A Dynamic Reconfigurable Architecture for Hybrid Spiking and Convolutional FPGA-Based Neural Network Designs
This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN ac...
Saved in:
| Published in | Journal of low power electronics and applications Vol. 11; no. 3; p. 32 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9268 2079-9268 |
| DOI | 10.3390/jlpea11030032 |
Cover
| Abstract | This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources. |
|---|---|
| AbstractList | This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources. |
| Author | Alachiotis, Nikolaos Corradi, Federico Ziener, Daniel Detterer, Paul Irmak, Hasan |
| Author_xml | – sequence: 1 givenname: Hasan orcidid: 0000-0003-1953-3950 surname: Irmak fullname: Irmak, Hasan – sequence: 2 givenname: Federico orcidid: 0000-0002-5868-8077 surname: Corradi fullname: Corradi, Federico – sequence: 3 givenname: Paul orcidid: 0000-0001-9329-1721 surname: Detterer fullname: Detterer, Paul – sequence: 4 givenname: Nikolaos orcidid: 0000-0001-8162-3792 surname: Alachiotis fullname: Alachiotis, Nikolaos – sequence: 5 givenname: Daniel surname: Ziener fullname: Ziener, Daniel |
| BookMark | eNqFkE1v1DAQhiNUJErpsXdLnFP87fi4bOmHVAGC9mxNbGfx1rWDnbTaf0_KVgiQEHOZ0eh5n8P7ujlIOfmmOSH4lDGN323j6IEQzDBm9EVzSLHSraayO_jtftUc17rFy2jCOs4Om7hCZ7sE98GiL97mNITNXKCPHq2K_RYmb6e5eDTkgi53fQkOfR3DXUgbBMmhdU4POc5TyAkiOv98sWrfQ_UOffSLJS5reszlDp35GjapvmleDhCrP37eR83t-Yeb9WV7_eniar26bi1TeGq1l1gw4P0gpQSmvXC6wwILz8igCLea0I57oHKhqHIgRI97h4UdpGKdYkfN1d7rMmzNWMI9lJ3JEMzPRy4bA2UKNnoDjA3CSc6c7DkhHLTSHVeDph0mjuLFdbp3zWmE3SPE-EtIsHmq3vxR_RJ4uw-MJX-ffZ3MNs9l6acaKpTklClOFqrdU7bkWosf_mtlf_E2TPBU_FQgxH-kfgBoWqOw |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3204704 crossref_primary_10_1049_cdt2_6214436 crossref_primary_10_1109_ACCESS_2023_3269598 crossref_primary_10_1109_ACCESS_2024_3381493 crossref_primary_10_1016_j_vlsi_2023_102074 crossref_primary_10_32604_cmc_2024_051147 crossref_primary_10_3390_mi14071353 crossref_primary_10_3390_electronics11101653 crossref_primary_10_1016_j_neunet_2025_107256 crossref_primary_10_1109_ACCESS_2022_3229767 |
| Cites_doi | 10.1109/HPEC.2019.8916237 10.1109/TC.2020.3033730 10.1109/INCIT.2017.8257866 10.3389/fnins.2017.00682 10.1109/IJCNN.2017.7966217 10.3390/app10051897 10.1109/MM.2018.112130359 10.1145/3020078.3021744 10.1109/ReConFig.2016.7857144 10.1109/ISWCS.2016.7600973 10.1109/FCCM.2012.32 10.1145/3444950.3444951 10.1109/ISCAS.2016.7539099 10.3389/fnins.2017.00090 10.3233/APC200099 10.1109/ISWCS.2016.7600972 10.3389/fnins.2018.00213 10.3389/fnins.2021.664208 10.1109/ICCCBDA49378.2020.9095722 10.1109/MWSCAS48704.2020.9184640 10.1109/FPL.2014.6927483 10.1145/3444950.3444958 10.1109/ISPA/IUCC.2017.00030 10.1109/TVLSI.2013.2294916 10.1109/FPL53798.2021.00061 10.1109/JPROC.2015.2444094 10.1109/5.726791 10.1109/IPDPSW.2018.00031 10.1109/MCAS.2021.3071609 10.1109/ACCESS.2018.2890150 10.1109/SIU53274.2021.9477823 10.1109/MSP.2012.2211477 10.1109/ICDSP.2018.8631588 10.1109/ISCAS.2014.6865169 10.26599/TST.2019.9010019 10.1109/TCAD.2021.3061520 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/jlpea11030032 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9268 |
| ExternalDocumentID | oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20 oai:pure.tue.nl:openaire/0ee6d32d-0d5e-49a5-91b5-eb98810722e9 10_3390_jlpea11030032 |
| GroupedDBID | .4S .DC 5VS 8FE 8FG AADQD AAYXX ACIWK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 MK~ MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC TUS 7SP 8FD ABUWG AZQEC DWQXO F28 FR3 L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c370t-9e6053a4bf666a39e5d980505e31f714c91284ea2653a27da55b0bd05cf673873 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9268 |
| IngestDate | Fri Oct 03 12:46:19 EDT 2025 Sun Oct 26 03:30:33 EDT 2025 Fri Jul 25 08:00:32 EDT 2025 Thu Oct 16 04:40:15 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-9e6053a4bf666a39e5d980505e31f714c91284ea2653a27da55b0bd05cf673873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5868-8077 0000-0001-9329-1721 0000-0001-8162-3792 0000-0003-1953-3950 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://research.tue.nl/en/publications/0ee6d32d-0d5e-49a5-91b5-eb98810722e9 |
| PQID | 2576423741 |
| PQPubID | 2032378 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20 unpaywall_primary_10_3390_jlpea11030032 proquest_journals_2576423741 crossref_primary_10_3390_jlpea11030032 crossref_citationtrail_10_3390_jlpea11030032 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of low power electronics and applications |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rueckauer (ref_10) 2017; 11 Davies (ref_46) 2018; 38 ref_14 ref_36 Neil (ref_39) 2013; 7 ref_13 ref_35 ref_12 ref_34 Indiveri (ref_7) 2015; 103 ref_11 ref_33 ref_32 ref_31 Krizhevsky (ref_24) 2012; 25 ref_30 Pani (ref_43) 2017; 11 Deng (ref_27) 2012; 29 ref_19 ref_18 ref_17 ref_16 ref_38 ref_15 ref_37 LeCun (ref_23) 1998; 86 Shawahna (ref_5) 2018; 7 Frenkel (ref_45) 2018; 13 ref_25 Wan (ref_1) 2021; 21 ref_22 ref_21 ref_20 ref_41 Han (ref_44) 2020; 25 ref_40 ref_3 ref_2 ref_29 ref_28 Stuijt (ref_47) 2021; 15 ref_26 ref_8 Wang (ref_42) 2018; 12 ref_4 ref_6 Neil (ref_9) 2014; 22 |
| References_xml | – ident: ref_13 doi: 10.1109/HPEC.2019.8916237 – ident: ref_30 – ident: ref_14 doi: 10.1109/TC.2020.3033730 – ident: ref_11 – ident: ref_4 doi: 10.1109/INCIT.2017.8257866 – volume: 11 start-page: 682 year: 2017 ident: ref_10 article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00682 – volume: 7 start-page: 178 year: 2013 ident: ref_39 article-title: Real-time classification and sensor fusion with a spiking deep belief network publication-title: Front. Neurosci. – ident: ref_28 doi: 10.1109/IJCNN.2017.7966217 – ident: ref_22 doi: 10.3390/app10051897 – volume: 38 start-page: 82 year: 2018 ident: ref_46 article-title: Loihi: A neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – ident: ref_6 doi: 10.1145/3020078.3021744 – ident: ref_40 – ident: ref_19 doi: 10.1109/ReConFig.2016.7857144 – ident: ref_35 doi: 10.1109/ISWCS.2016.7600973 – ident: ref_37 doi: 10.1109/FCCM.2012.32 – ident: ref_8 doi: 10.1145/3444950.3444951 – volume: 13 start-page: 145 year: 2018 ident: ref_45 article-title: A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS publication-title: IEEE Trans. Biomed. Circuits Syst. – ident: ref_38 doi: 10.1109/ISCAS.2016.7539099 – volume: 11 start-page: 90 year: 2017 ident: ref_43 article-title: An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00090 – ident: ref_16 doi: 10.3233/APC200099 – ident: ref_34 doi: 10.1109/ISWCS.2016.7600972 – volume: 12 start-page: 213 year: 2018 ident: ref_42 article-title: An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00213 – volume: 15 start-page: 538 year: 2021 ident: ref_47 article-title: μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.664208 – ident: ref_32 doi: 10.1109/ICCCBDA49378.2020.9095722 – ident: ref_17 doi: 10.1109/MWSCAS48704.2020.9184640 – ident: ref_3 doi: 10.1109/FPL.2014.6927483 – ident: ref_2 doi: 10.1145/3444950.3444958 – ident: ref_33 doi: 10.1109/ISPA/IUCC.2017.00030 – volume: 22 start-page: 2621 year: 2014 ident: ref_9 article-title: Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2013.2294916 – ident: ref_21 doi: 10.1109/FPL53798.2021.00061 – ident: ref_25 – volume: 103 start-page: 1379 year: 2015 ident: ref_7 article-title: Memory and information processing in neuromorphic systems publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2444094 – volume: 86 start-page: 2278 year: 1998 ident: ref_23 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_31 – ident: ref_29 – ident: ref_12 – ident: ref_15 doi: 10.1109/IPDPSW.2018.00031 – volume: 21 start-page: 48 year: 2021 ident: ref_1 article-title: A survey of fpga-based robotic computing publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2021.3071609 – volume: 7 start-page: 7823 year: 2018 ident: ref_5 article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890150 – ident: ref_20 doi: 10.1109/SIU53274.2021.9477823 – volume: 29 start-page: 141 year: 2012 ident: ref_27 article-title: The mnist database of handwritten digit images for machine learning research [best of the web] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2211477 – ident: ref_26 doi: 10.1109/ICDSP.2018.8631588 – ident: ref_36 – ident: ref_41 doi: 10.1109/ISCAS.2014.6865169 – volume: 25 start-page: 1097 year: 2012 ident: ref_24 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 479 year: 2020 ident: ref_44 article-title: Hardware implementation of spiking neural networks on FPGA publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2019.9010019 – ident: ref_18 doi: 10.1109/TCAD.2021.3061520 |
| SSID | ssj0000913843 |
| Score | 2.3375282 |
| Snippet | This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 32 |
| SubjectTerms | Accelerators Accuracy Artificial intelligence Artificial neural networks Classification CNN Design Design optimization Field programmable gate arrays FPGA Hardware Image classification Neural networks Neurons partial reconfiguration Reconfiguration Robotics SNN Spiking Switching Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF_UgPrFaZQ-iF0OTbDbJHvuwFsEiaKG3sJvdSCWkpQ-l_96ZJC3pQb14XQayzEz2my-Z_YaQm8RREFXmW8IYbnkxDy3AGWlBuc-wPgEKjbeRnwd-f-g9jfioMuoLe8IKeeDCcU3JWMI14Kb2lQfFuxSBgBM1ES6crdrN2bodigqZys9g4bDQY4WoJgNe3_xIp0Y6OFTLZu4WCOVa_VsF5u4ym8rVl0zTCtb0DslBWSTSVrG5I7JjsmOyX5EOPCFpi3aLYfIUGWSWjN-XM7wGRVuVXwMUSlLaX-GtLPo6HeNncSozTTuT7LPMOXhO7-WxZbUBzjRFrQ5YGRTN4bSb93fMT8mw9_DW6Vvl5AQrZoG9AMcDS2HSUwmwE8mE4VqEOLPOMCcJHC8WCEtGuj5YuYGWnCtbaZvHCU4BDdgZqWWTzJwTqnjoqyR0YxVIDxwYaj__e-f7SmoAtjq5X7syiktZcZxukUZAL9Dz0Zbn6-R2Yz4t9DR-MmxjXDZGKIOdL0ByRGVyRH8lR5001lGNyndzHiHFwmYgz6mTu02kf9_NxX_s5pLsudgRk3eoNUhtMVuaKyhpFuo6z95v9x7vxA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwEB2Vclg4IGB3RaEgH9By2YgkjvNxQKgFSoW0FYJF4hbZsYNAURpKC-LfM5OP0h7gGo2SyGP7zdgz7wEcpo5Cr3LfiowRlpeI0EKckRaG-5ziE0yhqRv538gf3nlX9-K-BaOmF4bKKps9sdyo9TihM_JjCoyphMNzTotni1Sj6Ha1kdCQtbSCPikpxlZg1SVmrDas9i9G1zfzUxdiwQw9XpFtcsz3j5-ywkiHxLZs7i6BU8nhvxR4_pjlhXx_k1m2gEGDTdiog0fWq7y9BS2Tb8P6AqXgT8h67LwSmWeUWebp48NsQu1RrLdwZcAwVGXDd-rWYrfFIx2XM5lrdjbOX-u5iN8ZXF_2rD7CnGbE4YFPRlXRODsv6z5efsHd4OL_2dCqFRWshAf2FB2C2QuXnkoxa5E8MkJHIWnZGe6kgeMlEcGVka6PVm6gpRDKVtoWSUrqoAH_De18nJsdYEqEvkpDN1GB9HAAQ-2Xt3q-r6RGwOvA32Yo46SmGyfViyzGtINGPl4a-Q78mZsXFc_GV4Z98svciOixywfjyUNcr7ZYcp4KjcGW9pWHGZ-MgghhOI1cBGTt2h3oNl6N6zX7En_OsA4czT39_d_sfv-iPVhzqQamrEnrQns6mZl9DGKm6qCemR8czO8j priority: 102 providerName: ProQuest |
| Title | A Dynamic Reconfigurable Architecture for Hybrid Spiking and Convolutional FPGA-Based Neural Network Designs |
| URI | https://www.proquest.com/docview/2576423741 https://research.tue.nl/en/publications/0ee6d32d-0d5e-49a5-91b5-eb98810722e9 https://doaj.org/article/a33f5d643d6b4114a979847f92801d20 |
| UnpaywallVersion | submittedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2079-9268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9268 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: ADMLS dateStart: 20111001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: BENPR dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9268 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913843 issn: 2079-9268 databaseCode: 8FG dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZY-wB74PdEYVR-QPCC28SOnfix3dZVSFQVUGk8RXbsjEGWVl0LGn89d0latUggHniNToqjO-fus---j5BXeWjBq0Ix7b1kUSYTBnnGMCj3BdYnAKFxGvn9RI1n0bsLedGMR-MsTENx86W3WgM4L_q-7C92zq_6gffKCe5Y4KRnkTaoNGgl81YnCUAZzr0-IG0loTJvkfZsMh18Rn25INZMc5XUNJsCkH7_a7HwJkSZrUDwvbRUsffvlZx31-XC3P4wRbGTfUYPyPVm3XXTybfeemV72c_fKB3_14c9JPebMpUO6rh6RO748jE53CEvfEKKAT2t5ewpYtgyv7pcL3EQiw52LicoFMV0fItzYfTj4goP5qkpHT2Zl9-bqIf3jKbnAzaEhOoosoXAk0ndnk5Pqw6Tm6dkNjr7dDJmjXYDy0QcrMD1gJOEiWwO-MgI7aXTCarmeRHmcRhlGhOjN1yBFY-dkdIG1gUyy1GHNBZHpFXOS_-MUCsTZfOEZzY2ETgscaq6P1TKGgeptUPeblyXZg2xOeprFCkAHPR0uufpDnm9NV_UjB5_MhxiHGyNkIi7ejBfXqbNvk6NELl0UNY5ZSPAlkbHGhJ-rjmkfseDDjneRFHa_B1uUgR52I4UhR3yZhtZf1_N83-2fEHucWy8qRrhjklrtVz7l1A5rWyXHCSj8y5pD88m0w_d6vyh22ySXwGRFvg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCa69tDtMOyJpes2Hfa4zKhtSX4ciiFpmqVrGxRbC_TmSZZcdDAcN48V-XP7bSP9yJLDeutVEGyBpMSPEskP4H3madQqD5zYWumIVEYO-hnlINznhE8whKZq5NNRMLwQ3y7l5Qb8aWthKK2yPROrg9qMU7oj3yNgTCkcwvtS3jjEGkWvqy2FhmqoFcx-1WKsKew4totbDOGm-0d91PcH3x8cnh8MnYZlwEl56M5wkYjouRI6QySveGyliSPid7Pcy0JPpDEd4Vb5Ac7yQ6Ok1K42rkwzYswMOX73AWwJLmIM_rZ6h6Oz78tbHuq6GQleN_fkPHb3fuWlVR6Re7ncX3OGFWfAGtDdnhelWtyqPF_xeYMn8LgBq6xbW9dT2LDFM3i00sLwOeRd1q9J7RlFskV2fTWfUDkW6648UTCExmy4oOow9qO8put5pgrDDsbF78b28T-Ds69dp4du1TDqGYIjozpJnfWrPJPpC7i4F9m-hM1iXNhXwLSMAp1FfqpDJVCAkQmqV8Qg0Mqgg-3A51aUSdq0NyeWjTzBMIckn6xJvgMfl9PLuq_H_yb2SC_LSdSOuxoYT66SZncnivNMGgR3JtACI0wVhzG6_Sz2EQAY3-3AbqvVpDkjpsk_i-7Ap6Wm717Nzt0fegfbw_PTk-TkaHT8Gh76lH9T5cPtwuZsMrdvEEDN9NvGShn8vO-N8Rd5ISp4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4VDzFQgs-8LgQbWLHeRxQte2SbimsKkGl3oIdO1VRlA37oNq_xq_rTB7L7oHeerWsxJoZe76xZ-YDeJt7GrUqAie2Vjp-JiMH_YxyEO4LwicYQlM18rdxMDrzv5zL8y3429XCUFpldybWB7WZZHRH3idgTCkcvtfP27SI02GyX_12iEGKXlo7Oo3GRE7s8grDt9mn4yHq-h3nyecfhyOnZRhwMhG6c1wgonmhfJ0jilcittLEEXG7WeHloednMR3fVvEAZ_HQKCm1q40rs5zYMkOB370Dd0Pq4k5V6snR6n6H-m1GvmjaegoRu_1fRWWVR7ReruAbbrBmC9iAuPcXZaWWV6oo1rxd8gh2WpjKBo1dPYYtWz6Bh2vNC59CMWDDhs6eUQxb5pcXiykVYrHB2uMEQ1DMRkuqC2Pfq0u6mGeqNOxwUv5prR7_k5weDZwDdKiGUbcQHBk36elsWGeYzJ7B2a1I9jlsl5PSvgCmZRToPOKZDpWPAoxMUL8fBoFWBl1rDz52okyztrE58WsUKQY4JPl0Q_I9eL-aXjUdPf438YD0sppEjbjrgcn0Im33daqEyKVBWGcC7WNsqeIwRoefxxxdv-FuD3Y7rabt6TBL_9lyDz6sNH3zal7e_KE3cA-3Q_r1eHzyCh5wSrypE-F2YXs-Xdg9RE5z_bo2UQY_b3tPXANIiigS |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgewAOfCMKC_IBwQW3iR078TG7S6mQqFaCSsspsmNnWQhp1E1Ay69nJkmrFgnEgWs0UhzNODPPnnmPkBdFaMGrQjHtvWRRLhMGecYwKPcF1icAoXEa-f1CzZfRuzN5NoxH4yzMQHHzedK0AM7Lqa-m9c751TTwXjnBHQuc9CzSBpUGrWTe6iQBKMO519fJgZJQmY_IwXJxmn5Cfbkg1kxzlfQ0mwKQ_vRLWXsTosxWIPheWurY-_dKzhttVZurH6Ysd7LP7A75tll333TyddI2dpL__I3S8X992F1yeyhTadrH1T1yzVf3ya0d8sIHpEzpSS9nTxHDVsXFebvGQSya7lxOUCiK6fwK58Loh_oCD-apqRw9XlXfh6iH98xO36bsCBKqo8gWAk8WfXs6Pek6TC4fkuXszcfjORu0G1gu4qAB1wNOEiayBeAjI7SXTieomudFWMRhlGtMjN5wBVY8dkZKG1gXyLxAHdJYPCKjalX5x4RamShbJDy3sYnAYYlT3f2hUtY4SK1j8nrjuiwfiM1RX6PMAOCgp7M9T4_Jy6153TN6_MnwCONga4RE3N2D1fo8G_Z1ZoQopIOyzikbAbY0OtaQ8AvNIfU7HozJ4SaKsuHvcJkhyMN2pCgck1fbyPr7ap78s-VTcpNj403XCHdIRs269c-gcmrs82FD_AJhMROD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Reconfigurable+Architecture+for+Hybrid+Spiking+and+Convolutional+FPGA-Based+Neural+Network+Designs&rft.jtitle=Journal+of+low+power+electronics+and+applications&rft.au=Hasan+Irmak&rft.au=Federico+Corradi&rft.au=Paul+Detterer&rft.au=Nikolaos+Alachiotis&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9268&rft.volume=11&rft.issue=3&rft.spage=32&rft_id=info:doi/10.3390%2Fjlpea11030032&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9268&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9268&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9268&client=summon |