Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry
The concept of the mean radiant temperature (Tmrt) allows the study of radiative exchanges between a human and its environment. It presupposes that the radiant effects on the person of the actual environment, which is generally heterogeneous, and the virtual environment, which is defined as homogene...
Saved in:
Published in | Atmosphere Vol. 11; no. 8; p. 805 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4433 2073-4433 |
DOI | 10.3390/atmos11080805 |
Cover
Abstract | The concept of the mean radiant temperature (Tmrt) allows the study of radiative exchanges between a human and its environment. It presupposes that the radiant effects on the person of the actual environment, which is generally heterogeneous, and the virtual environment, which is defined as homogeneous, are identical. ISO 7726 specifies the required accuracy in Tmrt as input of rational thermal indices, outdoors ±5 (K). Tmrt accounts for the radiant heat absorbed by skin/clothing from the shortwave (SW) and longwave (LW) spectral bands. Most of the radiant components are isotropic. However, there are anisotropic SW components; namely the direct irradiance and under clear or partly obstructed skies a significant circumsolar fraction (fcs) in the diffuse irradiance. Both originate from the close proximity of the solar disk. This study highlights the effect of fcs on Tmrt. In the scope of human biometeorology a standing body posture is standard. For unidirectional irradiances its radiant cross-section varies dependent on the solar altitude. Active radiometry in deriving Tmrt is based on measured irradiances. One method is the Klima-Michel-Modell (KMM) that uses readily available measurements from standard meteorologically radiant observations. KMM references Fanger’s area projection factors that are derived from precise measurements of real humans. Thus, KMM serves as reference in evaluation of further methods. One is the six-directional instrument (Tmrt,r,6−Dir). Slightly simplifying a standing human, it represents a subject as a rectangular solid. Tmrt,r,6−Dir is derived based on measured irradiances incident on the vertical and horizontal planes. In passive radiometry the energy balance equation of a black globe thermometer is solved that leads to Tmrt,Tg,BG. fcs significantly impacts Tmrt with noticeably reduced values for high and increased for low solar altitudes. Hence, accounting for fcs is essential for the accuracy of Tmrt. For KMM an extension to an existing algorithm is provided in order to include fcs into the Tmrt calculation that results in Tmrt,r,KMM. For Tmrt,r,6−Dir the radiant cross-section of the solid depends to a minor extent on its azimuth relative to the solar azimuth. As a result Tmrt,r,6−Dir slightly scatters compared to Tmrt,r,KMM. However, it remains within ±2 (K). Tmrt,Tg,BG compared to Tmrt,r,KMM complies only at night with the ISO 7726 bin of ±5 K. Tmrt,Tg,BG significantly overestimates Tmrt,r,KMM during the daytime, because of its greater SW absorptance compared to skin/clothing and to a smaller extent because the standing posture is represented by a sphere. Particularly in sunny conditions, Tmrt,Tg,BG is subject to considerable variance. Thus, outdoors during the daytime, Tmrt,Tg,BG is unable to serve as an appropriate input for the calculation of rational-based thermal indices. |
---|---|
AbstractList | The concept of the mean radiant temperature (Tmrt) allows the study of radiative exchanges between a human and its environment. It presupposes that the radiant effects on the person of the actual environment, which is generally heterogeneous, and the virtual environment, which is defined as homogeneous, are identical. ISO 7726 specifies the required accuracy in Tmrt as input of rational thermal indices, outdoors ±5 (K). Tmrt accounts for the radiant heat absorbed by skin/clothing from the shortwave (SW) and longwave (LW) spectral bands. Most of the radiant components are isotropic. However, there are anisotropic SW components; namely the direct irradiance and under clear or partly obstructed skies a significant circumsolar fraction (fcs) in the diffuse irradiance. Both originate from the close proximity of the solar disk. This study highlights the effect of fcs on Tmrt. In the scope of human biometeorology a standing body posture is standard. For unidirectional irradiances its radiant cross-section varies dependent on the solar altitude. Active radiometry in deriving Tmrt is based on measured irradiances. One method is the Klima-Michel-Modell (KMM) that uses readily available measurements from standard meteorologically radiant observations. KMM references Fanger’s area projection factors that are derived from precise measurements of real humans. Thus, KMM serves as reference in evaluation of further methods. One is the six-directional instrument (Tmrt,r,6−Dir). Slightly simplifying a standing human, it represents a subject as a rectangular solid. Tmrt,r,6−Dir is derived based on measured irradiances incident on the vertical and horizontal planes. In passive radiometry the energy balance equation of a black globe thermometer is solved that leads to Tmrt,Tg,BG. fcs significantly impacts Tmrt with noticeably reduced values for high and increased for low solar altitudes. Hence, accounting for fcs is essential for the accuracy of Tmrt. For KMM an extension to an existing algorithm is provided in order to include fcs into the Tmrt calculation that results in Tmrt,r,KMM. For Tmrt,r,6−Dir the radiant cross-section of the solid depends to a minor extent on its azimuth relative to the solar azimuth. As a result Tmrt,r,6−Dir slightly scatters compared to Tmrt,r,KMM. However, it remains within ±2 (K). Tmrt,Tg,BG compared to Tmrt,r,KMM complies only at night with the ISO 7726 bin of ±5 K. Tmrt,Tg,BG significantly overestimates Tmrt,r,KMM during the daytime, because of its greater SW absorptance compared to skin/clothing and to a smaller extent because the standing posture is represented by a sphere. Particularly in sunny conditions, Tmrt,Tg,BG is subject to considerable variance. Thus, outdoors during the daytime, Tmrt,Tg,BG is unable to serve as an appropriate input for the calculation of rational-based thermal indices. |
Author | Staiger, Henning Matzarakis, Andreas |
Author_xml | – sequence: 1 givenname: Henning surname: Staiger fullname: Staiger, Henning – sequence: 2 givenname: Andreas orcidid: 0000-0003-3076-555X surname: Matzarakis fullname: Matzarakis, Andreas |
BookMark | eNptUU1LAzEQDVLBWnv0HvC8muzsbnaPpX4VlIrUc5jNJrKlu6lJVui_N7UKKs4c5s3w3uPBnJJRb3tNyDlnlwAVu8LQWc85K2PnR2ScMgFJlgGMfuATMvV-zWJlFaSQjclyptTgUO2oNfRRY0-fsWmxD3Slu612GAan6bV27btuqHG2ozMV4kKxb-gTer_He43tdHC7M3JscOP19GtOyMvtzWp-nzws7xbz2UOiQLCQYK1yMDkywcFUMYwQVWG0YjlkvICihiotVBNL8ZKJRmFTco6IkBUplgImZHHwbSyu5da1HbqdtNjKz4N1rxJdaNVGS6wqYaJY10ZluuDISlUgq7HhBk1ZRq-Lg9fW2bdB-yDXdnB9jC_TDBgXOeRFZMGBpZz13mkjVRswtLYPDtuN5EzuHyF_PSKqkj-q76z_8z8AksCMpw |
CitedBy_id | crossref_primary_10_1007_s00484_022_02362_7 crossref_primary_10_3390_atmos12030296 crossref_primary_10_3390_atmos12060721 crossref_primary_10_3390_s22051828 crossref_primary_10_1016_j_buildenv_2022_109292 crossref_primary_10_7163_PrzG_2023_3_4 crossref_primary_10_1016_j_buildenv_2022_109781 crossref_primary_10_3390_atmos13050809 crossref_primary_10_1016_j_buildenv_2023_110269 crossref_primary_10_1007_s00484_024_02646_0 crossref_primary_10_1016_j_jobe_2021_103345 crossref_primary_10_1016_j_buildenv_2022_109004 crossref_primary_10_1016_j_uclim_2022_101210 crossref_primary_10_3390_atmos12050621 crossref_primary_10_1007_s00484_021_02213_x crossref_primary_10_1016_j_buildenv_2023_111054 crossref_primary_10_1016_j_uclim_2024_101909 crossref_primary_10_1038_s41598_022_10172_5 crossref_primary_10_1016_j_buildenv_2022_109916 |
Cites_doi | 10.1007/s00484-009-0207-6 10.1007/s00484-013-0765-5 10.1007/s00484-006-0050-y 10.1007/s00484-010-0385-2 10.1007/BF00412787 10.1017/S0022172400043242 10.1007/s00484-004-0214-6 10.1016/0038-092X(90)90060-P 10.1016/0038-092X(94)00115-T 10.1080/0002889738506808 10.1016/j.applthermaleng.2009.12.003 10.1016/j.buildenv.2015.03.002 10.2486/indhealth.MS1352 10.1007/s00484-015-1024-8 10.1016/0038-092X(90)90149-7 10.1080/0002889748507003 10.1152/jappl.1959.14.4.649 10.1016/j.solener.2008.11.004 10.1007/s00484-011-0416-7 10.1007/BF01755487 10.1016/0038-092X(90)90036-C 10.1007/s00704-016-2003-7 10.1127/metz/2017/0836 10.1016/S0263-2241(00)00033-6 10.1007/s00484-014-0843-3 10.1088/0022-3735/1/9/424 10.2486/indhealth.2012-0160 10.1080/00038628.1999.9696845 10.1016/B978-075065974-1/50016-4 10.1007/s00484-008-0162-7 10.1017/S0022172400011864 10.1016/j.solener.2008.07.015 10.1002/joc.1537 10.1115/1.3450469 10.2486/indhealth.44.388 10.3390/atmos10010018 10.1007/s00704-014-1211-2 10.1152/jappl.1970.29.5.750 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2 10.1127/0941-2948/2011/0499 10.1007/s00704-013-1081-z 10.1080/15459620802310770 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI SOI DOA |
DOI | 10.3390/atmos11080805 |
DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2073-4433 |
ExternalDocumentID | oai_doaj_org_article_a997f11aebfc4e61a08c6a0bad1faf88 10_3390_atmos11080805 |
GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX ADMLS AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO K6- KQ8 MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c370t-abc53f5a0713f94937796fec05341636b3926cddddc1807dcad811aaa3462a873 |
IEDL.DBID | BENPR |
ISSN | 2073-4433 |
IngestDate | Wed Aug 27 01:26:53 EDT 2025 Mon Jun 30 11:26:13 EDT 2025 Tue Jul 01 02:08:11 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-abc53f5a0713f94937796fec05341636b3926cddddc1807dcad811aaa3462a873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3076-555X |
OpenAccessLink | https://www.proquest.com/docview/2430175356?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2430175356 |
PQPubID | 2032431 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a997f11aebfc4e61a08c6a0bad1faf88 proquest_journals_2430175356 crossref_citationtrail_10_3390_atmos11080805 crossref_primary_10_3390_atmos11080805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Atmosphere |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Park (ref_11) 2011; 55 Vuilleumier (ref_72) 2017; 26 Lindberg (ref_73) 2008; 52 ref_14 ref_57 ref_12 ref_54 ref_53 Kantor (ref_4) 2011; 3 Azer (ref_52) 1977; 83 ref_19 Bernard (ref_50) 2013; 51 (ref_65) 1988; 60 Sanchez (ref_28) 2012; 117 ref_61 Kantor (ref_45) 2014; 58 Gagge (ref_7) 1986; 92 Bond (ref_56) 1955; 36 Nikolopoulou (ref_20) 1999; 42 ref_69 Perez (ref_23) 1990; 45 Hodder (ref_26) 2007; 51 ref_22 Humphreys (ref_64) 1977; 20 Thorsson (ref_21) 2007; 27 Weihs (ref_76) 2012; 56 Vernon (ref_17) 1932; 14 Juang (ref_62) 2007; 15 Buonanno (ref_49) 2001; 29 Matzarakis (ref_75) 2011; 20 Hellon (ref_36) 1959; 14 Pappenberger (ref_77) 2015; 59 Gaspar (ref_24) 2009; 53 Kuehn (ref_39) 1970; 29 Epstein (ref_66) 2006; 44 ref_33 ref_32 Reindl (ref_31) 1990; 45 ref_30 Fontana (ref_37) 2010; 30 ref_74 Yaglou (ref_18) 1957; 16 Wang (ref_55) 2015; 98 Hey (ref_59) 1968; 1 Wilbert (ref_71) 1734; 1734 Rosenfelder (ref_79) 2016; 60 Kee (ref_58) 1976; 98 ref_38 Lemke (ref_67) 2012; 50 Bedford (ref_16) 1934; 34 Graves (ref_35) 1974; 35 Chen (ref_46) 2014; 118 Hatch (ref_60) 1973; 34 Kubaha (ref_10) 2004; 49 (ref_15) 1992; 44 Gueymard (ref_41) 2009; 83 Vincent (ref_63) 1939; 39 ref_47 Batlles (ref_27) 1995; 54 Malchaire (ref_68) 2014; 58 ref_44 ref_43 ref_42 ref_1 Walter (ref_78) 2018; 131 ref_3 ref_2 ref_48 ref_9 Stolwijk (ref_40) 1966; 291 ref_8 Ohmura (ref_13) 1998; 79 Sullivan (ref_51) 1976; 82 Gueymard (ref_25) 2009; 83 Ineichen (ref_29) 1990; 44 Liljegren (ref_34) 2008; 5 Kantor (ref_70) 2015; 121 Bohnenkamp (ref_5) 1931; 228 ref_6 |
References_xml | – ident: ref_9 – volume: 1734 start-page: 11 year: 1734 ident: ref_71 article-title: Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error publication-title: AIP Conf. Proc. – volume: 53 start-page: 221 year: 2009 ident: ref_24 article-title: Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-009-0207-6 – ident: ref_74 – volume: 58 start-page: 1615 year: 2014 ident: ref_45 article-title: Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-013-0765-5 – volume: 51 start-page: 233 year: 2007 ident: ref_26 article-title: The effects of solar radiation on thermal comfort publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-006-0050-y – volume: 55 start-page: 695 year: 2011 ident: ref_11 article-title: Human body area factors for radiation exchange analysis: Standing and walking postures publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-010-0385-2 – volume: 291 start-page: 129 year: 1966 ident: ref_40 article-title: Temperature regulation in man—A theoretical study publication-title: Pflügers Archiv doi: 10.1007/BF00412787 – volume: 34 start-page: 458 year: 1934 ident: ref_16 article-title: The globe thermometer in studies of heating and ventilation publication-title: Epidemiol. Infect. doi: 10.1017/S0022172400043242 – volume: 49 start-page: 113 year: 2004 ident: ref_10 article-title: Human projected area factors for detailed direct and diffuse solar radiation analysis publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-004-0214-6 – volume: 45 start-page: 1 year: 1990 ident: ref_31 article-title: Diffuse fraction correlations publication-title: Sol. Energy doi: 10.1016/0038-092X(90)90060-P – volume: 60 start-page: 10 year: 1988 ident: ref_65 article-title: Ping-pong globe thermometers for mean radiant temperatures publication-title: Heat. Vent. Eng. – ident: ref_42 – ident: ref_61 – ident: ref_1 – volume: 54 start-page: 105 year: 1995 ident: ref_27 article-title: On shadowband correction methods for diffuse irradiance measurements publication-title: Sol. Energy doi: 10.1016/0038-092X(94)00115-T – volume: 34 start-page: 66 year: 1973 ident: ref_60 article-title: Design requirements and limitations of a single-reading heat stress meter publication-title: Am. Ind. Hyg. Assoc. J. doi: 10.1080/0002889738506808 – volume: 30 start-page: 732 year: 2010 ident: ref_37 article-title: Experimental study on the globe thermometer behaviour in conditions of asymmetry of the radiant temperature publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.12.003 – volume: 98 start-page: 279 year: 2015 ident: ref_55 article-title: Suitability of acrylic and copper globe thermometers for diurnal outdoor settings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.03.002 – volume: 50 start-page: 267 year: 2012 ident: ref_67 article-title: Calculating workplace WBGT from meteorological data: A tool for climate change assessment publication-title: Ind. Health doi: 10.2486/indhealth.MS1352 – volume: 60 start-page: 277 year: 2016 ident: ref_79 article-title: Effects of ventilation behaviour on indoor heat load based on test reference years publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-015-1024-8 – volume: 14 start-page: 95 year: 1932 ident: ref_17 article-title: The measurement of radiant heat in relation to human comfort publication-title: J. Ind. Hyg. – volume: 44 start-page: 207 year: 1990 ident: ref_29 article-title: Ground-reflected radiation and albedo publication-title: Sol. Energy doi: 10.1016/0038-092X(90)90149-7 – ident: ref_8 – volume: 117 start-page: 8 year: 2012 ident: ref_28 article-title: Comparison of shadow-ring correction models for diffuse solar irradiance publication-title: J. Geophys. Res. – volume: 35 start-page: 30 year: 1974 ident: ref_35 article-title: Globe thermometer evaluation publication-title: Am. Ind. Hyg. Ass. J. doi: 10.1080/0002889748507003 – volume: 14 start-page: 649 year: 1959 ident: ref_36 article-title: Improvements to the globe thermometer publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1959.14.4.649 – ident: ref_48 – ident: ref_69 – volume: 83 start-page: 432 year: 2009 ident: ref_25 article-title: Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications publication-title: Sol. Energy doi: 10.1016/j.solener.2008.11.004 – volume: 56 start-page: 537 year: 2012 ident: ref_76 article-title: The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data publication-title: Int. J. Biometeor. doi: 10.1007/s00484-011-0416-7 – volume: 228 start-page: 79 year: 1931 ident: ref_5 article-title: Untersuchungen zu den Grundlagen des Energie- und Stoffwechsels. III. Mitteilung: Ein neuer Weg zur Bestimmung der für die Wärme-strahlung maßgebenden Oberfläche des Menschen. Die ”mittlere Strahlungstemperatur“ publication-title: Pflüger’s Archiv doi: 10.1007/BF01755487 – volume: 45 start-page: 111 year: 1990 ident: ref_23 article-title: Making full use of the clearness index for parameterizing hourly insolation conditions publication-title: Sol. Energy doi: 10.1016/0038-092X(90)90036-C – volume: 20 start-page: 135 year: 1977 ident: ref_64 article-title: The optimum diameter for a globe thermometer for use indoors publication-title: Ann. Occup. Hyg. – ident: ref_38 – volume: 131 start-page: 899 year: 2018 ident: ref_78 article-title: High-resolution grids of hourly meteorological variables for Germany publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-016-2003-7 – volume: 26 start-page: 485 year: 2017 ident: ref_72 article-title: Performance Evaluation of Radiation Sensors for the Solar Energy Sector publication-title: Meteorologische Zeitschrift doi: 10.1127/metz/2017/0836 – volume: 29 start-page: 127 year: 2001 ident: ref_49 article-title: Direct and indirect measurement of WBGT index in transversal flow publication-title: Measurement doi: 10.1016/S0263-2241(00)00033-6 – ident: ref_53 – volume: 59 start-page: 311 year: 2015 ident: ref_77 article-title: Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI) publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-014-0843-3 – ident: ref_30 – volume: 1 start-page: 955 year: 1968 ident: ref_59 article-title: Small globe thermometers publication-title: J. Phys. E Sci. Instrum. doi: 10.1088/0022-3735/1/9/424 – ident: ref_3 – volume: 51 start-page: 79 year: 2013 ident: ref_50 article-title: Empirical approach to outdoor WBGT from meteorological data and performance of two different instrument designs publication-title: Ind. Health doi: 10.2486/indhealth.2012-0160 – volume: 82 start-page: 279 year: 1976 ident: ref_51 article-title: A method of calculation of WBGT from environmental factors publication-title: ASHRAE Trans. – volume: 42 start-page: 27 year: 1999 ident: ref_20 article-title: Improvements to the Globe Thermometer for Outdoor Use publication-title: Archit. Sci. Rev. doi: 10.1080/00038628.1999.9696845 – ident: ref_47 – volume: 58 start-page: 955 year: 2014 ident: ref_68 article-title: WBGT Index revisited after 60 years of use publication-title: Ann. Occup. Hyg. – ident: ref_32 doi: 10.1016/B978-075065974-1/50016-4 – volume: 52 start-page: 697 year: 2008 ident: ref_73 article-title: SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-008-0162-7 – volume: 39 start-page: 238 year: 1939 ident: ref_63 article-title: Improvements in the globe thermometer publication-title: J. Hyg. Camb. doi: 10.1017/S0022172400011864 – ident: ref_14 – ident: ref_44 – volume: 36 start-page: 251 year: 1955 ident: ref_56 article-title: The globe thermometer in agricultural research publication-title: Agric. Eng. – volume: 83 start-page: 171 year: 2009 ident: ref_41 article-title: Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling publication-title: Sol. Energy doi: 10.1016/j.solener.2008.07.015 – volume: 15 start-page: 191 year: 2007 ident: ref_62 article-title: The Effect of Thermal Factors on the Measurement of Wet Bulb Globe Temperature publication-title: J. Occup. Saf. Health – volume: 92 start-page: 709 year: 1986 ident: ref_7 article-title: A Standard Predictive Index of Human Response to the Thermal Environment publication-title: ASHRAE Trans. – ident: ref_6 – volume: 27 start-page: 1983 year: 2007 ident: ref_21 article-title: Different methods for estimating the mean radiant temperature in an outdoor urban setting publication-title: Int. J. Climatol. doi: 10.1002/joc.1537 – volume: 98 start-page: 55 year: 1976 ident: ref_58 article-title: Natural convection of a heat-generating fluid within closed vertical cylinders and spheres publication-title: J. Heat Transfer. doi: 10.1115/1.3450469 – volume: 83 start-page: 30 year: 1977 ident: ref_52 article-title: OSHA heat stress standards and the WBGT index publication-title: ASHRAE Trans. – volume: 44 start-page: 147 year: 1992 ident: ref_15 article-title: Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur im Freien publication-title: Wetter und Leben – ident: ref_33 – ident: ref_54 – volume: 3 start-page: 90 year: 2011 ident: ref_4 article-title: The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature publication-title: Cent. Eur. J. Geosci. – ident: ref_12 – volume: 44 start-page: 388 year: 2006 ident: ref_66 article-title: Thermal comfort and the heat stress indices publication-title: Ind. Health doi: 10.2486/indhealth.44.388 – ident: ref_2 doi: 10.3390/atmos10010018 – volume: 121 start-page: 99 year: 2015 ident: ref_70 article-title: Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1211-2 – volume: 29 start-page: 750 year: 1970 ident: ref_39 article-title: Theory of the globe thermometer publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1970.29.5.750 – volume: 79 start-page: 2115 year: 1998 ident: ref_13 article-title: Baseline Surface Radiation Network (BRSN/WRCP): New Precision Radiometry for Climate Research publication-title: Bull. Am. Meteor. Soc. doi: 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2 – volume: 20 start-page: 39 year: 2011 ident: ref_75 article-title: Sky view factor as a parameter in applied climatology—Rapid estimation by the SkyHelios model publication-title: Meteorologische Zeitschrift doi: 10.1127/0941-2948/2011/0499 – ident: ref_19 – ident: ref_43 – ident: ref_22 – volume: 118 start-page: 535 year: 2014 ident: ref_46 article-title: Comparison of mean radiant temperature from field experiment and modelling: A case study in Freiburg, Germany publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-013-1081-z – ident: ref_57 – volume: 16 start-page: 302 year: 1957 ident: ref_18 article-title: Control of heat casualties at military training centers publication-title: AMA Arch. Ind. Health – volume: 5 start-page: 645 year: 2008 ident: ref_34 article-title: Modeling the wet bulb globe temperature using standard meteorological measurements publication-title: J. Occup. Environ. Hyg. doi: 10.1080/15459620802310770 |
SSID | ssj0000493234 |
Score | 2.299828 |
Snippet | The concept of the mean radiant temperature (Tmrt) allows the study of radiative exchanges between a human and its environment. It presupposes that the radiant... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 805 |
SubjectTerms | Absorptance Absorptivity Accuracy Algorithms anisotropic circumsolar fraction in diffuse irradiance Azimuth Biometeorology black globe temperature Climate change Components Cross-sections Daytime direct and diffuse solar irradiance components Energy Energy balance Heat Heat exchange Human biometeorology Irradiance mean radiant temperature Outdoors Posture Radiometry Skin solar short- and terrestrial long-wave down- and upward radiant flux densities Spectral bands Temperature Thermometers Virtual environments |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJy_iJ1ar7EF6MphkN9nkWKtShKqIQm9h9guUNpE2Cv57ZzeptIh4MbkkYcImk9nd98LsG0LObGSFRN4RgMjDgAsrA4kdIzBxIkOVcaa8mM74Lh0989tJMlkp9eVywhp54MZxF5DnwkYRGGkVN2kEYaZSCCXoyILN_DLfMA9XyNRrg3tZzHgjqsmQ119APasWLucd92RtEvJa_T-GYj-_3GyTrRYY0kHzQDtkw5S7pDtGTFvN_a9v2qfD6QsCTH-2R-4HSr3PQX3SytKxgZI-ep2Bmj4ZxMKNVjK9wgj7MJq6ZSR04Ac3CqWmDwia3bG7p5qZev65T55vrp-Go6AtjxAoJsI6AKkSZhNwPNPm-MJC5Kk1CruVQ1mpROiTKo2birJQaAU6Q0cCMJ7GkAl2QDplVZpDQmPLhdbAwADiJ5vlwLWObZRBbgBRWJecL_1VqFY73JWwmBbIIZx7izX3dkn_2_ytEc34zfDSOf_byGld-wsYAUUbAcVfEdAlveWnK9oOuChijiMXUrEkPfqPNo7JZuyIts_865FOPX83J4hGannqA-8LWI3gmg priority: 102 providerName: Directory of Open Access Journals |
Title | Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry |
URI | https://www.proquest.com/docview/2430175356 https://doaj.org/article/a997f11aebfc4e61a08c6a0bad1faf88 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS91AEB_s8-Kl1Nrisyp7KJ4aTLKb7OZQ5PmFFN5TRMFbmP0qBU1sjAX_-87uS16R0iaXfGwgmZ2Z_c1m9jcAn33mpaa4I0FZpYmQXieaDCNxeaFTowQ3kUxnvigvbsW3u-JuDRbjWpiQVjn6xOiobWvCHPlhLkgVCVsX5dHjzyRUjQp_V8cSGjiUVrBfI8XYG1gnl1ykE1g_PltcXa9mXQgP85yLJdkmp3j_EPuH9inkwtNevBqcIof_Xy46jjvn7-DtABjZbNnDm7DmmvcwnRPWbbs4Jc4O2Mn9DwKe8WwLLmfGPHdoXljr2dxhw64j_0DPbhxh5CWHMjslzfvlLAvLS9gsOj2GjWVXBKbDcXimfXB99_IBbs_Pbk4ukqFsQmK4TPsEtSm4LzDEn76iD5ayKr0zZG4BfZWaIFFpLG0mU6m0Bq3KMkTkosxRSf4RJk3buG1guRfSWuTokHCVVxUKa3OfKawcEjqbwpdRXrUZOMVDaYv7mmKLIN76lXincLBq_rgk0_hXw-Mg_FWjwIEdL7Td93owqRqrSnp6cae9Ea7MMFWmxFSjzTx6paawO3ZdPRjmU_1HjXb-f_sTbOQhtI65frsw6btnt0f4o9f7g1Ltx_j9N-kH3aY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuqLzEQgEfoCeiJrbzOlRo-9KWdpeq2kq9hYkfCKlNSjYt2j_Hb2PsTRZVCG5NLnk4UTQez3wzsb8BeG8jm5YUdwSY5mEgU1sGJQ2MwPC4DFUmhfJkOpNpMj6Xny_iizX41a-FcdMqe5voDbWulcuRb3NJqkjYOk4-Xf8IXNUo93e1L6GBXWkFveMpxrqFHcdm8ZNCuPnO0T719wfODw9me-OgqzIQKJGGbYClioWN0YVrNpe5Y-BLrFGknQ6sJCUhiERp2lSUhalWqLMoQkQhE45ZKui9D2BdugTKANZ3D6anZ6ssD-FvwYVcknsKkYfb2F7Vczf3nvb4jjP0NQP-cgnezx1uwOMOoLLRUqOewJqpnsJwQti6bnwKnm2xvcvvBHT92TP4MlLqpkG1YLVlE4MVO_N8By2bGcLkS85mtk-afms0c8tZ2MgbWYaVZqcE3t2xe6a-Mm2zeA7n9yLAFzCo6sq8BMatTLVGgQYJx9ksR6k1t1GGuUFCg0P42MurUB2HuSulcVlQLOPEW9wR7xC2Vs2vl-Qd_2q464S_auQ4t_2FuvlWdEO4wDxPLX24Ka2SJokwzFSCYYk6smizbAibfdcVnSGYF3_U9tX_b7-Dh-PZ5KQ4OZoev4ZH3IX1fp7hJgza5sa8IezTlm87BWPw9b51-jcEDhlf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyEuiKdYKOAD9ES0ie0kzqFC225XLWWXVdVKvYXxq0Jqk5JNQfsX-VWMvcmiCsGtySUPJ4rG45lvnPE3hLxzicsVxh0R5EUcidypSOHAiCxLVayl4DqQ6Uxn2eGZ-HSenm-QX_1aGJ9W2dvEYKhNrf0c-ZAJVEXE1mk2dF1axHw8-Xj9PfIVpPyf1r6cBnRlFsxuoBvrFnkc2-VPDOcWu0dj7Pv3jE0OTvcPo67iQKR5HrcRKJ1yl4IP3VwhCs_GlzmrUVM9cMkUoolMG9x0IuPcaDAySQCAi4yBzDm-9x7ZytHrYyC4tXcwm5-sZ3wQi3PGxYrok_MiHkJ7VS98Hj7u6S3HGOoH_OUegs-bPCIPO7BKRyvtekw2bPWEDKaIs-smTMfTHbp_-Q1Bbzh7Sr6MtL5pQC9p7ejUQkVPAvdBS08t4vMVfzMdo9b_sIb6pS10FAwuhcrQOQJ5f-yfqa9s2yyfkbM7EeBzslnVlX1BKHMiNwY4WEBM52QBwhjmEgmFBUSGA_Khl1epOz5zX1bjssS4xou3vCXeAdlZN79eEXn8q-GeF_66keffDhfq5qLshnMJ2MEOP9wqp4XNEoilziBWYBIHTsoB2e67ruyMwqL8o8Iv_3_7LbmPul1-PpodvyIPmI_wQ8rhNtlsmxv7GmFQq950-kXJ17tW6d_1MB2j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+Mean+Radiant+Temperature+Derived+from+Active+and+Passive+Radiometry&rft.jtitle=Atmosphere&rft.au=Staiger%2C+Henning&rft.au=Matzarakis%2C+Andreas&rft.date=2020-08-01&rft.pub=MDPI+AG&rft.eissn=2073-4433&rft.volume=11&rft.issue=8&rft.spage=805&rft_id=info:doi/10.3390%2Fatmos11080805&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |