Modeling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization

This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a model...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Serbian Chemical Society Vol. 83; no. 3; pp. 379 - 390
Main Authors Liu, Banghai, Jin, Chunji, Wan, Jiteng, Li, Pengfang, Yan, Huanxi
Format Journal Article
LanguageEnglish
Published Belgrade Journal of the Serbian Chemical Society 2018
Serbian Chemical Society
Subjects
Online AccessGet full text
ISSN0352-5139
1820-7421
1820-7421
DOI10.2298/JSC170721101L

Cover

Abstract This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process. nema
AbstractList This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO pro­cess, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process.
This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process. nema
This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process.
Author Li, Pengfang
Yan, Huanxi
Jin, Chunji
Wan, Jiteng
Liu, Banghai
Author_xml – sequence: 1
  givenname: Banghai
  surname: Liu
  fullname: Liu, Banghai
  organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China
– sequence: 2
  givenname: Chunji
  surname: Jin
  fullname: Jin, Chunji
  organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China
– sequence: 3
  givenname: Jiteng
  surname: Wan
  fullname: Wan, Jiteng
  organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China
– sequence: 4
  givenname: Pengfang
  surname: Li
  fullname: Li, Pengfang
  organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China
– sequence: 5
  givenname: Huanxi
  surname: Yan
  fullname: Yan, Huanxi
  organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China
BookMark eNpdkctu1DAUhi1UJKaFJftIbEnxNZclGnFpNYgFsLZObGfqwYmD7WhaXoJXrpuUkdrVsY_-_zu3c3Q2-tEg9JbgS0rb5sP1jy2pcU0JwWT3Am1IQ3FZc0rO0AYzQUtBWPsKncd4wJgKwfgG_fvmtXF23Bcw6sJPyQ727_otjDMqBa9uzGAVuMLfWg3J-rGYctbEWMxxkYZke6tsloxmDktIRx9-vy_2Jj-tKsDtfbDpZljKTA8O5UwRjxCG_1UX9Gv0sgcXzZvHeIF-ff70c_u13H3_crX9uCsVq3EqQemuUZVWVQe017zqBG55ns8Ar0ynqqbSLedCcWMU7TDToKAhom-hYsL07AJdrVzt4SCnYAcId9KDlUvCh718bFLWpG5Mo4D0NXDB2xYzrEmLcUt5XzOVWZcrax4nuDuCcycgwfLhNPIQ1ek0LhverYa8xz-ziUke_BzGPK-kWJCaVLzhWcVWlQo-xmB6qWxalpQCWHdiPzl7dpXPXM97eaq_Bxmlsos
CitedBy_id crossref_primary_10_1007_s43153_023_00332_z
crossref_primary_10_1016_j_ultsonch_2022_105966
crossref_primary_10_1016_j_ifset_2023_103531
crossref_primary_10_1016_j_compchemeng_2024_108950
crossref_primary_10_1016_j_lwt_2022_113491
crossref_primary_10_1016_j_chemosphere_2023_140873
ContentType Journal Article
Copyright 2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.2298/JSC170721101L
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1820-7421
EndPage 390
ExternalDocumentID oai_doaj_org_article_7178e8ca1f7a45499030d1900924f73c
10.2298/jsc170721101l
10_2298_JSC170721101L
GroupedDBID 29L
2WC
53G
53S
5GY
8FE
8FG
A8Z
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBS
EJD
EN8
EOJEC
ESTFP
ESX
GROUPED_DOAJ
GX1
HCIFZ
HH5
IPNFZ
KB.
KQ8
ML-
OBODZ
OK1
OVT
P2P
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
RIG
RNS
TR2
TUS
XSB
~8M
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c370t-acdb8c6dc6ba2fd46b5094513ea46ebc686d9445c4eec2b03daca815f9a635ef3
IEDL.DBID BENPR
ISSN 0352-5139
1820-7421
IngestDate Tue Oct 14 19:07:49 EDT 2025
Mon Sep 15 08:21:58 EDT 2025
Fri Jul 25 11:42:42 EDT 2025
Wed Oct 01 04:46:13 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-acdb8c6dc6ba2fd46b5094513ea46ebc686d9445c4eec2b03daca815f9a635ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2051716484?pq-origsite=%requestingapplication%&accountid=15518
PQID 2051716484
PQPubID 2046308
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7178e8ca1f7a45499030d1900924f73c
unpaywall_primary_10_2298_jsc170721101l
proquest_journals_2051716484
crossref_citationtrail_10_2298_JSC170721101L
crossref_primary_10_2298_JSC170721101L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Belgrade
PublicationPlace_xml – name: Belgrade
PublicationTitle Journal of the Serbian Chemical Society
PublicationYear 2018
Publisher Journal of the Serbian Chemical Society
Serbian Chemical Society
Publisher_xml – name: Journal of the Serbian Chemical Society
– name: Serbian Chemical Society
SSID ssj0025534
Score 2.161102
Snippet This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 379
SubjectTerms Acid Black 2
artificial neural network
Artificial neural networks
Back propagation networks
Current efficiency
Electrochemical oxidation
Energy consumption
genetic algorithm
Genetic algorithms
Mathematical models
Neural networks
Organic carbon
Oxidation
Particle swarm optimization
Process parameters
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS-kjoNmnRoTSXmGgtWZaO7dIQQttLE8jNSCM53eL1Lrsb0uRP9C939PCSJZReejI2gyVmRp75zMw3hLzHFIFXAFCE_BYBSs0Kq5kqDMdwJryVXodu5K_f5NmlOL-qrh6M-go1YYkeOCnuBOGG8grMuK2NCGAGvdJhFGMIHNqaQ_j6MqUHMJWhVlXxRBxVIdTCJCexa5alVifn3yfjmkXgM_6yFY0iaf9Wprl70y_M3a3pugdB5_Q5eZazRfox7fIFeeL7l2R3Mgxpe0V-h1lmoaOcmt7ROZ7_2fQ-3dI84QYyJQCd_5qmAUp0kboDaCh6R9FlrBdCR6SB3TJeYm34MUXvCk2O1HTX8-V0_WMWl1lkrdHVrVnOhlXjq_fI5enni8lZkWcsFMBrti4MOKtAOpDWlK0T0gZGPVSZN0J6C1JJp4WoQHgPpWXcGTBqXLXaoJF9y_fJTj_v_WtCrdBMMl567TE0gjXc6NoCRkgvnfRuRI4HXTeQCcjDHIyuQSASTNNsmWZEPmzEF4l542-Cn4LhNkKBMDs-QDdqskKaf7nRiBwOZm_yKV41ZSAwQzypxIgcbVzh0W5-rmCzm-7N_9jNAXmKiZlKv3oOyc56eePfYvKztu-in_8BCaQAqQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEF1BeuiJb0RQQXtAcKlTx16v7WOJqKqqVEgQKZys3dl1CTh25Djqx5_oX-6MvU4bVUhwsmKNs17v8868ZOYNYx8wRAgjAPAovkWCEvueTv3EUyG6M2G1tClVI389k8dTcTKLZnc_XVBWJb7L1I1krkalHtWrAxqX1GlxlUi804swaCFVOQTT6WO2IyMMwgdsZ3r27fBn-5-BsyGqhf7NQ_I37tQ1gyBNDn6vAK9uic-42PJGrWj_VqS5uy6X6upCFcU9p3P0lM360p0u1-TPaN3oEVw_VHL83_k8Y09cIMoPO-Q8Z49s-YLtTvr-by_ZDbVJo2J1rkrDK9xaFvPr7iN3zXPAqQ3w6nLe9Wbiy67wgFM-PZrWbSoSYpyTcGZ7aNPO9zkCl-onuSrOq3re_Fq0wywdkvnqQtWLftT2q1-x6dGXH5Njz7Vv8CCM_cZTYHQC0oDUKsiNkJrE-nC2VglpNchEmlSICIS1EGg_NApUMo7yVCF-bB6-ZoOyKu0bxrVIfemHgU0tel3QKlRprAGdr5VGWjNk-_0yZuC0zanFRpEhx6FVz06-TzarfjpkHzfmy07U42-GnwkTGyPS4m5PVPV55h5IhoQ4sQmocR4rQXQb902DcZaP1DaPQxiyvR5RmdsgVllA2mhIVRMxZJ82KHtwN1tgffvPlnts0NRr-w7jpUa_d-_GLQ9_FQ0
  priority: 102
  providerName: Unpaywall
Title Modeling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization
URI https://www.proquest.com/docview/2051716484
http://www.doiserbia.nb.rs/ft.aspx?id=0352-51391700101L
https://doaj.org/article/7178e8ca1f7a45499030d1900924f73c
UnpaywallVersion publishedVersion
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Chemistry: Open Access Full-Text Journals
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: ABDBF
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: A8Z
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1820-7421
  dateEnd: 20180131
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1820-7421
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025534
  issn: 0352-5139
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yaFcEE8RKNEeEFxi4djr9fpQoSQ0VBVEFRCpnKx9uS1ybDdJVeBX8JOZXT8gQnCybK28q53xznzrne8DeIEpQhgppTyb3yJAiX1PJj73RIjhjBrJTGKrkT8s2MmSnp5H53uwaGth7LHKdk10C7Uuld0jR5AeWWYXyumb6tqzqlH272oroSEaaQV95CjG9qEfWGasHvSnx4uzjx0Ei6KwJpSKEIJh8lOzbgZBwl-ffpqNY98BovH7nSjlyPx3MtCDm6IS329Fnv8RjOb34G6TRZJJbfb7sGeKB3Awa8XbHsJPq3FmK82JKDQpcV1YXf2ob0mjfKMaqgBSfruqhZVIVVcNEHsYHpuu3TkidFBiWS_dxZ0ZHxH0Olv8SER-gXO0vVyNXD9V44dkcyvWq7Zb9-5HsJwff56deI34gqfC2N96QmnJFdOKSRFkmjJpqfZwzoygzEjFONMJpZGixqhA-qEWSvBxlCUCrW-y8DH0irIwT4BImvjMDwOTGIyZSopQJLFUGDoN08zoAYzayU5Vw0xuBTLyFBGKtU26Y5sBvOyaVzUlx78aTq3lukaWSds9KNcXaTMhKcJZbrgS4ywW1IJlXPU0Zkk-AtMsDtUADlu7p83nvUl_O-MAXnW-8Ndovm5UN5r86f9f9AzuYC7G692dQ-ht1zfmOeY7WzmEfT5_N4T-ZPp2Oh82Lj10uwd4t1ycTb78AqSkBSY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuVXmJQAt74HGJhe1dr-1DhWholbZphKCVejP7cmnl2CZJFcqv4Bfx25hdrw0RgltPlq3V-jHjmfnsne9D6AWUCCSSUnqmvgWAEvueSP3E4wTSGdWC6dR0I59M2OiMHp1H52voZ9sLY5ZVtjHRBmpVSfONHEB6ZJhdaELf1l89oxpl_q62EhrcSSuoXUsx5ho7jvXNEiDcfPfwPdj7ZRge7J8OR55TGfAkif2Fx6USiWRKMsHDXFEmDKdcFBDNKdNCsoSplNJIUq1lKHyiuORJEOUph9vUOYF576ANSmgK4G9jb3_y4WMH-aKINARWEUA-KLYals8wTJM3R5-GQexbABaMV7KiFQ9YqXh712XNb5a8KP5IfgdbaNNVrfhd42b30Jou76PesBWLe4B-GE0109mOealwBXFoevm92cVOaUc6agJcfbtshJxw3XQpYLP4HobO7LoleCGwYdm0G7tGfYDBy02zJebFBdhk8WU6sOepnd_j-ZLPpu1p7dwP0dmtmOERWi-rUj9GWNDUZz4JdaohR0vBCU9jISFVa6aYVn00aB92Jh0TuhHkKDJARMY22Ypt-uhVN7xuKED-NXDPWK4bZJi77YFqdpG5B5IBfE50InmQx5wacA5RVkFV5gMQzmMi-2i7tXvmwsk8--38ffS684W_ruZqLrurKZ78f6LnqDc6PRln48PJ8VN0F-rApPmytI3WF7NrvQO11kI8cw6N0efbfod-ActWP3s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEF1BeuiJb0RQQXtAcKlTx16v7WOJqKqqVEgQKZys3dl1CTh25Djqx5_oX-6MvU4bVUhwsmKNs17v8868ZOYNYx8wRAgjAPAovkWCEvueTv3EUyG6M2G1tClVI389k8dTcTKLZnc_XVBWJb7L1I1krkalHtWrAxqX1GlxlUi804swaCFVOQTT6WO2IyMMwgdsZ3r27fBn-5-BsyGqhf7NQ_I37tQ1gyBNDn6vAK9uic-42PJGrWj_VqS5uy6X6upCFcU9p3P0lM360p0u1-TPaN3oEVw_VHL83_k8Y09cIMoPO-Q8Z49s-YLtTvr-by_ZDbVJo2J1rkrDK9xaFvPr7iN3zXPAqQ3w6nLe9Wbiy67wgFM-PZrWbSoSYpyTcGZ7aNPO9zkCl-onuSrOq3re_Fq0wywdkvnqQtWLftT2q1-x6dGXH5Njz7Vv8CCM_cZTYHQC0oDUKsiNkJrE-nC2VglpNchEmlSICIS1EGg_NApUMo7yVCF-bB6-ZoOyKu0bxrVIfemHgU0tel3QKlRprAGdr5VGWjNk-_0yZuC0zanFRpEhx6FVz06-TzarfjpkHzfmy07U42-GnwkTGyPS4m5PVPV55h5IhoQ4sQmocR4rQXQb902DcZaP1DaPQxiyvR5RmdsgVllA2mhIVRMxZJ82KHtwN1tgffvPlnts0NRr-w7jpUa_d-_GLQ9_FQ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+optimizing+an+electrochemical+oxidation+process+using+artificial+neural+network%2C+genetic+algorithm+and+particle+swarm+optimization&rft.jtitle=Journal+of+the+Serbian+Chemical+Society&rft.au=Liu%2C+Banghai&rft.au=Jin%2C+Chunji&rft.au=Wan%2C+Jiteng&rft.au=Li%2C+Pengfang&rft.date=2018&rft.issn=0352-5139&rft.eissn=1820-7421&rft.volume=83&rft.issue=3&rft.spage=379&rft.epage=390&rft_id=info:doi/10.2298%2FJSC170721101L&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_JSC170721101L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0352-5139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0352-5139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0352-5139&client=summon