Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model

•The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer c...

Full description

Saved in:
Bibliographic Details
Published inJournal of process control Vol. 59; pp. 1 - 12
Main Authors Zheng, Boyuan, Gao, Xianwen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2017
Subjects
Online AccessGet full text
ISSN0959-1524
1873-2771
DOI10.1016/j.jprocont.2017.09.007

Cover

Abstract •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer card according to qualitative and quantitative analysis.•The continuous hidden Markov model is first time applied in the field of sucker rod pumping diagnosis and the parameters of this model are optimized by the clonal selection algorithm to improve its classified performance.•Actual production data is adopted in simulation. Down-hole operating condition diagnosis based on dynamometer card is a key subject for sucker rod pumping in oil extraction engineering. In this technology, feature extraction and diagnostic model are two indispensable elements. To accurately and automatically diagnose the operating condition by computer, a novel diagnostic method for sucker rod pumping is proposed. The first novel idea is to extract seven geometric features, which are obtained from dynamometer card using barycentric decomposition algorithm and valve working position. The second novel idea focuses on the use of continuous hidden Markov model (CHMM) to create classifiers for diagnosing the down-dole operating conditions and then clonal selection algorithm (CSA) is used to optimize the selection of initial parameters for CHMM. Finally, the proposed method is tested on an oil field dynamometer card set. Furthermore, this technique is compared with some other existing approaches. The simulation results demonstrate that the performance using the method proposed in this paper is satisfactory.
AbstractList •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer card according to qualitative and quantitative analysis.•The continuous hidden Markov model is first time applied in the field of sucker rod pumping diagnosis and the parameters of this model are optimized by the clonal selection algorithm to improve its classified performance.•Actual production data is adopted in simulation. Down-hole operating condition diagnosis based on dynamometer card is a key subject for sucker rod pumping in oil extraction engineering. In this technology, feature extraction and diagnostic model are two indispensable elements. To accurately and automatically diagnose the operating condition by computer, a novel diagnostic method for sucker rod pumping is proposed. The first novel idea is to extract seven geometric features, which are obtained from dynamometer card using barycentric decomposition algorithm and valve working position. The second novel idea focuses on the use of continuous hidden Markov model (CHMM) to create classifiers for diagnosing the down-dole operating conditions and then clonal selection algorithm (CSA) is used to optimize the selection of initial parameters for CHMM. Finally, the proposed method is tested on an oil field dynamometer card set. Furthermore, this technique is compared with some other existing approaches. The simulation results demonstrate that the performance using the method proposed in this paper is satisfactory.
Author Gao, Xianwen
Zheng, Boyuan
Author_xml – sequence: 1
  givenname: Boyuan
  surname: Zheng
  fullname: Zheng, Boyuan
– sequence: 2
  givenname: Xianwen
  surname: Gao
  fullname: Gao, Xianwen
  email: gaoxianwen@ise.edu.neu.cn
BookMark eNqFkM1OwzAQhC1UJNrCKyC_QMI6Se1Y4gCq-JNAHICz5dpOcZrYkZ0U8fYkKly49LSaXX2jnVmgmfPOIHRJICVA6FWd1l3wyrs-zYCwFHgKwE7QnJQsTzLGyAzNga94QlZZcYYWMdYAkLOMzpF7G9TOBBy8xt3QdtZtsbZy63y0EQ9x0nvZ7A3-8mE3qW689NY7LN2IyCBb048GvuttKxs8_WHd4IeIP63WxuEXGXZ-j1uvTXOOTivZRHPxO5fo4_7uff2YPL8-PK1vnxOVM-iTjcrLLIMCVoxKoBkBTitabsqV0hXkRbHhZZ4Xssok05LSalxCUXJuNNW84vkS0YOvCj7GYCrRhfG98C0IiKk1UYu_1sTUmgAuxtZG8PofqGwvp7x9kLY5jt8ccDOG21sTRFTWOGW0DUb1Qnt7zOIHdEmS4A
CitedBy_id crossref_primary_10_1016_j_jprocont_2023_103006
crossref_primary_10_1016_j_conengprac_2024_106064
crossref_primary_10_1016_j_measurement_2019_107214
crossref_primary_10_1109_ACCESS_2020_3036078
crossref_primary_10_1088_1361_6501_ad9107
crossref_primary_10_3390_axioms13060414
crossref_primary_10_1016_j_petrol_2021_108806
crossref_primary_10_1016_j_engappai_2023_106829
crossref_primary_10_1016_j_engappai_2024_108802
crossref_primary_10_1016_j_jprocont_2021_06_001
crossref_primary_10_1016_j_petsci_2023_02_017
crossref_primary_10_1108_IR_03_2024_0131
crossref_primary_10_1155_2018_4979405
crossref_primary_10_1016_j_heliyon_2024_e26436
crossref_primary_10_1109_TIE_2019_2944081
crossref_primary_10_3390_math12091318
crossref_primary_10_1007_s00170_022_10202_6
crossref_primary_10_1016_j_jprocont_2019_02_008
crossref_primary_10_1016_j_isatra_2021_03_022
crossref_primary_10_3390_pr11041166
crossref_primary_10_1016_j_petsci_2023_08_031
crossref_primary_10_1016_j_neucom_2019_02_013
crossref_primary_10_1016_j_conengprac_2019_02_001
crossref_primary_10_3390_pr11072158
crossref_primary_10_2118_204215_PA
crossref_primary_10_1016_j_measurement_2024_115903
crossref_primary_10_2118_205015_PA
crossref_primary_10_1016_j_petsci_2021_09_012
crossref_primary_10_1007_s12555_021_0691_y
crossref_primary_10_1109_JSEN_2021_3103520
crossref_primary_10_1016_j_petrol_2021_109423
Cites_doi 10.1016/j.jprocont.2009.12.002
10.1214/aoms/1177697196
10.1016/j.neucom.2016.06.044
10.1109/TEVC.2002.1011539
10.1109/41.873219
10.1016/j.jprocont.2016.05.007
10.12720/joace.1.2.126-131
10.1016/S1876-3804(11)60018-9
10.1016/j.bspc.2013.07.010
10.1016/j.jprocont.2016.06.003
10.1016/j.ymssp.2011.01.013
10.1016/j.specom.2009.01.003
10.1016/j.petrol.2006.11.008
10.1007/s12182-014-0006-5
10.1016/S0920-4105(96)00070-8
10.1016/j.sigpro.2013.06.009
10.1109/5.18626
10.1016/j.sigpro.2015.09.002
10.1016/j.neucom.2013.04.048
10.1016/j.ymssp.2015.11.022
10.1007/s11265-015-1012-6
10.1016/j.eswa.2013.07.098
10.1016/j.imavis.2010.08.006
10.1016/j.jprocont.2009.04.014
10.1109/TII.2012.2205583
10.4028/www.scientific.net/AMM.307.285
10.1007/s12182-013-0252-y
10.1016/j.eswa.2013.06.006
10.1007/s12182-013-0283-4
10.1007/s11517-014-1207-1
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2017.09.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 12
ExternalDocumentID 10_1016_j_jprocont_2017_09_007
S0959152417301828
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c370t-bc3822040576a0621096f68b85cdf0344b98334af2a7da66ff0304899ed6d9f93
IEDL.DBID .~1
ISSN 0959-1524
IngestDate Sat Oct 25 05:14:10 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Fri Feb 23 02:16:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sucker rod pumping diagnosis
Barycentric decomposition
Valve working position
Continuous hidden Markov model
Dynamometer card
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-bc3822040576a0621096f68b85cdf0344b98334af2a7da66ff0304899ed6d9f93
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_jprocont_2017_09_007
crossref_citationtrail_10_1016_j_jprocont_2017_09_007
elsevier_sciencedirect_doi_10_1016_j_jprocont_2017_09_007
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Georgoulas, mustafa, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib0180) 2013; 40
Wong, Lee (bib0105) 2009; 19
Altuve, Carrault, Buchee, Pladys, Hernandez (bib0155) 2015; 53
Zhou, Chen, Dong (bib0190) 2016; 72–73
geramifard, Xu, Zhou (bib0210) 2012; 8
Rabiner (bib0130) 1989; 77
Yu (bib0160) 2010; 20
Zhang, Xia, Feng (bib0200) 2014; 12
Yiakopoulos, Gryllias, Chioua (bib0100) 2016; 44
Zhong, Zou (bib0045) 2016; 35
Cheng, Jian (bib0015) 2013; 2
Park, Lee (bib0140) 2011; 29
Schirmer, Toutain, Gay (bib0025) 1991; 3
He, Wu, Han (bib0050) 2008; 29
Hua, Xunming (bib0070) 2011; 38
Xue, Jiang, Dai (bib0125) 2016; 82
Geramifard, Xu, Zhou, Li (bib0175) 2012; 8
Xie, Wu, Hu (bib0095) 2014; 94
Li, Fang, Xia (bib0185) 2014; 41
Xu, Xu, Yin (bib0085) 2007; 58
Li, Gao, Zhou (bib0060) 2015; 12
Gao, Sun, Liu (bib0090) 2015
Travieso, Alonso, Pozo, Ticay, Castellanos-Dominguez (bib0150) 2014; 132
Li, Gao, Yang (bib0020) 2013; 10
De Castro, Von Zuben (bib0195) 2002; 6
Li, Gao, Zhou (bib0035) 2013
Gao, Lei, Yang (bib0065) 2008; 37
Ge, Chen (bib0110) 2016; 44
Wang (bib0030) 2010; 37
Soualhi, Clerc, Razik (bib0170) 2012
Li, Gao, Tian (bib0075) 2013; 10
Jančovič, Köküer (bib0120) 2009; 51
Wu, Zhou, Wei (bib0080) 2013; 307
Zhu, Song, Zhang, Wang (bib0145) 2016; 214
Baum, Petrie, Soules (bib0205) 1970; 41
Gao, Peng, Yu (bib0055) 1993; 14
Cho, Park (bib0135) 2016; 120
Lollback, Wang, Rahman (bib0010) 1997; 17
Li, Zhou (bib0040) 2012; 20
Yu (bib0115) 2010; 20
Boutros, Liang (bib0165) 2011; 25
Wilamowski, Kaynak (bib0005) 2000; 47
Gao (10.1016/j.jprocont.2017.09.007_bib0055) 1993; 14
Georgoulas (10.1016/j.jprocont.2017.09.007_bib0180) 2013; 40
Gao (10.1016/j.jprocont.2017.09.007_bib0065) 2008; 37
Li (10.1016/j.jprocont.2017.09.007_bib0185) 2014; 41
Soualhi (10.1016/j.jprocont.2017.09.007_bib0170) 2012
Wilamowski (10.1016/j.jprocont.2017.09.007_bib0005) 2000; 47
Li (10.1016/j.jprocont.2017.09.007_bib0075) 2013; 10
Park (10.1016/j.jprocont.2017.09.007_bib0140) 2011; 29
Hua (10.1016/j.jprocont.2017.09.007_bib0070) 2011; 38
Xue (10.1016/j.jprocont.2017.09.007_bib0125) 2016; 82
Yiakopoulos (10.1016/j.jprocont.2017.09.007_bib0100) 2016; 44
Yu (10.1016/j.jprocont.2017.09.007_bib0115) 2010; 20
Lollback (10.1016/j.jprocont.2017.09.007_bib0010) 1997; 17
Wang (10.1016/j.jprocont.2017.09.007_bib0030) 2010; 37
He (10.1016/j.jprocont.2017.09.007_bib0050) 2008; 29
Gao (10.1016/j.jprocont.2017.09.007_bib0090) 2015
Cheng (10.1016/j.jprocont.2017.09.007_bib0015) 2013; 2
Li (10.1016/j.jprocont.2017.09.007_bib0020) 2013; 10
Li (10.1016/j.jprocont.2017.09.007_bib0035) 2013
Zhong (10.1016/j.jprocont.2017.09.007_bib0045) 2016; 35
Xu (10.1016/j.jprocont.2017.09.007_bib0085) 2007; 58
Wu (10.1016/j.jprocont.2017.09.007_bib0080) 2013; 307
Wong (10.1016/j.jprocont.2017.09.007_bib0105) 2009; 19
geramifard (10.1016/j.jprocont.2017.09.007_bib0210) 2012; 8
Ge (10.1016/j.jprocont.2017.09.007_bib0110) 2016; 44
Geramifard (10.1016/j.jprocont.2017.09.007_bib0175) 2012; 8
Rabiner (10.1016/j.jprocont.2017.09.007_bib0130) 1989; 77
De Castro (10.1016/j.jprocont.2017.09.007_bib0195) 2002; 6
Baum (10.1016/j.jprocont.2017.09.007_bib0205) 1970; 41
Li (10.1016/j.jprocont.2017.09.007_bib0040) 2012; 20
Zhang (10.1016/j.jprocont.2017.09.007_bib0200) 2014; 12
Jančovič (10.1016/j.jprocont.2017.09.007_bib0120) 2009; 51
Altuve (10.1016/j.jprocont.2017.09.007_bib0155) 2015; 53
Travieso (10.1016/j.jprocont.2017.09.007_bib0150) 2014; 132
Schirmer (10.1016/j.jprocont.2017.09.007_bib0025) 1991; 3
Cho (10.1016/j.jprocont.2017.09.007_bib0135) 2016; 120
Li (10.1016/j.jprocont.2017.09.007_bib0060) 2015; 12
Boutros (10.1016/j.jprocont.2017.09.007_bib0165) 2011; 25
Zhou (10.1016/j.jprocont.2017.09.007_bib0190) 2016; 72–73
Xie (10.1016/j.jprocont.2017.09.007_bib0095) 2014; 94
Zhu (10.1016/j.jprocont.2017.09.007_bib0145) 2016; 214
Yu (10.1016/j.jprocont.2017.09.007_bib0160) 2010; 20
References_xml – volume: 3
  start-page: 21
  year: 1991
  end-page: 24
  ident: bib0025
  article-title: Use of advanced pattern recognition and knowledge based system in analyzing dynamometer cards
  publication-title: SPE Comput. Appl.
– volume: 58
  start-page: 43
  year: 2007
  end-page: 48
  ident: bib0085
  article-title: Application of self-organizing competitive neural network in fault diagnosis of sucker rod pumping system
  publication-title: J. Pet. Sci. Eng.
– volume: 6
  start-page: 239
  year: 2002
  end-page: 251
  ident: bib0195
  article-title: Learning and optimization using the clonal selection principle
  publication-title: IEEE Trans. Evol. Comput.
– volume: 29
  start-page: 619
  year: 2008
  end-page: 624
  ident: bib0050
  article-title: Frequency spectrum analysis method for recognition of dynamometer card
  publication-title: Acta Pet. Sin.
– volume: 37
  start-page: 116
  year: 2010
  end-page: 120
  ident: bib0030
  article-title: Fault diagnosis of rod-pumping unit based on production rules system
  publication-title: Pet. Explor. Dev.
– volume: 2
  start-page: 126
  year: 2013
  end-page: 131
  ident: bib0015
  article-title: Application of the ontology to knowledge management of sucker-rod pumping system fault diagnosis
  publication-title: J. Autom. Control Eng.
– volume: 19
  start-page: 1438
  year: 2009
  end-page: 1450
  ident: bib0105
  article-title: Realistic disturbance modeling using hidden Markov models: application in model-based process control
  publication-title: J. Process Control
– volume: 47
  start-page: 1100
  year: 2000
  end-page: 1107
  ident: bib0005
  article-title: Oil well diagnosis by sensing terminal characteristics of the induction motor
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 73
  year: 2013
  end-page: 80
  ident: bib0075
  article-title: Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit
  publication-title: Pet. Sci.
– volume: 20
  start-page: 344
  year: 2010
  end-page: 359
  ident: bib0160
  article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
  publication-title: J. Process Control
– start-page: 503
  year: 2015
  end-page: 507
  ident: bib0090
  article-title: Fault diagnosis of sucker rod pumping system via extreme learning machines
  publication-title: The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent System
– volume: 35
  start-page: 279
  year: 2016
  end-page: 284
  ident: bib0045
  article-title: Exploring failure characteristics of indicator diagram of reciprocating pump based on gray matrix
  publication-title: Mech. Sci. Technol. Aerosp. Eng.
– volume: 38
  start-page: 109
  year: 2011
  end-page: 115
  ident: bib0070
  article-title: Accurate extraction of valve opening and closing points based on the physical meaning of surface dynamometer card
  publication-title: Pet. Explor. Dev.
– volume: 20
  start-page: 344
  year: 2010
  end-page: 359
  ident: bib0115
  article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
  publication-title: J. Process Control
– volume: 8
  start-page: 964
  year: 2012
  end-page: 973
  ident: bib0175
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnostics and prognostics
  publication-title: IEEE Trans. Ind. Inf.
– volume: 12
  start-page: 135
  year: 2015
  end-page: 147
  ident: bib0060
  article-title: Diagnosis for down-hole conditions of sucker rod pumping system based on the FBH-SC method
  publication-title: Pet. Sci.
– volume: 44
  start-page: 224
  year: 2016
  end-page: 235
  ident: bib0110
  article-title: Supervised linear dynamic system model for quality relate fault detection in dynamic process
  publication-title: J. Process Control
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0130
  article-title: A tutorial on hidden Markov models and select applications in speech recognition
  publication-title: Process. IEEE
– start-page: 1693
  year: 2012
  end-page: 1699
  ident: bib0170
  article-title: Fault detection and diagnosis of induction motors based on hidden Markov model. Electrical Machines (ICEM)
  publication-title: International Conference
– volume: 20
  start-page: 23
  year: 2012
  end-page: 25
  ident: bib0040
  article-title: Diagnosis of working drawing based on BP net and gray theory
  publication-title: Electron. Des. Eng.
– volume: 10
  start-page: 347
  year: 2013
  end-page: 360
  ident: bib0020
  article-title: Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA
  publication-title: Pet. Sci.
– volume: 41
  start-page: 744
  year: 2014
  end-page: 751
  ident: bib0185
  article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis
  publication-title: Expert Syst. Appl.
– volume: 120
  start-page: 200
  year: 2016
  end-page: 208
  ident: bib0135
  article-title: Independent vector analysis followed by HMM-based feature enhancement for robust speech recognition
  publication-title: Signal Process.
– volume: 307
  start-page: 285
  year: 2013
  end-page: 289
  ident: bib0080
  article-title: A fault diagnosis of sucker rod pumping system based on SVM
  publication-title: Appl. Mech. Mater.
– start-page: 279
  year: 2013
  end-page: 284
  ident: bib0035
  article-title: Fault diagnosis for down-hole conditions in beam pumping units based on an improved fuzzy iterative self-organizing data analysis technique
  publication-title: 10th International Conference on Fuzzy Systems Ans Knowledge Discovery
– volume: 53
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib0155
  article-title: Online apnea-bradycardia detection based on hidden semi-Markov models
  publication-title: Med. Biol. Eng. Comput.
– volume: 214
  start-page: 567
  year: 2016
  end-page: 574
  ident: bib0145
  article-title: A traffic flow state transition model for urban road network based on Hidden Markov Model
  publication-title: Neurocomputing
– volume: 94
  start-page: 319
  year: 2014
  end-page: 329
  ident: bib0095
  article-title: A generalized interval probability-based optimization method for training generalized hidden Markov model
  publication-title: Signal Process.
– volume: 44
  start-page: 134
  year: 2016
  end-page: 159
  ident: bib0100
  article-title: An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process
  publication-title: J. Process Control
– volume: 82
  start-page: 175
  year: 2016
  end-page: 185
  ident: bib0125
  article-title: Speaker adaptation of hybrid NN/HMM model for speech recognition based on singular value decomposition
  publication-title: J. Signal Process. Syst.
– volume: 72–73
  start-page: 65
  year: 2016
  end-page: 79
  ident: bib0190
  article-title: Detection and diagnosis of bearing using shift-invariant dictionary learning and hidden Markov model
  publication-title: Mech. Syst. Signal Process.
– volume: 37
  start-page: 88
  year: 2008
  end-page: 92
  ident: bib0065
  article-title: Production evaluation of oil wells using dynamometer card
  publication-title: Oil Field Equip.
– volume: 51
  start-page: 438
  year: 2009
  end-page: 451
  ident: bib0120
  article-title: Incorporating the voicing information into HMM-based automatic speech recognition in noisy environments
  publication-title: Speech Commun.
– volume: 8
  start-page: 964
  year: 2012
  end-page: 973
  ident: bib0210
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnosis and prognostics
  publication-title: IEEE Trans. Ind. Inf.
– volume: 12
  start-page: 10
  year: 2014
  end-page: 18
  ident: bib0200
  article-title: Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method
  publication-title: Biomed. Signal Process. Control
– volume: 14
  start-page: 141
  year: 1993
  end-page: 150
  ident: bib0055
  article-title: Quantitative analysis of dynamometer cards for sucker rod pumping wells
  publication-title: Acta Pet. Sin.
– volume: 132
  start-page: 159
  year: 2014
  end-page: 165
  ident: bib0150
  article-title: Building a cepstrum-HMM kernal for apnea identification
  publication-title: Neurocomputing
– volume: 40
  start-page: 7024
  year: 2013
  end-page: 7033
  ident: bib0180
  article-title: Principal conponent analysis of the start-up transient and hidden Markov modeling for broken rotor bar diagnosis in asynchronous machines
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 164
  year: 1970
  end-page: 171
  ident: bib0205
  article-title: A maximization technology occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
– volume: 29
  start-page: 51
  year: 2011
  end-page: 63
  ident: bib0140
  article-title: Real-time 3D pointing gesture recognition for mobile robots with cascade HMM and particle filter
  publication-title: Image Vision Comput.
– volume: 17
  start-page: 313
  year: 1997
  end-page: 320
  ident: bib0010
  article-title: An alternative approach to the nanalysis of sucker-rod dynamics in vertical and deviated wells
  publication-title: J. Pet. Sci. Eng.
– volume: 25
  start-page: 2102
  year: 2011
  end-page: 2124
  ident: bib0165
  article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
  publication-title: Mech. Syst. Signal Process.
– volume: 20
  start-page: 344
  year: 2010
  ident: 10.1016/j.jprocont.2017.09.007_bib0160
  article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.12.002
– volume: 41
  start-page: 164
  issue: 1
  year: 1970
  ident: 10.1016/j.jprocont.2017.09.007_bib0205
  article-title: A maximization technology occurring in the statistical analysis of probabilistic functions of Markov chains
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177697196
– start-page: 279
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0035
  article-title: Fault diagnosis for down-hole conditions in beam pumping units based on an improved fuzzy iterative self-organizing data analysis technique
  publication-title: 10th International Conference on Fuzzy Systems Ans Knowledge Discovery
– volume: 214
  start-page: 567
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0145
  article-title: A traffic flow state transition model for urban road network based on Hidden Markov Model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.044
– volume: 6
  start-page: 239
  year: 2002
  ident: 10.1016/j.jprocont.2017.09.007_bib0195
  article-title: Learning and optimization using the clonal selection principle
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2002.1011539
– volume: 47
  start-page: 1100
  issue: 5
  year: 2000
  ident: 10.1016/j.jprocont.2017.09.007_bib0005
  article-title: Oil well diagnosis by sensing terminal characteristics of the induction motor
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.873219
– volume: 44
  start-page: 134
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0100
  article-title: An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.05.007
– volume: 2
  start-page: 126
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0015
  article-title: Application of the ontology to knowledge management of sucker-rod pumping system fault diagnosis
  publication-title: J. Autom. Control Eng.
  doi: 10.12720/joace.1.2.126-131
– volume: 38
  start-page: 109
  issue: 1
  year: 2011
  ident: 10.1016/j.jprocont.2017.09.007_bib0070
  article-title: Accurate extraction of valve opening and closing points based on the physical meaning of surface dynamometer card
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(11)60018-9
– volume: 12
  start-page: 10
  year: 2014
  ident: 10.1016/j.jprocont.2017.09.007_bib0200
  article-title: Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.07.010
– volume: 44
  start-page: 224
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0110
  article-title: Supervised linear dynamic system model for quality relate fault detection in dynamic process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2016.06.003
– volume: 25
  start-page: 2102
  year: 2011
  ident: 10.1016/j.jprocont.2017.09.007_bib0165
  article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.01.013
– volume: 51
  start-page: 438
  year: 2009
  ident: 10.1016/j.jprocont.2017.09.007_bib0120
  article-title: Incorporating the voicing information into HMM-based automatic speech recognition in noisy environments
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2009.01.003
– volume: 58
  start-page: 43
  year: 2007
  ident: 10.1016/j.jprocont.2017.09.007_bib0085
  article-title: Application of self-organizing competitive neural network in fault diagnosis of sucker rod pumping system
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2006.11.008
– volume: 12
  start-page: 135
  year: 2015
  ident: 10.1016/j.jprocont.2017.09.007_bib0060
  article-title: Diagnosis for down-hole conditions of sucker rod pumping system based on the FBH-SC method
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-014-0006-5
– start-page: 503
  year: 2015
  ident: 10.1016/j.jprocont.2017.09.007_bib0090
  article-title: Fault diagnosis of sucker rod pumping system via extreme learning machines
  publication-title: The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent System
– volume: 17
  start-page: 313
  year: 1997
  ident: 10.1016/j.jprocont.2017.09.007_bib0010
  article-title: An alternative approach to the nanalysis of sucker-rod dynamics in vertical and deviated wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/S0920-4105(96)00070-8
– volume: 37
  start-page: 116
  year: 2010
  ident: 10.1016/j.jprocont.2017.09.007_bib0030
  article-title: Fault diagnosis of rod-pumping unit based on production rules system
  publication-title: Pet. Explor. Dev.
– volume: 20
  start-page: 344
  year: 2010
  ident: 10.1016/j.jprocont.2017.09.007_bib0115
  article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.12.002
– volume: 37
  start-page: 88
  issue: 5
  year: 2008
  ident: 10.1016/j.jprocont.2017.09.007_bib0065
  article-title: Production evaluation of oil wells using dynamometer card
  publication-title: Oil Field Equip.
– volume: 94
  start-page: 319
  year: 2014
  ident: 10.1016/j.jprocont.2017.09.007_bib0095
  article-title: A generalized interval probability-based optimization method for training generalized hidden Markov model
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.06.009
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.jprocont.2017.09.007_bib0130
  article-title: A tutorial on hidden Markov models and select applications in speech recognition
  publication-title: Process. IEEE
  doi: 10.1109/5.18626
– volume: 120
  start-page: 200
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0135
  article-title: Independent vector analysis followed by HMM-based feature enhancement for robust speech recognition
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.09.002
– volume: 132
  start-page: 159
  year: 2014
  ident: 10.1016/j.jprocont.2017.09.007_bib0150
  article-title: Building a cepstrum-HMM kernal for apnea identification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.048
– volume: 72–73
  start-page: 65
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0190
  article-title: Detection and diagnosis of bearing using shift-invariant dictionary learning and hidden Markov model
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.022
– volume: 82
  start-page: 175
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0125
  article-title: Speaker adaptation of hybrid NN/HMM model for speech recognition based on singular value decomposition
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-015-1012-6
– volume: 41
  start-page: 744
  year: 2014
  ident: 10.1016/j.jprocont.2017.09.007_bib0185
  article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.07.098
– volume: 29
  start-page: 51
  year: 2011
  ident: 10.1016/j.jprocont.2017.09.007_bib0140
  article-title: Real-time 3D pointing gesture recognition for mobile robots with cascade HMM and particle filter
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2010.08.006
– start-page: 1693
  year: 2012
  ident: 10.1016/j.jprocont.2017.09.007_bib0170
  article-title: Fault detection and diagnosis of induction motors based on hidden Markov model. Electrical Machines (ICEM)
  publication-title: International Conference
– volume: 19
  start-page: 1438
  year: 2009
  ident: 10.1016/j.jprocont.2017.09.007_bib0105
  article-title: Realistic disturbance modeling using hidden Markov models: application in model-based process control
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.04.014
– volume: 8
  start-page: 964
  year: 2012
  ident: 10.1016/j.jprocont.2017.09.007_bib0175
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnostics and prognostics
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2205583
– volume: 307
  start-page: 285
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0080
  article-title: A fault diagnosis of sucker rod pumping system based on SVM
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.307.285
– volume: 3
  start-page: 21
  year: 1991
  ident: 10.1016/j.jprocont.2017.09.007_bib0025
  article-title: Use of advanced pattern recognition and knowledge based system in analyzing dynamometer cards
  publication-title: SPE Comput. Appl.
– volume: 10
  start-page: 73
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0075
  article-title: Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-013-0252-y
– volume: 40
  start-page: 7024
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0180
  article-title: Principal conponent analysis of the start-up transient and hidden Markov modeling for broken rotor bar diagnosis in asynchronous machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.006
– volume: 20
  start-page: 23
  issue: 17
  year: 2012
  ident: 10.1016/j.jprocont.2017.09.007_bib0040
  article-title: Diagnosis of working drawing based on BP net and gray theory
  publication-title: Electron. Des. Eng.
– volume: 35
  start-page: 279
  issue: 2
  year: 2016
  ident: 10.1016/j.jprocont.2017.09.007_bib0045
  article-title: Exploring failure characteristics of indicator diagram of reciprocating pump based on gray matrix
  publication-title: Mech. Sci. Technol. Aerosp. Eng.
– volume: 29
  start-page: 619
  issue: 4
  year: 2008
  ident: 10.1016/j.jprocont.2017.09.007_bib0050
  article-title: Frequency spectrum analysis method for recognition of dynamometer card
  publication-title: Acta Pet. Sin.
– volume: 10
  start-page: 347
  year: 2013
  ident: 10.1016/j.jprocont.2017.09.007_bib0020
  article-title: Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-013-0283-4
– volume: 14
  start-page: 141
  issue: 4
  year: 1993
  ident: 10.1016/j.jprocont.2017.09.007_bib0055
  article-title: Quantitative analysis of dynamometer cards for sucker rod pumping wells
  publication-title: Acta Pet. Sin.
– volume: 53
  start-page: 1
  year: 2015
  ident: 10.1016/j.jprocont.2017.09.007_bib0155
  article-title: Online apnea-bradycardia detection based on hidden semi-Markov models
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1207-1
– volume: 8
  start-page: 964
  issue: 4
  year: 2012
  ident: 10.1016/j.jprocont.2017.09.007_bib0210
  article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnosis and prognostics
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2205583
SSID ssj0003726
Score 2.3919868
Snippet •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Barycentric decomposition
Continuous hidden Markov model
Dynamometer card
Sucker rod pumping diagnosis
Valve working position
Title Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model
URI https://dx.doi.org/10.1016/j.jprocont.2017.09.007
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4QvOjBB2rEV_bgtbTQdtseCZGgRi5Iwq3Zp0J0S-Thzd_uTh-KiQkHj9102s3OdGZ2-803ADecRwFVKnR4WwrHRnzpsDCRjuBKS0_FOs6r-B-HdDAO7ifhpAa9qhYGYZWl7y98eu6tyxG3XE13Pp26IzzBstEnaKOR2o0DVrAHEXYxaH3-wDz8KG-5lh934d0bVcKz1gyjRGYQU9mOcr5TbCv7V4DaCDr9Q9gvs0XSLSZ0BDVlGnBQdWIg5YfZgL0NWsFjMKMcLEGsbyRzqy47SGQBqZsuCCLdn4k1sLUiH8VROamgW4QZK8IQsIXPz6w_ebPvx8lPzSpbLcgLUo4YgiU-2ZrkfXROYNy_feoNnLKvgiP8yFs6XPg2LfAwVaPMo3bTl1BNYx6HQmqkAORJ7PsB0x0WSUap1vj_1G7MlKQy0Yl_CnWTGXUGJGaJirTPw6CjA-FRzlQQh9pjSLzXEaoJYbWYqShJx7H3xWtaoctmaaWEFJWQeklqldAE91tuXtBubJVIKl2lvwwotbFhi-z5P2QvYBevivLES6gv31fqyuYpS36dG-I17HTvHgbDL24v7Fw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtSDD9SIzz14LRTabtujIRJU4AIk3Da73V2FaEvk4c3f7k4fiokJB6_bTrvZmc6r38wA3Arhu1QpzxINGVnG4kuLe6G0IqG0tFWgg7SKv9ennZH7OPbGJWgVtTAIq8x1f6bTU22dr9Tz06zPJpP6ADNYxvq4DRRSEzhswbbrNX2MwGqfPzgPx09nrqX5Lrx9rUx4WpuimUhiBFU2_LThKc6V_ctCrVmd9iHs5-4iuct2dAQlFVfgoBjFQPIvswJ7a30FjyEepGgJYpQjmRl-mUUiM0zdZE4Q6v5MjIStFPnIcuWkwG4RHhsSjogtfH5iFMqbeT9ufhIvk-WcvGDPkZhgjU-yIukgnRMYte-HrY6VD1awIse3F5aIHOMX2OirUW5TE_WFVNNABF4kNfYAFGHgOC7XTe5LTqnW-APVRGZKUhnq0DmFcpzE6gxIwEPla0d4blO7kU0FV27gaZtj571mpKrgFYfJorzrOA6_eGUFvGzKCiYwZAKzQ2aYUIX6N90s67uxkSIseMV-SRAzxmED7fk_aG9gpzPsdVn3of90Abt4JatVvITy4n2prozTshDXqVB-Ae8S7fE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sucker+rod+pumping+diagnosis+using+valve+working+position+and+parameter+optimal+continuous+hidden+Markov+model&rft.jtitle=Journal+of+process+control&rft.au=Zheng%2C+Boyuan&rft.au=Gao%2C+Xianwen&rft.date=2017-11-01&rft.issn=0959-1524&rft.volume=59&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.jprocont.2017.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2017_09_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon