM_2024_3451572 crossref_primary_10_1109_TGRS_2023_3327253 crossref_primary_10_1109_ACCESS_2022_3143847 crossref_primary_10_1109_JSTARS_2023_3265700 crossref_primary_10_1109_TGRS_2021_3112481 crossref_primary_10_1109_TGRS_2024_3354999 crossref_primary_10_1109_JSTARS_2023_3347561 crossref_primary_10_3390_rs14010206 crossref_primary_10_1007_s11042_023_14655_z crossref_primary_10_1109_JSTARS_2022_3184637 crossref_primary_10_3390_rs14215362 crossref_primary_10_3389_fmars_2022_1073615 crossref_primary_10_1109_TGRS_2023_3328908 crossref_primary_10_1109_MGRS_2023_3312347 |
| Cites_doi | 10.1109/CVPR.2017.106 10.1109/TGRS.2017.2703621 10.1016/j.isprsjprs.2018.04.003 10.1109/CVPR.2018.00418 10.1109/MGRS.2016.2637824 10.1109/TGRS.2019.2897139 10.1109/CVPR.2019.00230 10.1109/TGRS.2019.2904868 10.1109/TGRS.2020.3016086 10.1109/LGRS.2015.2498644 10.1109/TGRS.2019.2957251 10.1109/CVPR.2016.90 10.1109/TGRS.2020.2969979 10.1109/TGRS.2019.2925070 10.1007/s10115-013-0706-y 10.1109/CVPR.2018.00141 10.1109/TGRS.2014.2363548 10.1109/TIP.2018.2878958 10.1109/CVPR.2018.00913 10.1007/s11263-013-0620-5 10.1109/TGRS.2020.3015157 10.1109/LGRS.2017.2731863 10.1109/TIP.2017.2773199 10.1109/TGRS.2016.2601622 10.1109/CVPR.2016.311 10.1109/CVPRW.2014.131 10.1016/j.isprsjprs.2016.03.014 10.1007/s11263-009-0275-4 10.24963/ijcai.2019/110 10.1109/CVPR42600.2020.01079 10.1109/TGRS.2019.2921396 10.1109/ICCV.2015.169 10.1109/CVPR.2019.00720 10.1109/LGRS.2018.2889247 10.1109/TGRS.2020.3016820 10.1109/CVPR.2017.326 10.1109/LGRS.2013.2246538 10.1609/aaai.v33i01.33014780 10.1109/TGRS.2018.2848901 10.1109/TPAMI.2016.2577031 10.1109/TIP.2019.2942505 10.1145/3355612 10.1109/TPAMI.2015.2437384 10.1109/LGRS.2019.2919755 10.1109/TGRS.2019.2963243 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC ADTOC UNPAY |
| DOI | 10.1109/TGRS.2021.3106442 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Computer Science |
| EISSN | 1558-0644 |
| EndPage | 13 |
| ExternalDocumentID | oai:figshare.com:article/15186348 oai:HAL:hal-03932256v1 10_1109_TGRS_2021_3106442 9524844 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Committee of Science and Technology, Shanghai grantid: 19510711200 – fundername: NSFC grantid: 61876107; U1803261 funderid: 10.13039/501100001809 – fundername: National Key Program of China grantid: 2019YFB1311503 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c370t-caa19d4823219400371c8f1c52b24c33c2a87ba137761f2307a4c9397f20550b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0196-2892 1558-0644 |
| IngestDate | Tue Aug 19 09:00:27 EDT 2025 Tue Oct 14 21:00:30 EDT 2025 Tue Aug 26 15:40:25 EDT 2025 Wed Oct 01 02:20:09 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Aug 27 03:00:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Training Multiprotocol label switching Semantics Object detection Detectors Feature extraction Standards |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-caa19d4823219400371c8f1c52b24c33c2a87ba137761f2307a4c9397f20550b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1634-9840 0000-0003-4801-7162 0000-0002-3991-0584 0000-0003-4817-2875 0000-0002-0263-1661 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/Multi-patch_Feature_Pyramid_Network_for_Weakly_Supervised_Object_Detection_in_Optical_Remote_Sensing_Images/15186348 |
| PQID | 2623471064 |
| PQPubID | 85465 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TGRS_2021_3106442 hal_primary_oai_HAL_hal_03932256v1 ieee_primary_9524844 crossref_citationtrail_10_1109_TGRS_2021_3106442 proquest_journals_2623471064 unpaywall_primary_10_1109_tgrs_2021_3106442 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Kingma (ref48) 2014 ref24 ref46 ref23 ref45 ref26 ref25 Oh Song (ref35) 2014 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref29 ref8 ref7 ref9 ref4 Ding (ref27) 2020 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref14 doi: 10.1109/CVPR.2017.106 – ident: ref1 doi: 10.1109/TGRS.2017.2703621 – ident: ref33 doi: 10.1016/j.isprsjprs.2018.04.003 – ident: ref44 doi: 10.1109/CVPR.2018.00418 – ident: ref21 doi: 10.1109/MGRS.2016.2637824 – ident: ref30 doi: 10.1109/TGRS.2019.2897139 – year: 2014 ident: ref35 article-title: On learning to localize objects with minimal supervision publication-title: arXiv:1403.1024 – ident: ref38 doi: 10.1109/CVPR.2019.00230 – ident: ref19 doi: 10.1109/TGRS.2019.2904868 – ident: ref22 doi: 10.1109/TGRS.2020.3016086 – year: 2014 ident: ref48 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref45 doi: 10.1109/LGRS.2015.2498644 – ident: ref12 doi: 10.1109/TGRS.2019.2957251 – ident: ref23 doi: 10.1109/CVPR.2016.90 – ident: ref13 doi: 10.1109/TGRS.2020.2969979 – ident: ref18 doi: 10.1109/TGRS.2019.2925070 – ident: ref6 doi: 10.1007/s10115-013-0706-y – ident: ref34 doi: 10.1109/CVPR.2018.00141 – ident: ref2 doi: 10.1109/TGRS.2014.2363548 – ident: ref5 doi: 10.1109/TIP.2018.2878958 – ident: ref15 doi: 10.1109/CVPR.2018.00913 – ident: ref11 doi: 10.1007/s11263-013-0620-5 – ident: ref4 doi: 10.1109/TGRS.2020.3015157 – ident: ref28 doi: 10.1109/LGRS.2017.2731863 – ident: ref43 doi: 10.1109/TIP.2017.2773199 – ident: ref31 doi: 10.1109/TGRS.2016.2601622 – ident: ref36 doi: 10.1109/CVPR.2016.311 – ident: ref10 doi: 10.1109/CVPRW.2014.131 – ident: ref3 doi: 10.1016/j.isprsjprs.2016.03.014 – ident: ref39 doi: 10.1007/s11263-009-0275-4 – ident: ref40 doi: 10.24963/ijcai.2019/110 – ident: ref41 doi: 10.1109/CVPR42600.2020.01079 – ident: ref32 doi: 10.1109/TGRS.2019.2921396 – ident: ref25 doi: 10.1109/ICCV.2015.169 – ident: ref16 doi: 10.1109/CVPR.2019.00720 – ident: ref46 doi: 10.1109/LGRS.2018.2889247 – year: 2020 ident: ref27 article-title: Weakly supervised attention pyramid convolutional neural network for fine-grained visual classification publication-title: arXiv:2002.03353 – ident: ref20 doi: 10.1109/TGRS.2020.3016820 – ident: ref37 doi: 10.1109/CVPR.2017.326 – ident: ref9 doi: 10.1109/LGRS.2013.2246538 – ident: ref42 doi: 10.1609/aaai.v33i01.33014780 – ident: ref17 doi: 10.1109/TGRS.2018.2848901 – ident: ref26 doi: 10.1109/TPAMI.2016.2577031 – ident: ref7 doi: 10.1109/TIP.2019.2942505 – ident: ref8 doi: 10.1145/3355612 – ident: ref24 doi: 10.1109/TPAMI.2015.2437384 – ident: ref29 doi: 10.1109/LGRS.2019.2919755 – ident: ref47 doi: 10.1109/TGRS.2019.2963243 |
| SSID | ssj0014517 |
| Score | 2.5356154 |
| Snippet | Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and the models are required to simultaneously... |
| SourceID | unpaywall hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Computer Science Detection Detectors Feature extraction Feature fusion Methods multiple patch learning (MPL) Multiprotocol label switching multiscale object detection Object detection Object recognition Patches (structures) Remote sensing remote sensing images (RSIs) Semantics Signal and Image Processing Training Transition layers |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6tkxDwMGADkTGQhXgC0sWO8-txAkZBsKF1E3uLHMfZxrosahJQ-eu5c9JoBYR4qyLHdXKXu-_O350BXsQ6CIqQ524eaONK9KFkBxNXe6EJTaGKILME2YNwciI_ngana_B6qIUxxljymRnTT7uXn1_rllJlu0kgZCzlCEZRHHa1WsOOgQx4XxoduhhEiH4Hk3vJ7vH7oylGgoJjgIoeWIoVHzQ6JwakPVplBWXebstKLX6o2eyGw9m_B5-XS-14JpfjtsnG-udvXRz_91nuw0aPPNlepyoPYM2Um3D3Rj_CTbhl-aC63oJvtjC3Qjt9zggltnPDvizm6uoiZwcdc5wh3GVfjbqcLdi0rcjm1CZnhxlldthb01iSV8kuSnZY2Yw5OzKoGIZNiTRfnrEPV2jM6odwsv_u-M3E7Y9lcLUfeY2rleJJLmPEYpyOVfcjruOC60BkQmrf10LFUaaolWHICyKaK6kTxD2F8DAeyvxHsF5el-YxMBMlsTY4T5wLWUSeKrTGqcNcxxzfWOSAtxRUqvue5XR0xiy1sYuXpCTblGSb9rJ14OVwS9U17PjX4Oco_WEctdqe7H1K6RrVLKOtC79zB7ZIfMOoXnIO7CyVJe2_-zoViCbR3ePkDrwaFOiPhTRn83plIdt__48ncEdQuYVN-ezAejNvzVMEQU32zGr_L-crAHg priority: 102 providerName: IEEE |
| Title | Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images |
| URI | https://ieeexplore.ieee.org/document/9524844 https://www.proquest.com/docview/2623471064 https://hal.science/hal-03932256 https://figshare.com/articles/journal_contribution/Multi-patch_Feature_Pyramid_Network_for_Weakly_Supervised_Object_Detection_in_Optical_Remote_Sensing_Images/15186348 |
| UnpaywallVersion | submittedVersion |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 1558-0644 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLW2Tgh44GMbIjAmC_EEypoPJ3EeK2AUhLppXcV4unIcpy3rQtSmoPKH-Cv8LK4dN6wgIfHIa-JYR9a9vsfOufcS8ozLKCpiP3fzSCqXYQzV-2DqSi9WsSpEEWVGIDuI-yP27iK62CLf17kwxXS8mIh5c5G01oZ17bqCkW_bPlBdk6HqVrhjTUDzpeVcwelqLq6mOQwaDTUg8YMPSlzOVjBcVtr7FiqHk0zfccArVRu5UwnTEk4qc3cMZwqXSMFQy8fLMby9QrdedDEu8jhkfJvsxBGS_g7ZGQ1Oex-bZOzYxWOL-a8aRdzFIM_s_1PfS7v1eK7Lggc-Ho_1q2AjAm5PtP7SNHbZ4Lg3l2UlVl_FbHYt3B3fJT_WC9WoXC6PlnV2JL_9VkPyP1jJe-SOpdy014C7T7ZUuUtuXyvEuEtuGCGsXOyRTwalAUktSGpBUguSIkjagKS_QNIGJG1B0mlJLUjagKQWJG1A7pPR8evzl33X9qNwZZh4tSuF8NOccSShvu4nHya-5IUvoyALmAxDGQieZELXcIz9QivsBZMpEr4i8PAgmIUPSKf8XKqHhKok5VLhPDwPWJF4opASp45zyX00hcQh3tpGQNpi7bpnyAzMoc1L4fzN2RC0WYE1K4c8bz-pmkolfxv8FA2vHadrjPd770E_08nauMnHX3yH7Gm7bEelUcA4Yw45WNspWHNaQIA0GnkOTu6QF63t_gFEO8MGkEf_NPoxuRXo9BNzBXZAOvV8qZ4gKayzQ5O5eWjd8ifrjG1H |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ2jsgY8NRGCAhXgC0sWOnY_HCRgddB1aO21vkeM4--qyqklA5a_n7KTRCgjxFkWO4-TO9-Xf3QG8iZQQeUAzNxNKuxx1qJGDsau8QAc6l7lILUB2GPSP-ZdTcboC77tcGK21BZ_pnrm0Z_nZjapNqGwnFoxHnK_CHcE5F022VndmwAVtk6MDF90I1p5hUi_eGX8-GqEvyCi6qKiDOVvSQqvnBgNpm6ss2ZnrdTGV8x9yMrmlcvYewMFisQ3S5KpXV2lP_fytjuP_fs1DuN_anmS3YZZHsKKLTdi4VZFwE-5aRKgqt-DSpuZOUVKfE2Mn1jNNvs1n8voiI8MGO07Q4CUnWl5N5mRUT43UKXVGDlMT2yEfdWVhXgW5KMjh1MbMyZFG1tBkZGDzxRnZv0ZxVj6G471P4w99t23M4Co_9CpXSUnjjEdojVHTWN0PqYpyqgRLGVe-r5iMwlSaYoYBzQ3UXHIVo-WTMw89otR_AmvFTaGfAtFhHCmN80QZ43noyVwpnDrIVETxj4UOeAtCJaqtWm6aZ0wS6714cWJomxjaJi1tHXjbPTJtSnb8a_BrpH43zhTb7u8OEnPPZC2jtAu-Uwe2DPm6US3lHNheMEvS7vwyYWhPosLHyR141zHQHwupzmbl0kKe_f0dr2C9Pz4YJIP94dfncI-Z5AsbANqGtWpW6xdoElXpS7sTfgF3jAPF |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5tnRDwwI8NRGEgC_EEypofTuI8VsAoCHXTuonxdHIcpy3rQtWmoPIP8a_wZ3F23LKChMQjr4ljfbLufJ-d7-4AngkVx2USFF4RK-1xiqFmH8w85Sc60aUs49wKZPtJ74y_O4_Pt-D7KhemHA_nIzlrLpJW2rCOW1e08m3XB6pjM1S9Ke1YIzR8aTHTeLycyctxgf1GQ41E_PCDlheTJQ4WU-N9c13gUW7uOPCVrq3cqcJxhUdTe3eMJ5qWSOPAyMerIb69JLeedyguiiTiYht2kphIfwt2zvrH3Y9NMnbi0bHF_leNY-FRkOfu_2ngZ516ODNlwcOAjsfmVbgRAbdHRn9pG7tscNzri2oql1_lZHIl3B3ehh-rhWpULhcHizo_UN9-qyH5H6zkHbjlKDfrNuDuwpauduHmlUKMu3DNCmHVfA8-WZQWJHMgmQPJHEhGIFkDkv0CyRqQbA2SjSvmQLIGJHMgWQPyHpwdvj592fNcPwpPRalfe0rKICu4IBIamH7yURooUQYqDvOQqyhSoRRpLk0NxyQojcJecpUR4StDnw6CeXQfWtXnSj8AptNMKE3ziCLkZerLUimaOimUCMgU0jb4KxtB5Yq1m54hE7SHNj_D0zcnAzRmhc6s2vB8_cm0qVTyt8FPyfDW40yN8V73PZpnJlmbNvnkS9CGPWOX61FZHHLBeRv2V3aKzpzmGBKNJp5Dk7fhxdp2_wBinGEDyMN_Gv0IboQm_cRege1Dq54t9GMihXX-xDnkT2FVbEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multipatch+Feature+Pyramid+Network+for+Weakly+Supervised+Object+Detection+in+Optical+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Shamsolmoali%2C+Pourya&rft.au=Chanussot%2C+Jocelyn&rft.au=Zareapoor%2C+Masoumeh&rft.au=Zhou%2C+Huiyu&rft.date=2022-01-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=60&rft_id=info:doi/10.1109%2FTGRS.2021.3106442&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03932256v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |