Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model
•The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer c...
Saved in:
| Published in | Journal of process control Vol. 59; pp. 1 - 12 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0959-1524 1873-2771 |
| DOI | 10.1016/j.jprocont.2017.09.007 |
Cover
| Abstract | •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer card according to qualitative and quantitative analysis.•The continuous hidden Markov model is first time applied in the field of sucker rod pumping diagnosis and the parameters of this model are optimized by the clonal selection algorithm to improve its classified performance.•Actual production data is adopted in simulation.
Down-hole operating condition diagnosis based on dynamometer card is a key subject for sucker rod pumping in oil extraction engineering. In this technology, feature extraction and diagnostic model are two indispensable elements. To accurately and automatically diagnose the operating condition by computer, a novel diagnostic method for sucker rod pumping is proposed. The first novel idea is to extract seven geometric features, which are obtained from dynamometer card using barycentric decomposition algorithm and valve working position. The second novel idea focuses on the use of continuous hidden Markov model (CHMM) to create classifiers for diagnosing the down-dole operating conditions and then clonal selection algorithm (CSA) is used to optimize the selection of initial parameters for CHMM. Finally, the proposed method is tested on an oil field dynamometer card set. Furthermore, this technique is compared with some other existing approaches. The simulation results demonstrate that the performance using the method proposed in this paper is satisfactory. |
|---|---|
| AbstractList | •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate valve working positions of dynamometer cards at different working conditions.•Seven novel geometric features are extracted from dynamometer card according to qualitative and quantitative analysis.•The continuous hidden Markov model is first time applied in the field of sucker rod pumping diagnosis and the parameters of this model are optimized by the clonal selection algorithm to improve its classified performance.•Actual production data is adopted in simulation.
Down-hole operating condition diagnosis based on dynamometer card is a key subject for sucker rod pumping in oil extraction engineering. In this technology, feature extraction and diagnostic model are two indispensable elements. To accurately and automatically diagnose the operating condition by computer, a novel diagnostic method for sucker rod pumping is proposed. The first novel idea is to extract seven geometric features, which are obtained from dynamometer card using barycentric decomposition algorithm and valve working position. The second novel idea focuses on the use of continuous hidden Markov model (CHMM) to create classifiers for diagnosing the down-dole operating conditions and then clonal selection algorithm (CSA) is used to optimize the selection of initial parameters for CHMM. Finally, the proposed method is tested on an oil field dynamometer card set. Furthermore, this technique is compared with some other existing approaches. The simulation results demonstrate that the performance using the method proposed in this paper is satisfactory. |
| Author | Gao, Xianwen Zheng, Boyuan |
| Author_xml | – sequence: 1 givenname: Boyuan surname: Zheng fullname: Zheng, Boyuan – sequence: 2 givenname: Xianwen surname: Gao fullname: Gao, Xianwen email: gaoxianwen@ise.edu.neu.cn |
| BookMark | eNqFkM1OwzAQhC1UJNrCKyC_QMI6Se1Y4gCq-JNAHICz5dpOcZrYkZ0U8fYkKly49LSaXX2jnVmgmfPOIHRJICVA6FWd1l3wyrs-zYCwFHgKwE7QnJQsTzLGyAzNga94QlZZcYYWMdYAkLOMzpF7G9TOBBy8xt3QdtZtsbZy63y0EQ9x0nvZ7A3-8mE3qW689NY7LN2IyCBb048GvuttKxs8_WHd4IeIP63WxuEXGXZ-j1uvTXOOTivZRHPxO5fo4_7uff2YPL8-PK1vnxOVM-iTjcrLLIMCVoxKoBkBTitabsqV0hXkRbHhZZ4Xssok05LSalxCUXJuNNW84vkS0YOvCj7GYCrRhfG98C0IiKk1UYu_1sTUmgAuxtZG8PofqGwvp7x9kLY5jt8ccDOG21sTRFTWOGW0DUb1Qnt7zOIHdEmS4A |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2023_103006 crossref_primary_10_1016_j_conengprac_2024_106064 crossref_primary_10_1016_j_measurement_2019_107214 crossref_primary_10_1109_ACCESS_2020_3036078 crossref_primary_10_1088_1361_6501_ad9107 crossref_primary_10_3390_axioms13060414 crossref_primary_10_1016_j_petrol_2021_108806 crossref_primary_10_1016_j_engappai_2023_106829 crossref_primary_10_1016_j_engappai_2024_108802 crossref_primary_10_1016_j_jprocont_2021_06_001 crossref_primary_10_1016_j_petsci_2023_02_017 crossref_primary_10_1108_IR_03_2024_0131 crossref_primary_10_1155_2018_4979405 crossref_primary_10_1016_j_heliyon_2024_e26436 crossref_primary_10_1109_TIE_2019_2944081 crossref_primary_10_3390_math12091318 crossref_primary_10_1007_s00170_022_10202_6 crossref_primary_10_1016_j_jprocont_2019_02_008 crossref_primary_10_1016_j_isatra_2021_03_022 crossref_primary_10_3390_pr11041166 crossref_primary_10_1016_j_petsci_2023_08_031 crossref_primary_10_1016_j_neucom_2019_02_013 crossref_primary_10_1016_j_conengprac_2019_02_001 crossref_primary_10_3390_pr11072158 crossref_primary_10_2118_204215_PA crossref_primary_10_1016_j_measurement_2024_115903 crossref_primary_10_2118_205015_PA crossref_primary_10_1016_j_petsci_2021_09_012 crossref_primary_10_1007_s12555_021_0691_y crossref_primary_10_1109_JSEN_2021_3103520 crossref_primary_10_1016_j_petrol_2021_109423 |
| Cites_doi | 10.1016/j.jprocont.2009.12.002 10.1214/aoms/1177697196 10.1016/j.neucom.2016.06.044 10.1109/TEVC.2002.1011539 10.1109/41.873219 10.1016/j.jprocont.2016.05.007 10.12720/joace.1.2.126-131 10.1016/S1876-3804(11)60018-9 10.1016/j.bspc.2013.07.010 10.1016/j.jprocont.2016.06.003 10.1016/j.ymssp.2011.01.013 10.1016/j.specom.2009.01.003 10.1016/j.petrol.2006.11.008 10.1007/s12182-014-0006-5 10.1016/S0920-4105(96)00070-8 10.1016/j.sigpro.2013.06.009 10.1109/5.18626 10.1016/j.sigpro.2015.09.002 10.1016/j.neucom.2013.04.048 10.1016/j.ymssp.2015.11.022 10.1007/s11265-015-1012-6 10.1016/j.eswa.2013.07.098 10.1016/j.imavis.2010.08.006 10.1016/j.jprocont.2009.04.014 10.1109/TII.2012.2205583 10.4028/www.scientific.net/AMM.307.285 10.1007/s12182-013-0252-y 10.1016/j.eswa.2013.06.006 10.1007/s12182-013-0283-4 10.1007/s11517-014-1207-1 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jprocont.2017.09.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-2771 |
| EndPage | 12 |
| ExternalDocumentID | 10_1016_j_jprocont_2017_09_007 S0959152417301828 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ XFK ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c370t-bc3822040576a0621096f68b85cdf0344b98334af2a7da66ff0304899ed6d9f93 |
| IEDL.DBID | .~1 |
| ISSN | 0959-1524 |
| IngestDate | Sat Oct 25 05:14:10 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Fri Feb 23 02:16:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sucker rod pumping diagnosis Barycentric decomposition Valve working position Continuous hidden Markov model Dynamometer card |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-bc3822040576a0621096f68b85cdf0344b98334af2a7da66ff0304899ed6d9f93 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_jprocont_2017_09_007 crossref_citationtrail_10_1016_j_jprocont_2017_09_007 elsevier_sciencedirect_doi_10_1016_j_jprocont_2017_09_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of process control |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Georgoulas, mustafa, Tsoumas, Antonino-Daviu, Climente-Alarcon, Stylios (bib0180) 2013; 40 Wong, Lee (bib0105) 2009; 19 Altuve, Carrault, Buchee, Pladys, Hernandez (bib0155) 2015; 53 Zhou, Chen, Dong (bib0190) 2016; 72–73 geramifard, Xu, Zhou (bib0210) 2012; 8 Rabiner (bib0130) 1989; 77 Yu (bib0160) 2010; 20 Zhang, Xia, Feng (bib0200) 2014; 12 Yiakopoulos, Gryllias, Chioua (bib0100) 2016; 44 Zhong, Zou (bib0045) 2016; 35 Cheng, Jian (bib0015) 2013; 2 Park, Lee (bib0140) 2011; 29 Schirmer, Toutain, Gay (bib0025) 1991; 3 He, Wu, Han (bib0050) 2008; 29 Hua, Xunming (bib0070) 2011; 38 Xue, Jiang, Dai (bib0125) 2016; 82 Geramifard, Xu, Zhou, Li (bib0175) 2012; 8 Xie, Wu, Hu (bib0095) 2014; 94 Li, Fang, Xia (bib0185) 2014; 41 Xu, Xu, Yin (bib0085) 2007; 58 Li, Gao, Zhou (bib0060) 2015; 12 Gao, Sun, Liu (bib0090) 2015 Travieso, Alonso, Pozo, Ticay, Castellanos-Dominguez (bib0150) 2014; 132 Li, Gao, Yang (bib0020) 2013; 10 De Castro, Von Zuben (bib0195) 2002; 6 Li, Gao, Zhou (bib0035) 2013 Gao, Lei, Yang (bib0065) 2008; 37 Ge, Chen (bib0110) 2016; 44 Wang (bib0030) 2010; 37 Soualhi, Clerc, Razik (bib0170) 2012 Li, Gao, Tian (bib0075) 2013; 10 Jančovič, Köküer (bib0120) 2009; 51 Wu, Zhou, Wei (bib0080) 2013; 307 Zhu, Song, Zhang, Wang (bib0145) 2016; 214 Baum, Petrie, Soules (bib0205) 1970; 41 Gao, Peng, Yu (bib0055) 1993; 14 Cho, Park (bib0135) 2016; 120 Lollback, Wang, Rahman (bib0010) 1997; 17 Li, Zhou (bib0040) 2012; 20 Yu (bib0115) 2010; 20 Boutros, Liang (bib0165) 2011; 25 Wilamowski, Kaynak (bib0005) 2000; 47 Gao (10.1016/j.jprocont.2017.09.007_bib0055) 1993; 14 Georgoulas (10.1016/j.jprocont.2017.09.007_bib0180) 2013; 40 Gao (10.1016/j.jprocont.2017.09.007_bib0065) 2008; 37 Li (10.1016/j.jprocont.2017.09.007_bib0185) 2014; 41 Soualhi (10.1016/j.jprocont.2017.09.007_bib0170) 2012 Wilamowski (10.1016/j.jprocont.2017.09.007_bib0005) 2000; 47 Li (10.1016/j.jprocont.2017.09.007_bib0075) 2013; 10 Park (10.1016/j.jprocont.2017.09.007_bib0140) 2011; 29 Hua (10.1016/j.jprocont.2017.09.007_bib0070) 2011; 38 Xue (10.1016/j.jprocont.2017.09.007_bib0125) 2016; 82 Yiakopoulos (10.1016/j.jprocont.2017.09.007_bib0100) 2016; 44 Yu (10.1016/j.jprocont.2017.09.007_bib0115) 2010; 20 Lollback (10.1016/j.jprocont.2017.09.007_bib0010) 1997; 17 Wang (10.1016/j.jprocont.2017.09.007_bib0030) 2010; 37 He (10.1016/j.jprocont.2017.09.007_bib0050) 2008; 29 Gao (10.1016/j.jprocont.2017.09.007_bib0090) 2015 Cheng (10.1016/j.jprocont.2017.09.007_bib0015) 2013; 2 Li (10.1016/j.jprocont.2017.09.007_bib0020) 2013; 10 Li (10.1016/j.jprocont.2017.09.007_bib0035) 2013 Zhong (10.1016/j.jprocont.2017.09.007_bib0045) 2016; 35 Xu (10.1016/j.jprocont.2017.09.007_bib0085) 2007; 58 Wu (10.1016/j.jprocont.2017.09.007_bib0080) 2013; 307 Wong (10.1016/j.jprocont.2017.09.007_bib0105) 2009; 19 geramifard (10.1016/j.jprocont.2017.09.007_bib0210) 2012; 8 Ge (10.1016/j.jprocont.2017.09.007_bib0110) 2016; 44 Geramifard (10.1016/j.jprocont.2017.09.007_bib0175) 2012; 8 Rabiner (10.1016/j.jprocont.2017.09.007_bib0130) 1989; 77 De Castro (10.1016/j.jprocont.2017.09.007_bib0195) 2002; 6 Baum (10.1016/j.jprocont.2017.09.007_bib0205) 1970; 41 Li (10.1016/j.jprocont.2017.09.007_bib0040) 2012; 20 Zhang (10.1016/j.jprocont.2017.09.007_bib0200) 2014; 12 Jančovič (10.1016/j.jprocont.2017.09.007_bib0120) 2009; 51 Altuve (10.1016/j.jprocont.2017.09.007_bib0155) 2015; 53 Travieso (10.1016/j.jprocont.2017.09.007_bib0150) 2014; 132 Schirmer (10.1016/j.jprocont.2017.09.007_bib0025) 1991; 3 Cho (10.1016/j.jprocont.2017.09.007_bib0135) 2016; 120 Li (10.1016/j.jprocont.2017.09.007_bib0060) 2015; 12 Boutros (10.1016/j.jprocont.2017.09.007_bib0165) 2011; 25 Zhou (10.1016/j.jprocont.2017.09.007_bib0190) 2016; 72–73 Xie (10.1016/j.jprocont.2017.09.007_bib0095) 2014; 94 Zhu (10.1016/j.jprocont.2017.09.007_bib0145) 2016; 214 Yu (10.1016/j.jprocont.2017.09.007_bib0160) 2010; 20 |
| References_xml | – volume: 3 start-page: 21 year: 1991 end-page: 24 ident: bib0025 article-title: Use of advanced pattern recognition and knowledge based system in analyzing dynamometer cards publication-title: SPE Comput. Appl. – volume: 58 start-page: 43 year: 2007 end-page: 48 ident: bib0085 article-title: Application of self-organizing competitive neural network in fault diagnosis of sucker rod pumping system publication-title: J. Pet. Sci. Eng. – volume: 6 start-page: 239 year: 2002 end-page: 251 ident: bib0195 article-title: Learning and optimization using the clonal selection principle publication-title: IEEE Trans. Evol. Comput. – volume: 29 start-page: 619 year: 2008 end-page: 624 ident: bib0050 article-title: Frequency spectrum analysis method for recognition of dynamometer card publication-title: Acta Pet. Sin. – volume: 37 start-page: 116 year: 2010 end-page: 120 ident: bib0030 article-title: Fault diagnosis of rod-pumping unit based on production rules system publication-title: Pet. Explor. Dev. – volume: 2 start-page: 126 year: 2013 end-page: 131 ident: bib0015 article-title: Application of the ontology to knowledge management of sucker-rod pumping system fault diagnosis publication-title: J. Autom. Control Eng. – volume: 19 start-page: 1438 year: 2009 end-page: 1450 ident: bib0105 article-title: Realistic disturbance modeling using hidden Markov models: application in model-based process control publication-title: J. Process Control – volume: 47 start-page: 1100 year: 2000 end-page: 1107 ident: bib0005 article-title: Oil well diagnosis by sensing terminal characteristics of the induction motor publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 73 year: 2013 end-page: 80 ident: bib0075 article-title: Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit publication-title: Pet. Sci. – volume: 20 start-page: 344 year: 2010 end-page: 359 ident: bib0160 article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring publication-title: J. Process Control – start-page: 503 year: 2015 end-page: 507 ident: bib0090 article-title: Fault diagnosis of sucker rod pumping system via extreme learning machines publication-title: The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent System – volume: 35 start-page: 279 year: 2016 end-page: 284 ident: bib0045 article-title: Exploring failure characteristics of indicator diagram of reciprocating pump based on gray matrix publication-title: Mech. Sci. Technol. Aerosp. Eng. – volume: 38 start-page: 109 year: 2011 end-page: 115 ident: bib0070 article-title: Accurate extraction of valve opening and closing points based on the physical meaning of surface dynamometer card publication-title: Pet. Explor. Dev. – volume: 20 start-page: 344 year: 2010 end-page: 359 ident: bib0115 article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring publication-title: J. Process Control – volume: 8 start-page: 964 year: 2012 end-page: 973 ident: bib0175 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnostics and prognostics publication-title: IEEE Trans. Ind. Inf. – volume: 12 start-page: 135 year: 2015 end-page: 147 ident: bib0060 article-title: Diagnosis for down-hole conditions of sucker rod pumping system based on the FBH-SC method publication-title: Pet. Sci. – volume: 44 start-page: 224 year: 2016 end-page: 235 ident: bib0110 article-title: Supervised linear dynamic system model for quality relate fault detection in dynamic process publication-title: J. Process Control – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0130 article-title: A tutorial on hidden Markov models and select applications in speech recognition publication-title: Process. IEEE – start-page: 1693 year: 2012 end-page: 1699 ident: bib0170 article-title: Fault detection and diagnosis of induction motors based on hidden Markov model. Electrical Machines (ICEM) publication-title: International Conference – volume: 20 start-page: 23 year: 2012 end-page: 25 ident: bib0040 article-title: Diagnosis of working drawing based on BP net and gray theory publication-title: Electron. Des. Eng. – volume: 10 start-page: 347 year: 2013 end-page: 360 ident: bib0020 article-title: Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA publication-title: Pet. Sci. – volume: 41 start-page: 744 year: 2014 end-page: 751 ident: bib0185 article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis publication-title: Expert Syst. Appl. – volume: 120 start-page: 200 year: 2016 end-page: 208 ident: bib0135 article-title: Independent vector analysis followed by HMM-based feature enhancement for robust speech recognition publication-title: Signal Process. – volume: 307 start-page: 285 year: 2013 end-page: 289 ident: bib0080 article-title: A fault diagnosis of sucker rod pumping system based on SVM publication-title: Appl. Mech. Mater. – start-page: 279 year: 2013 end-page: 284 ident: bib0035 article-title: Fault diagnosis for down-hole conditions in beam pumping units based on an improved fuzzy iterative self-organizing data analysis technique publication-title: 10th International Conference on Fuzzy Systems Ans Knowledge Discovery – volume: 53 start-page: 1 year: 2015 end-page: 13 ident: bib0155 article-title: Online apnea-bradycardia detection based on hidden semi-Markov models publication-title: Med. Biol. Eng. Comput. – volume: 214 start-page: 567 year: 2016 end-page: 574 ident: bib0145 article-title: A traffic flow state transition model for urban road network based on Hidden Markov Model publication-title: Neurocomputing – volume: 94 start-page: 319 year: 2014 end-page: 329 ident: bib0095 article-title: A generalized interval probability-based optimization method for training generalized hidden Markov model publication-title: Signal Process. – volume: 44 start-page: 134 year: 2016 end-page: 159 ident: bib0100 article-title: An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process publication-title: J. Process Control – volume: 82 start-page: 175 year: 2016 end-page: 185 ident: bib0125 article-title: Speaker adaptation of hybrid NN/HMM model for speech recognition based on singular value decomposition publication-title: J. Signal Process. Syst. – volume: 72–73 start-page: 65 year: 2016 end-page: 79 ident: bib0190 article-title: Detection and diagnosis of bearing using shift-invariant dictionary learning and hidden Markov model publication-title: Mech. Syst. Signal Process. – volume: 37 start-page: 88 year: 2008 end-page: 92 ident: bib0065 article-title: Production evaluation of oil wells using dynamometer card publication-title: Oil Field Equip. – volume: 51 start-page: 438 year: 2009 end-page: 451 ident: bib0120 article-title: Incorporating the voicing information into HMM-based automatic speech recognition in noisy environments publication-title: Speech Commun. – volume: 8 start-page: 964 year: 2012 end-page: 973 ident: bib0210 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnosis and prognostics publication-title: IEEE Trans. Ind. Inf. – volume: 12 start-page: 10 year: 2014 end-page: 18 ident: bib0200 article-title: Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method publication-title: Biomed. Signal Process. Control – volume: 14 start-page: 141 year: 1993 end-page: 150 ident: bib0055 article-title: Quantitative analysis of dynamometer cards for sucker rod pumping wells publication-title: Acta Pet. Sin. – volume: 132 start-page: 159 year: 2014 end-page: 165 ident: bib0150 article-title: Building a cepstrum-HMM kernal for apnea identification publication-title: Neurocomputing – volume: 40 start-page: 7024 year: 2013 end-page: 7033 ident: bib0180 article-title: Principal conponent analysis of the start-up transient and hidden Markov modeling for broken rotor bar diagnosis in asynchronous machines publication-title: Expert Syst. Appl. – volume: 41 start-page: 164 year: 1970 end-page: 171 ident: bib0205 article-title: A maximization technology occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. – volume: 29 start-page: 51 year: 2011 end-page: 63 ident: bib0140 article-title: Real-time 3D pointing gesture recognition for mobile robots with cascade HMM and particle filter publication-title: Image Vision Comput. – volume: 17 start-page: 313 year: 1997 end-page: 320 ident: bib0010 article-title: An alternative approach to the nanalysis of sucker-rod dynamics in vertical and deviated wells publication-title: J. Pet. Sci. Eng. – volume: 25 start-page: 2102 year: 2011 end-page: 2124 ident: bib0165 article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models publication-title: Mech. Syst. Signal Process. – volume: 20 start-page: 344 year: 2010 ident: 10.1016/j.jprocont.2017.09.007_bib0160 article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.12.002 – volume: 41 start-page: 164 issue: 1 year: 1970 ident: 10.1016/j.jprocont.2017.09.007_bib0205 article-title: A maximization technology occurring in the statistical analysis of probabilistic functions of Markov chains publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177697196 – start-page: 279 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0035 article-title: Fault diagnosis for down-hole conditions in beam pumping units based on an improved fuzzy iterative self-organizing data analysis technique publication-title: 10th International Conference on Fuzzy Systems Ans Knowledge Discovery – volume: 214 start-page: 567 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0145 article-title: A traffic flow state transition model for urban road network based on Hidden Markov Model publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.044 – volume: 6 start-page: 239 year: 2002 ident: 10.1016/j.jprocont.2017.09.007_bib0195 article-title: Learning and optimization using the clonal selection principle publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2002.1011539 – volume: 47 start-page: 1100 issue: 5 year: 2000 ident: 10.1016/j.jprocont.2017.09.007_bib0005 article-title: Oil well diagnosis by sensing terminal characteristics of the induction motor publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.873219 – volume: 44 start-page: 134 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0100 article-title: An on-line SAX and HMM-based anomaly detection and visualization tool for early disturbance discovery in a dynamic industrial process publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.05.007 – volume: 2 start-page: 126 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0015 article-title: Application of the ontology to knowledge management of sucker-rod pumping system fault diagnosis publication-title: J. Autom. Control Eng. doi: 10.12720/joace.1.2.126-131 – volume: 38 start-page: 109 issue: 1 year: 2011 ident: 10.1016/j.jprocont.2017.09.007_bib0070 article-title: Accurate extraction of valve opening and closing points based on the physical meaning of surface dynamometer card publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(11)60018-9 – volume: 12 start-page: 10 year: 2014 ident: 10.1016/j.jprocont.2017.09.007_bib0200 article-title: Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.07.010 – volume: 44 start-page: 224 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0110 article-title: Supervised linear dynamic system model for quality relate fault detection in dynamic process publication-title: J. Process Control doi: 10.1016/j.jprocont.2016.06.003 – volume: 25 start-page: 2102 year: 2011 ident: 10.1016/j.jprocont.2017.09.007_bib0165 article-title: Detection and diagnosis of bearing and cutting tool faults using hidden Markov models publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.01.013 – volume: 51 start-page: 438 year: 2009 ident: 10.1016/j.jprocont.2017.09.007_bib0120 article-title: Incorporating the voicing information into HMM-based automatic speech recognition in noisy environments publication-title: Speech Commun. doi: 10.1016/j.specom.2009.01.003 – volume: 58 start-page: 43 year: 2007 ident: 10.1016/j.jprocont.2017.09.007_bib0085 article-title: Application of self-organizing competitive neural network in fault diagnosis of sucker rod pumping system publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2006.11.008 – volume: 12 start-page: 135 year: 2015 ident: 10.1016/j.jprocont.2017.09.007_bib0060 article-title: Diagnosis for down-hole conditions of sucker rod pumping system based on the FBH-SC method publication-title: Pet. Sci. doi: 10.1007/s12182-014-0006-5 – start-page: 503 year: 2015 ident: 10.1016/j.jprocont.2017.09.007_bib0090 article-title: Fault diagnosis of sucker rod pumping system via extreme learning machines publication-title: The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent System – volume: 17 start-page: 313 year: 1997 ident: 10.1016/j.jprocont.2017.09.007_bib0010 article-title: An alternative approach to the nanalysis of sucker-rod dynamics in vertical and deviated wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/S0920-4105(96)00070-8 – volume: 37 start-page: 116 year: 2010 ident: 10.1016/j.jprocont.2017.09.007_bib0030 article-title: Fault diagnosis of rod-pumping unit based on production rules system publication-title: Pet. Explor. Dev. – volume: 20 start-page: 344 year: 2010 ident: 10.1016/j.jprocont.2017.09.007_bib0115 article-title: Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.12.002 – volume: 37 start-page: 88 issue: 5 year: 2008 ident: 10.1016/j.jprocont.2017.09.007_bib0065 article-title: Production evaluation of oil wells using dynamometer card publication-title: Oil Field Equip. – volume: 94 start-page: 319 year: 2014 ident: 10.1016/j.jprocont.2017.09.007_bib0095 article-title: A generalized interval probability-based optimization method for training generalized hidden Markov model publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.06.009 – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.jprocont.2017.09.007_bib0130 article-title: A tutorial on hidden Markov models and select applications in speech recognition publication-title: Process. IEEE doi: 10.1109/5.18626 – volume: 120 start-page: 200 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0135 article-title: Independent vector analysis followed by HMM-based feature enhancement for robust speech recognition publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.09.002 – volume: 132 start-page: 159 year: 2014 ident: 10.1016/j.jprocont.2017.09.007_bib0150 article-title: Building a cepstrum-HMM kernal for apnea identification publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.048 – volume: 72–73 start-page: 65 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0190 article-title: Detection and diagnosis of bearing using shift-invariant dictionary learning and hidden Markov model publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.022 – volume: 82 start-page: 175 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0125 article-title: Speaker adaptation of hybrid NN/HMM model for speech recognition based on singular value decomposition publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-015-1012-6 – volume: 41 start-page: 744 year: 2014 ident: 10.1016/j.jprocont.2017.09.007_bib0185 article-title: Increasing mapping based hidden Markov model for dynamic process monitoring and diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.07.098 – volume: 29 start-page: 51 year: 2011 ident: 10.1016/j.jprocont.2017.09.007_bib0140 article-title: Real-time 3D pointing gesture recognition for mobile robots with cascade HMM and particle filter publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2010.08.006 – start-page: 1693 year: 2012 ident: 10.1016/j.jprocont.2017.09.007_bib0170 article-title: Fault detection and diagnosis of induction motors based on hidden Markov model. Electrical Machines (ICEM) publication-title: International Conference – volume: 19 start-page: 1438 year: 2009 ident: 10.1016/j.jprocont.2017.09.007_bib0105 article-title: Realistic disturbance modeling using hidden Markov models: application in model-based process control publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.04.014 – volume: 8 start-page: 964 year: 2012 ident: 10.1016/j.jprocont.2017.09.007_bib0175 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnostics and prognostics publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2012.2205583 – volume: 307 start-page: 285 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0080 article-title: A fault diagnosis of sucker rod pumping system based on SVM publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.307.285 – volume: 3 start-page: 21 year: 1991 ident: 10.1016/j.jprocont.2017.09.007_bib0025 article-title: Use of advanced pattern recognition and knowledge based system in analyzing dynamometer cards publication-title: SPE Comput. Appl. – volume: 10 start-page: 73 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0075 article-title: Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit publication-title: Pet. Sci. doi: 10.1007/s12182-013-0252-y – volume: 40 start-page: 7024 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0180 article-title: Principal conponent analysis of the start-up transient and hidden Markov modeling for broken rotor bar diagnosis in asynchronous machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.06.006 – volume: 20 start-page: 23 issue: 17 year: 2012 ident: 10.1016/j.jprocont.2017.09.007_bib0040 article-title: Diagnosis of working drawing based on BP net and gray theory publication-title: Electron. Des. Eng. – volume: 35 start-page: 279 issue: 2 year: 2016 ident: 10.1016/j.jprocont.2017.09.007_bib0045 article-title: Exploring failure characteristics of indicator diagram of reciprocating pump based on gray matrix publication-title: Mech. Sci. Technol. Aerosp. Eng. – volume: 29 start-page: 619 issue: 4 year: 2008 ident: 10.1016/j.jprocont.2017.09.007_bib0050 article-title: Frequency spectrum analysis method for recognition of dynamometer card publication-title: Acta Pet. Sin. – volume: 10 start-page: 347 year: 2013 ident: 10.1016/j.jprocont.2017.09.007_bib0020 article-title: Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA publication-title: Pet. Sci. doi: 10.1007/s12182-013-0283-4 – volume: 14 start-page: 141 issue: 4 year: 1993 ident: 10.1016/j.jprocont.2017.09.007_bib0055 article-title: Quantitative analysis of dynamometer cards for sucker rod pumping wells publication-title: Acta Pet. Sin. – volume: 53 start-page: 1 year: 2015 ident: 10.1016/j.jprocont.2017.09.007_bib0155 article-title: Online apnea-bradycardia detection based on hidden semi-Markov models publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1207-1 – volume: 8 start-page: 964 issue: 4 year: 2012 ident: 10.1016/j.jprocont.2017.09.007_bib0210 article-title: A physically segmented hidden Markov model approach for continuous tool condition monitoring: diagnosis and prognostics publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2012.2205583 |
| SSID | ssj0003726 |
| Score | 2.3919868 |
| Snippet | •The paper analyzes the mechanism of dynamometer card.•A novel method, which is based on the curvature and the barycentric decomposition, is adopted to locate... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Barycentric decomposition Continuous hidden Markov model Dynamometer card Sucker rod pumping diagnosis Valve working position |
| Title | Sucker rod pumping diagnosis using valve working position and parameter optimal continuous hidden Markov model |
| URI | https://dx.doi.org/10.1016/j.jprocont.2017.09.007 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003726 issn: 0959-1524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4QvOjBB2rEV_bgtbTQdtseCZGgRi5Iwq3Zp0J0S-Thzd_uTh-KiQkHj9102s3OdGZ2-803ADecRwFVKnR4WwrHRnzpsDCRjuBKS0_FOs6r-B-HdDAO7ifhpAa9qhYGYZWl7y98eu6tyxG3XE13Pp26IzzBstEnaKOR2o0DVrAHEXYxaH3-wDz8KG-5lh934d0bVcKz1gyjRGYQU9mOcr5TbCv7V4DaCDr9Q9gvs0XSLSZ0BDVlGnBQdWIg5YfZgL0NWsFjMKMcLEGsbyRzqy47SGQBqZsuCCLdn4k1sLUiH8VROamgW4QZK8IQsIXPz6w_ebPvx8lPzSpbLcgLUo4YgiU-2ZrkfXROYNy_feoNnLKvgiP8yFs6XPg2LfAwVaPMo3bTl1BNYx6HQmqkAORJ7PsB0x0WSUap1vj_1G7MlKQy0Yl_CnWTGXUGJGaJirTPw6CjA-FRzlQQh9pjSLzXEaoJYbWYqShJx7H3xWtaoctmaaWEFJWQeklqldAE91tuXtBubJVIKl2lvwwotbFhi-z5P2QvYBevivLES6gv31fqyuYpS36dG-I17HTvHgbDL24v7Fw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHtSDD9SIzz14LRTabtujIRJU4AIk3Da73V2FaEvk4c3f7k4fiokJB6_bTrvZmc6r38wA3Arhu1QpzxINGVnG4kuLe6G0IqG0tFWgg7SKv9ennZH7OPbGJWgVtTAIq8x1f6bTU22dr9Tz06zPJpP6ADNYxvq4DRRSEzhswbbrNX2MwGqfPzgPx09nrqX5Lrx9rUx4WpuimUhiBFU2_LThKc6V_ctCrVmd9iHs5-4iuct2dAQlFVfgoBjFQPIvswJ7a30FjyEepGgJYpQjmRl-mUUiM0zdZE4Q6v5MjIStFPnIcuWkwG4RHhsSjogtfH5iFMqbeT9ufhIvk-WcvGDPkZhgjU-yIukgnRMYte-HrY6VD1awIse3F5aIHOMX2OirUW5TE_WFVNNABF4kNfYAFGHgOC7XTe5LTqnW-APVRGZKUhnq0DmFcpzE6gxIwEPla0d4blO7kU0FV27gaZtj571mpKrgFYfJorzrOA6_eGUFvGzKCiYwZAKzQ2aYUIX6N90s67uxkSIseMV-SRAzxmED7fk_aG9gpzPsdVn3of90Abt4JatVvITy4n2prozTshDXqVB-Ae8S7fE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sucker+rod+pumping+diagnosis+using+valve+working+position+and+parameter+optimal+continuous+hidden+Markov+model&rft.jtitle=Journal+of+process+control&rft.au=Zheng%2C+Boyuan&rft.au=Gao%2C+Xianwen&rft.date=2017-11-01&rft.issn=0959-1524&rft.volume=59&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.jprocont.2017.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2017_09_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |