Interpolation restricted to decreasing functions and Lorentz spaces

For the real interpolation method, we identify the interpolated spaces of couples of classical Lorentz spaces through interpolation of the corresponding weighted Lp-spaces restricted to decreasing functions.

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 42; no. 2; pp. 243 - 256
Main Authors Cerdà, Joan, Martín, Joaquim
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.1999
Online AccessGet full text
ISSN0013-0915
1464-3839
1464-3839
DOI10.1017/S0013091500020228

Cover

Abstract For the real interpolation method, we identify the interpolated spaces of couples of classical Lorentz spaces through interpolation of the corresponding weighted Lp-spaces restricted to decreasing functions.
AbstractList For the real interpolation method, we identify the interpolated spaces of couples of classical Lorentz spaces through interpolation of the corresponding weighted Lp-spaces restricted to decreasing functions.
For the real interpolation method, we identify the interpolated spaces of couples of classical Lorentz spaces through interpolation of the corresponding weighted L p -spaces restricted to decreasing functions.
Author Cerdà, Joan
Martín, Joaquim
Author_xml – sequence: 1
  givenname: Joan
  surname: Cerdà
  fullname: Cerdà, Joan
  email: cerda@cerber.mat.ub.es
  organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, E-08071 Barcelona, Spain, E-mail addresses: cerda@cerber.mat.ub.es, jmartin@cerber.mat.ub.es
– sequence: 2
  givenname: Joaquim
  surname: Martín
  fullname: Martín, Joaquim
  email: cerda@cerber.mat.ub.es
  organization: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, E-08071 Barcelona, Spain, E-mail addresses: cerda@cerber.mat.ub.es, jmartin@cerber.mat.ub.es
BookMark eNp9kN9OwjAYxRuDiYA-gHd7gWn_sa6XZhHEYIyi103XdaQ42qUtUXx6NyFeEOLVd3HO7zs5ZwQG1lkNwDWCNwgidruEEBHI0QRCiCHG-RkYIprRlOSED8Cwl9NevwCjENadi7EJGoJibqP2rWtkNM4mXofojYq6SqJLKq28lsHYVVJvreodIZG2ShbOaxu_k9BKpcMlOK9lE_TV4Y7B-_T-rXhIF8-zeXG3SBVhMKaKUpQjgjKFJeS5JqziGStrglRJkcKUyKpUiiuWZVCXDOOK0M5DKC55mTEyBnj_d2tbufuUTSNabzbS7wSCop9BhOMZOojtIeVdCF7XQpn4WzZ6aZo_cnmCREfkcdopJt0zJkT99QdI_yG6AmwistmLILOCT58eoXjt_OSQITelN9VKi7XbetvN-E_KDx9Rj4U
CitedBy_id crossref_primary_10_1016_S0252_9602_10_60112_9
crossref_primary_10_1007_s10474_011_0159_2
crossref_primary_10_1186_1029_242X_2013_371
crossref_primary_10_1002_1522_2616_200101_221_1_5__AID_MANA5_3_0_CO_2_S
crossref_primary_10_1002_mana_200310237
crossref_primary_10_1007_s00041_013_9278_1
crossref_primary_10_1007_s11425_012_4397_8
Cites_doi 10.1016/0022-1236(72)90068-7
10.1515/form.1992.4.135
10.4153/CJM-1991-065-9
10.4064/sm-96-2-145-158
10.4153/CJM-1993-064-2
10.1006/jfan.1993.1042
10.1007/978-3-642-66451-9
10.1002/mana.19780860103
10.7146/math.scand.a-12585
10.1112/jlms/s2-48.3.465
10.4064/sm-41-2-169-181
10.7146/math.scand.a-11754
10.1090/S0002-9939-98-04273-7
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 1999
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 1999
DBID BSCLL
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1017/S0013091500020228
DatabaseName Istex
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3839
EndPage 256
ExternalDocumentID 10.1017/s0013091500020228
10_1017_S0013091500020228
ark_67375_6GQ_3GC9FMJ0_R
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOJD
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c370t-c44181316c2a098e37d967bf31cb41c243adbcc9c7660eb722d347d9342b9b673
IEDL.DBID UNPAY
ISSN 0013-0915
1464-3839
IngestDate Tue Aug 19 21:53:36 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Wed Oct 01 04:27:00 EDT 2025
Sun Aug 31 06:49:26 EDT 2025
Wed Mar 13 05:46:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-c44181316c2a098e37d967bf31cb41c243adbcc9c7660eb722d347d9342b9b673
Notes ArticleID:02022
ark:/67375/6GQ-3GC9FMJ0-R
istex:DCAC512745A15336D128AEBA681B568F9A9211BC
PII:S0013091500020228
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/866B6825C4EA209FD77C7E8224B27A63/S0013091500020228a.pdf/div-class-title-interpolation-restricted-to-decreasing-functions-and-lorentz-spaces-a-href-fn01-ref-type-fn-a-div.pdf
PageCount 14
ParticipantIDs unpaywall_primary_10_1017_s0013091500020228
crossref_citationtrail_10_1017_S0013091500020228
crossref_primary_10_1017_S0013091500020228
istex_primary_ark_67375_6GQ_3GC9FMJ0_R
cambridge_journals_10_1017_S0013091500020228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-06-01
PublicationDateYYYYMMDD 1999-06-01
PublicationDate_xml – month: 06
  year: 1999
  text: 1999-06-01
  day: 01
PublicationDecade 1990
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 1999
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0013091500020228_ref018
Hudzik (S0013091500020228_ref013) 1990; 110
Krein (S0013091500020228_ref014) 1982; 54
S0013091500020228_ref007
S0013091500020228_ref006
Bennett (S0013091500020228_ref003) 1988
S0013091500020228_ref017
S0013091500020228_ref004
S0013091500020228_ref012
S0013091500020228_ref001
Maligranda (S0013091500020228_ref015) 1987; 35
Brudny (S0013091500020228_ref005) 1991
Merucci (S0013091500020228_ref016) 1982; 295
S0013091500020228_ref009
S0013091500020228_ref019
S0013091500020228_ref008
S0013091500020228_ref021
S0013091500020228_ref010
Ariño (S0013091500020228_ref002) 1990; 320
S0013091500020228_ref020
García del Amo (S0013091500020228_ref011) 1993; 44
References_xml – ident: S0013091500020228_ref020
  doi: 10.1016/0022-1236(72)90068-7
– ident: S0013091500020228_ref017
  doi: 10.1515/form.1992.4.135
– ident: S0013091500020228_ref001
  doi: 10.4153/CJM-1991-065-9
– ident: S0013091500020228_ref019
  doi: 10.4064/sm-96-2-145-158
– volume-title: Interpolation of Operators
  year: 1988
  ident: S0013091500020228_ref003
– ident: S0013091500020228_ref006
  doi: 10.4153/CJM-1993-064-2
– volume: 295
  start-page: 427
  year: 1982
  ident: S0013091500020228_ref016
  article-title: Interpolation réelle avec fonction paramètre: réitération et applications aux espaces Λp(Φ) (0 < p ≤∞)
  publication-title: C. R. Acad. Sci. Paris
– volume: 54
  year: 1982
  ident: S0013091500020228_ref014
  publication-title: Interpolation of Linear Operators
– ident: S0013091500020228_ref007
  doi: 10.1006/jfan.1993.1042
– ident: S0013091500020228_ref004
  doi: 10.1007/978-3-642-66451-9
– volume: 44
  start-page: 115
  year: 1993
  ident: S0013091500020228_ref011
  article-title: On reverse Hardy's inequality
  publication-title: Collect. Math.
– volume: 320
  start-page: 727
  year: 1990
  ident: S0013091500020228_ref002
  article-title: Maximal functions on classical Lorentz spaces and Hardy's inequality for nonincreasing functions
  publication-title: Trans. Amer. Math. Soc.
– ident: S0013091500020228_ref010
  doi: 10.1002/mana.19780860103
– ident: S0013091500020228_ref008
  doi: 10.7146/math.scand.a-12585
– volume-title: Interpolation Functors and Interpolation Spaces
  year: 1991
  ident: S0013091500020228_ref005
– ident: S0013091500020228_ref021
  doi: 10.1112/jlms/s2-48.3.465
– ident: S0013091500020228_ref018
  doi: 10.4064/sm-41-2-169-181
– ident: S0013091500020228_ref012
  doi: 10.7146/math.scand.a-11754
– volume: 110
  start-page: 89
  year: 1990
  ident: S0013091500020228_ref013
  article-title: An interpolation theorem in symmetric function F-spaces
  publication-title: Proc. Amer. Math. Soc.
– volume: 35
  start-page: 765
  year: 1987
  ident: S0013091500020228_ref015
  article-title: Real interpolation between weighted Lp and Lorentz spaces
  publication-title: Bull Pol. Acad. Sci.
– ident: S0013091500020228_ref009
  doi: 10.1090/S0002-9939-98-04273-7
SSID ssj0007751
Score 1.5212052
Snippet For the real interpolation method, we identify the interpolated spaces of couples of classical Lorentz spaces through interpolation of the corresponding...
SourceID unpaywall
crossref
istex
cambridge
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 243
Title Interpolation restricted to decreasing functions and Lorentz spaces
URI https://www.cambridge.org/core/product/identifier/S0013091500020228/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-3GC9FMJ0-R/fulltext.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/866B6825C4EA209FD77C7E8224B27A63/S0013091500020228a.pdf/div-class-title-interpolation-restricted-to-decreasing-functions-and-lorentz-spaces-a-href-fn01-ref-type-fn-a-div.pdf
UnpaywallVersion publishedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241104
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 1464-3839
  databaseCode: AMVHM
  dateStart: 18830201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5V3Nb9MwFDdbe4HD-JxWPqYcEAfgtYnt2PWxK-3KRCZAFI1TZDuJNK1KqzXlY_83d56TNOuoNIkztyR2kl_7np_fL35-j5CXgWGJUqmGJOUUeGI5aE45JGEWZFrTwBi3OTk6FZMpPzkLz3bI7_VeGBdW2eQ4KFfyy_poy3rg9PR8AU07lG0uphsNdM99Su_1hTgSyHqGfDSgvhq_k3IoRy5U8ojKgWBuazCabRWE5SIcpX3dXSRZLzn_Dtb5q1AKCc6rKldVPBq4MhloltAHhGKOP8s5dI7Kg5t8Sv0A5P2ADBuBXAHaAsQKGlAcGWQ5MnZ34D6q4hlex7e5t-6StgiRQrRIe3r6cfCtqbagysoLaMQ4IINU69XYoEx-ehP-Zk6IG3Nr26nJT2xe5Qv964eezTYmzvH9O_vrv7yKl7norgrTtVd_ZaP872TygOzVVMAbVGP3IdlJ80fkXtTk0V0-JsP3m2C8azBeMfeuwXgNGA_BeB8qMF4F5gmZjkdfhhOoy16AZdIvwKKH2g9YICzVvuqnTCZKSJOxwBoeWMqZToy1ykoh_NRIShPGsQ_j1CgjJNsnrXyepwfEc_uMtVKJzTTjSFV1ylLBZEaFUtSktEPeNoKLa-O1jKvAPxlviaVD_LV-xbZOIe8qmcxuu-V1c8uiyp9yW-dXpdI2PfXlhQs8lGEsjj_F7HioxtGJH3_ukDeNVm89dmuIPP2n3s_I3To1B_jBc9IqLlfpC3Q8C3NI2oPo6yQ6rIfrH4arffw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5V07b9swEGYTe2mH9BnEfUFD0aHt2eJDpDk6qp00qIO2qIF0EkhKAoIYthHLfeR_d-9RkhWnBgJ07iaJlPTZdzzeJx7vCHlFLU-1zgykmWAgUifACCYgjXKaG8OotX5z8vhUHk_EyVl0tkN-r_fC-LDKJsdBuZJf1kdb1gOnZ-YLaNqhbPMx3Wige_5Teq8v5aFE1hOL4YCFevReqVgNfajkIVMDyf3WYDTbmkblIhxjfdNdpHkvPf8OzvurUAoJzqsqV1U8GvgyGWiW0AeEYo4_yzt0nsqDn3xK_QDk_YAMG4FcAdoCxAoGUBw55DNk7P7Af1TFM7yOb_Nv3SVtGSGFaJH25PTT4FtTbUGXlRfQiAlABqnXq7G0TH56E_5mTogbc2vbq8lPbF7NFubXDzOdbkyco_t39td_eRUvc9FdFbbrrv7KRvnfyeQB2aupQDCoxu5DspPNHpF74yaP7vIxiT9sggmuwQTFPLgGEzRgAgQTfKzABBWYJ2QyGn6Nj6EuewGOq7AAhx5qn3IqHTOh7mdcpVoqm3PqrKCOCW5S65x2Ssows4qxlAvswwWz2krF90lrNp9lByTw-4yN1qnLDRdIVU3GM8lVzqTWzGasQ941gktq47VMqsA_lWyJpUPCtX4lrk4h7yuZTG-75U1zy6LKn3Jb59el0jY9zeWFDzxUUSKPPif8KNaj8UmYfOmQt41Wbz12a4g8_afez8jdOjUHhPQ5aRWXq-wFOp6FfVkP0z-eqXxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpolation+restricted+to+decreasing+functions+and+Lorentz+spaces&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Cerd%C3%A0%2C+Joan&rft.au=Mart%C3%ADn%2C+Joaquim&rft.date=1999-06-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=42&rft.issue=2&rft.spage=243&rft.epage=256&rft_id=info:doi/10.1017%2FS0013091500020228&rft.externalDocID=10_1017_S0013091500020228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon