Modeling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization
This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a model...
        Saved in:
      
    
          | Published in | Journal of the Serbian Chemical Society Vol. 83; no. 3; pp. 379 - 390 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Belgrade
          Journal of the Serbian Chemical Society
    
        2018
     Serbian Chemical Society  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0352-5139 1820-7421 1820-7421  | 
| DOI | 10.2298/JSC170721101L | 
Cover
| Abstract | This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process.
nema | 
    
|---|---|
| AbstractList | This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process. This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process. nema This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the relevant parameters of an electrochemical oxidation (EO) Acid Black 2 process. The back propagation neural network (BPNN) was used as a modelling tool. To avoid over-fitting, GA was applied to improve the generalized capability of BPNN by optimizing the weights. In addition, an optimization model was developed to assess the performance of the EO process, where total organic carbon (TOC) removal, mineralization current efficiency (MCE), and the energy consumption per unit of TOC (ECTOC) were considered. The operation conditions of EO were further optimized via PSO. The validation results indicted the proposed method to be a promising method to estimate the efficiency and to optimize the parameters of the EO process.  | 
    
| Author | Li, Pengfang Yan, Huanxi Jin, Chunji Wan, Jiteng Liu, Banghai  | 
    
| Author_xml | – sequence: 1 givenname: Banghai surname: Liu fullname: Liu, Banghai organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China – sequence: 2 givenname: Chunji surname: Jin fullname: Jin, Chunji organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China – sequence: 3 givenname: Jiteng surname: Wan fullname: Wan, Jiteng organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China – sequence: 4 givenname: Pengfang surname: Li fullname: Li, Pengfang organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China – sequence: 5 givenname: Huanxi surname: Yan fullname: Yan, Huanxi organization: Ocean University of China, College of Environmental Science and Engineering, Qingdao, Shandong Province, China  | 
    
| BookMark | eNpdkctu1DAUhi1UJKaFJftIbEnxNZclGnFpNYgFsLZObGfqwYmD7WhaXoJXrpuUkdrVsY_-_zu3c3Q2-tEg9JbgS0rb5sP1jy2pcU0JwWT3Am1IQ3FZc0rO0AYzQUtBWPsKncd4wJgKwfgG_fvmtXF23Bcw6sJPyQ727_otjDMqBa9uzGAVuMLfWg3J-rGYctbEWMxxkYZke6tsloxmDktIRx9-vy_2Jj-tKsDtfbDpZljKTA8O5UwRjxCG_1UX9Gv0sgcXzZvHeIF-ff70c_u13H3_crX9uCsVq3EqQemuUZVWVQe017zqBG55ns8Ar0ynqqbSLedCcWMU7TDToKAhom-hYsL07AJdrVzt4SCnYAcId9KDlUvCh718bFLWpG5Mo4D0NXDB2xYzrEmLcUt5XzOVWZcrax4nuDuCcycgwfLhNPIQ1ek0LhverYa8xz-ziUke_BzGPK-kWJCaVLzhWcVWlQo-xmB6qWxalpQCWHdiPzl7dpXPXM97eaq_Bxmlsos | 
    
| CitedBy_id | crossref_primary_10_1007_s43153_023_00332_z crossref_primary_10_1016_j_ultsonch_2022_105966 crossref_primary_10_1016_j_ifset_2023_103531 crossref_primary_10_1016_j_compchemeng_2024_108950 crossref_primary_10_1016_j_lwt_2022_113491 crossref_primary_10_1016_j_chemosphere_2023_140873  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2017. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.2298/JSC170721101L | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1820-7421 | 
    
| EndPage | 390 | 
    
| ExternalDocumentID | oai_doaj_org_article_7178e8ca1f7a45499030d1900924f73c 10.2298/jsc170721101l 10_2298_JSC170721101L  | 
    
| GroupedDBID | 29L 2WC 53G 53S 5GY 8FE 8FG A8Z AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ C1A CCPQU CITATION CS3 D1I DU5 E3Z EBS EJD EN8 EOJEC ESTFP ESX GROUPED_DOAJ GX1 HCIFZ HH5 IPNFZ KB. KQ8 ML- OBODZ OK1 OVT P2P PDBOC PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RIG RNS TR2 TUS XSB ~8M ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c370t-acdb8c6dc6ba2fd46b5094513ea46ebc686d9445c4eec2b03daca815f9a635ef3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0352-5139 1820-7421  | 
    
| IngestDate | Tue Oct 14 19:07:49 EDT 2025 Mon Sep 15 08:21:58 EDT 2025 Fri Jul 25 11:42:42 EDT 2025 Wed Oct 01 04:46:13 EDT 2025 Thu Apr 24 22:57:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c370t-acdb8c6dc6ba2fd46b5094513ea46ebc686d9445c4eec2b03daca815f9a635ef3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2051716484?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2051716484 | 
    
| PQPubID | 2046308 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7178e8ca1f7a45499030d1900924f73c unpaywall_primary_10_2298_jsc170721101l proquest_journals_2051716484 crossref_citationtrail_10_2298_JSC170721101L crossref_primary_10_2298_JSC170721101L  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-00-00 20180101 2018-01-01  | 
    
| PublicationDateYYYYMMDD | 2018-01-01 | 
    
| PublicationDate_xml | – year: 2018 text: 2018-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Belgrade | 
    
| PublicationPlace_xml | – name: Belgrade | 
    
| PublicationTitle | Journal of the Serbian Chemical Society | 
    
| PublicationYear | 2018 | 
    
| Publisher | Journal of the Serbian Chemical Society Serbian Chemical Society  | 
    
| Publisher_xml | – name: Journal of the Serbian Chemical Society – name: Serbian Chemical Society  | 
    
| SSID | ssj0025534 | 
    
| Score | 2.161102 | 
    
| Snippet | This study proposes a novel hybrid of artificial neural network (ANN), genetic algorithm (GA), and particle swarm optimization (PSO) to model and optimize the... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 379 | 
    
| SubjectTerms | Acid Black 2 artificial neural network Artificial neural networks Back propagation networks Current efficiency Electrochemical oxidation Energy consumption genetic algorithm Genetic algorithms Mathematical models Neural networks Organic carbon Oxidation Particle swarm optimization Process parameters  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS-kjoNmnRoTSXmGgtWZaO7dIQQttLE8jNSCM53eL1Lrsb0uRP9C939PCSJZReejI2gyVmRp75zMw3hLzHFIFXAFCE_BYBSs0Kq5kqDMdwJryVXodu5K_f5NmlOL-qrh6M-go1YYkeOCnuBOGG8grMuK2NCGAGvdJhFGMIHNqaQ_j6MqUHMJWhVlXxRBxVIdTCJCexa5alVifn3yfjmkXgM_6yFY0iaf9Wprl70y_M3a3pugdB5_Q5eZazRfox7fIFeeL7l2R3Mgxpe0V-h1lmoaOcmt7ROZ7_2fQ-3dI84QYyJQCd_5qmAUp0kboDaCh6R9FlrBdCR6SB3TJeYm34MUXvCk2O1HTX8-V0_WMWl1lkrdHVrVnOhlXjq_fI5enni8lZkWcsFMBrti4MOKtAOpDWlK0T0gZGPVSZN0J6C1JJp4WoQHgPpWXcGTBqXLXaoJF9y_fJTj_v_WtCrdBMMl567TE0gjXc6NoCRkgvnfRuRI4HXTeQCcjDHIyuQSASTNNsmWZEPmzEF4l542-Cn4LhNkKBMDs-QDdqskKaf7nRiBwOZm_yKV41ZSAwQzypxIgcbVzh0W5-rmCzm-7N_9jNAXmKiZlKv3oOyc56eePfYvKztu-in_8BCaQAqQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEF1BeuiJb0RQQXtAcKlTx16v7WOJqKqqVEgQKZys3dl1CTh25Djqx5_oX-6MvU4bVUhwsmKNs17v8868ZOYNYx8wRAgjAPAovkWCEvueTv3EUyG6M2G1tClVI389k8dTcTKLZnc_XVBWJb7L1I1krkalHtWrAxqX1GlxlUi804swaCFVOQTT6WO2IyMMwgdsZ3r27fBn-5-BsyGqhf7NQ_I37tQ1gyBNDn6vAK9uic-42PJGrWj_VqS5uy6X6upCFcU9p3P0lM360p0u1-TPaN3oEVw_VHL83_k8Y09cIMoPO-Q8Z49s-YLtTvr-by_ZDbVJo2J1rkrDK9xaFvPr7iN3zXPAqQ3w6nLe9Wbiy67wgFM-PZrWbSoSYpyTcGZ7aNPO9zkCl-onuSrOq3re_Fq0wywdkvnqQtWLftT2q1-x6dGXH5Njz7Vv8CCM_cZTYHQC0oDUKsiNkJrE-nC2VglpNchEmlSICIS1EGg_NApUMo7yVCF-bB6-ZoOyKu0bxrVIfemHgU0tel3QKlRprAGdr5VGWjNk-_0yZuC0zanFRpEhx6FVz06-TzarfjpkHzfmy07U42-GnwkTGyPS4m5PVPV55h5IhoQ4sQmocR4rQXQb902DcZaP1DaPQxiyvR5RmdsgVllA2mhIVRMxZJ82KHtwN1tgffvPlnts0NRr-w7jpUa_d-_GLQ9_FQ0 priority: 102 providerName: Unpaywall  | 
    
| Title | Modeling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization | 
    
| URI | https://www.proquest.com/docview/2051716484 http://www.doiserbia.nb.rs/ft.aspx?id=0352-51391700101L https://doaj.org/article/7178e8ca1f7a45499030d1900924f73c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Chemistry: Open Access Full-Text Journals customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: ABDBF dateStart: 20070301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: A8Z dateStart: 20060601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1820-7421 dateEnd: 20180131 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1820-7421 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025534 issn: 0352-5139 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61yaFcEE8RKNEeEFxi4djr9fpQoSQ0VBVEFRCpnKx9uS1ybDdJVeBX8JOZXT8gQnCybK28q53xznzrne8DeIEpQhgppTyb3yJAiX1PJj73RIjhjBrJTGKrkT8s2MmSnp5H53uwaGth7LHKdk10C7Uuld0jR5AeWWYXyumb6tqzqlH272oroSEaaQV95CjG9qEfWGasHvSnx4uzjx0Ei6KwJpSKEIJh8lOzbgZBwl-ffpqNY98BovH7nSjlyPx3MtCDm6IS329Fnv8RjOb34G6TRZJJbfb7sGeKB3Awa8XbHsJPq3FmK82JKDQpcV1YXf2ob0mjfKMaqgBSfruqhZVIVVcNEHsYHpuu3TkidFBiWS_dxZ0ZHxH0Olv8SER-gXO0vVyNXD9V44dkcyvWq7Zb9-5HsJwff56deI34gqfC2N96QmnJFdOKSRFkmjJpqfZwzoygzEjFONMJpZGixqhA-qEWSvBxlCUCrW-y8DH0irIwT4BImvjMDwOTGIyZSopQJLFUGDoN08zoAYzayU5Vw0xuBTLyFBGKtU26Y5sBvOyaVzUlx78aTq3lukaWSds9KNcXaTMhKcJZbrgS4ywW1IJlXPU0Zkk-AtMsDtUADlu7p83nvUl_O-MAXnW-8Ndovm5UN5r86f9f9AzuYC7G692dQ-ht1zfmOeY7WzmEfT5_N4T-ZPp2Oh82Lj10uwd4t1ycTb78AqSkBSY | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9hAuVXmJQAt74HGJhe1dr-1DhWholbZphKCVejP7cmnl2CZJFcqv4Bfx25hdrw0RgltPlq3V-jHjmfnsne9D6AWUCCSSUnqmvgWAEvueSP3E4wTSGdWC6dR0I59M2OiMHp1H52voZ9sLY5ZVtjHRBmpVSfONHEB6ZJhdaELf1l89oxpl_q62EhrcSSuoXUsx5ho7jvXNEiDcfPfwPdj7ZRge7J8OR55TGfAkif2Fx6USiWRKMsHDXFEmDKdcFBDNKdNCsoSplNJIUq1lKHyiuORJEOUph9vUOYF576ANSmgK4G9jb3_y4WMH-aKINARWEUA-KLYals8wTJM3R5-GQexbABaMV7KiFQ9YqXh712XNb5a8KP5IfgdbaNNVrfhd42b30Jou76PesBWLe4B-GE0109mOealwBXFoevm92cVOaUc6agJcfbtshJxw3XQpYLP4HobO7LoleCGwYdm0G7tGfYDBy02zJebFBdhk8WU6sOepnd_j-ZLPpu1p7dwP0dmtmOERWi-rUj9GWNDUZz4JdaohR0vBCU9jISFVa6aYVn00aB92Jh0TuhHkKDJARMY22Ypt-uhVN7xuKED-NXDPWK4bZJi77YFqdpG5B5IBfE50InmQx5wacA5RVkFV5gMQzmMi-2i7tXvmwsk8--38ffS684W_ruZqLrurKZ78f6LnqDc6PRln48PJ8VN0F-rApPmytI3WF7NrvQO11kI8cw6N0efbfod-ActWP3s | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEF1BeuiJb0RQQXtAcKlTx16v7WOJqKqqVEgQKZys3dl1CTh25Djqx5_oX-6MvU4bVUhwsmKNs17v8868ZOYNYx8wRAgjAPAovkWCEvueTv3EUyG6M2G1tClVI389k8dTcTKLZnc_XVBWJb7L1I1krkalHtWrAxqX1GlxlUi804swaCFVOQTT6WO2IyMMwgdsZ3r27fBn-5-BsyGqhf7NQ_I37tQ1gyBNDn6vAK9uic-42PJGrWj_VqS5uy6X6upCFcU9p3P0lM360p0u1-TPaN3oEVw_VHL83_k8Y09cIMoPO-Q8Z49s-YLtTvr-by_ZDbVJo2J1rkrDK9xaFvPr7iN3zXPAqQ3w6nLe9Wbiy67wgFM-PZrWbSoSYpyTcGZ7aNPO9zkCl-onuSrOq3re_Fq0wywdkvnqQtWLftT2q1-x6dGXH5Njz7Vv8CCM_cZTYHQC0oDUKsiNkJrE-nC2VglpNchEmlSICIS1EGg_NApUMo7yVCF-bB6-ZoOyKu0bxrVIfemHgU0tel3QKlRprAGdr5VGWjNk-_0yZuC0zanFRpEhx6FVz06-TzarfjpkHzfmy07U42-GnwkTGyPS4m5PVPV55h5IhoQ4sQmocR4rQXQb902DcZaP1DaPQxiyvR5RmdsgVllA2mhIVRMxZJ82KHtwN1tgffvPlnts0NRr-w7jpUa_d-_GLQ9_FQ0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+optimizing+an+electrochemical+oxidation+process+using+artificial+neural+network%2C+genetic+algorithm+and+particle+swarm+optimization&rft.jtitle=Journal+of+the+Serbian+Chemical+Society&rft.au=Liu%2C+Banghai&rft.au=Jin%2C+Chunji&rft.au=Wan%2C+Jiteng&rft.au=Li%2C+Pengfang&rft.date=2018&rft.issn=0352-5139&rft.eissn=1820-7421&rft.volume=83&rft.issue=3&rft.spage=379&rft.epage=390&rft_id=info:doi/10.2298%2FJSC170721101L&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_JSC170721101L | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0352-5139&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0352-5139&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0352-5139&client=summon |