A Dynamic Reconfigurable Architecture for Hybrid Spiking and Convolutional FPGA-Based Neural Network Designs

This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN ac...

Full description

Saved in:
Bibliographic Details
Published inJournal of low power electronics and applications Vol. 11; no. 3; p. 32
Main Authors Irmak, Hasan, Corradi, Federico, Detterer, Paul, Alachiotis, Nikolaos, Ziener, Daniel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text
ISSN2079-9268
2079-9268
DOI10.3390/jlpea11030032

Cover

Abstract This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources.
AbstractList This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources.
Author Alachiotis, Nikolaos
Corradi, Federico
Ziener, Daniel
Detterer, Paul
Irmak, Hasan
Author_xml – sequence: 1
  givenname: Hasan
  orcidid: 0000-0003-1953-3950
  surname: Irmak
  fullname: Irmak, Hasan
– sequence: 2
  givenname: Federico
  orcidid: 0000-0002-5868-8077
  surname: Corradi
  fullname: Corradi, Federico
– sequence: 3
  givenname: Paul
  orcidid: 0000-0001-9329-1721
  surname: Detterer
  fullname: Detterer, Paul
– sequence: 4
  givenname: Nikolaos
  orcidid: 0000-0001-8162-3792
  surname: Alachiotis
  fullname: Alachiotis, Nikolaos
– sequence: 5
  givenname: Daniel
  surname: Ziener
  fullname: Ziener, Daniel
BookMark eNqFkE1v1DAQhiNUJErpsXdLnFP87fi4bOmHVAGC9mxNbGfx1rWDnbTaf0_KVgiQEHOZ0eh5n8P7ujlIOfmmOSH4lDGN323j6IEQzDBm9EVzSLHSraayO_jtftUc17rFy2jCOs4Om7hCZ7sE98GiL97mNITNXKCPHq2K_RYmb6e5eDTkgi53fQkOfR3DXUgbBMmhdU4POc5TyAkiOv98sWrfQ_UOffSLJS5reszlDp35GjapvmleDhCrP37eR83t-Yeb9WV7_eniar26bi1TeGq1l1gw4P0gpQSmvXC6wwILz8igCLea0I57oHKhqHIgRI97h4UdpGKdYkfN1d7rMmzNWMI9lJ3JEMzPRy4bA2UKNnoDjA3CSc6c7DkhHLTSHVeDph0mjuLFdbp3zWmE3SPE-EtIsHmq3vxR_RJ4uw-MJX-ffZ3MNs9l6acaKpTklClOFqrdU7bkWosf_mtlf_E2TPBU_FQgxH-kfgBoWqOw
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3204704
crossref_primary_10_1049_cdt2_6214436
crossref_primary_10_1109_ACCESS_2023_3269598
crossref_primary_10_1109_ACCESS_2024_3381493
crossref_primary_10_1016_j_vlsi_2023_102074
crossref_primary_10_32604_cmc_2024_051147
crossref_primary_10_3390_mi14071353
crossref_primary_10_3390_electronics11101653
crossref_primary_10_1016_j_neunet_2025_107256
crossref_primary_10_1109_ACCESS_2022_3229767
Cites_doi 10.1109/HPEC.2019.8916237
10.1109/TC.2020.3033730
10.1109/INCIT.2017.8257866
10.3389/fnins.2017.00682
10.1109/IJCNN.2017.7966217
10.3390/app10051897
10.1109/MM.2018.112130359
10.1145/3020078.3021744
10.1109/ReConFig.2016.7857144
10.1109/ISWCS.2016.7600973
10.1109/FCCM.2012.32
10.1145/3444950.3444951
10.1109/ISCAS.2016.7539099
10.3389/fnins.2017.00090
10.3233/APC200099
10.1109/ISWCS.2016.7600972
10.3389/fnins.2018.00213
10.3389/fnins.2021.664208
10.1109/ICCCBDA49378.2020.9095722
10.1109/MWSCAS48704.2020.9184640
10.1109/FPL.2014.6927483
10.1145/3444950.3444958
10.1109/ISPA/IUCC.2017.00030
10.1109/TVLSI.2013.2294916
10.1109/FPL53798.2021.00061
10.1109/JPROC.2015.2444094
10.1109/5.726791
10.1109/IPDPSW.2018.00031
10.1109/MCAS.2021.3071609
10.1109/ACCESS.2018.2890150
10.1109/SIU53274.2021.9477823
10.1109/MSP.2012.2211477
10.1109/ICDSP.2018.8631588
10.1109/ISCAS.2014.6865169
10.26599/TST.2019.9010019
10.1109/TCAD.2021.3061520
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/jlpea11030032
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9268
ExternalDocumentID oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20
oai:pure.tue.nl:openaire/0ee6d32d-0d5e-49a5-91b5-eb98810722e9
10_3390_jlpea11030032
GroupedDBID .4S
.DC
5VS
8FE
8FG
AADQD
AAYXX
ACIWK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
MK~
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
TUS
7SP
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c370t-9e6053a4bf666a39e5d980505e31f714c91284ea2653a27da55b0bd05cf673873
IEDL.DBID UNPAY
ISSN 2079-9268
IngestDate Fri Oct 03 12:46:19 EDT 2025
Sun Oct 26 03:30:33 EDT 2025
Fri Jul 25 08:00:32 EDT 2025
Thu Oct 16 04:40:15 EDT 2025
Thu Apr 24 22:57:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-9e6053a4bf666a39e5d980505e31f714c91284ea2653a27da55b0bd05cf673873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5868-8077
0000-0001-9329-1721
0000-0001-8162-3792
0000-0003-1953-3950
OpenAccessLink https://proxy.k.utb.cz/login?url=https://research.tue.nl/en/publications/0ee6d32d-0d5e-49a5-91b5-eb98810722e9
PQID 2576423741
PQPubID 2032378
ParticipantIDs doaj_primary_oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20
unpaywall_primary_10_3390_jlpea11030032
proquest_journals_2576423741
crossref_primary_10_3390_jlpea11030032
crossref_citationtrail_10_3390_jlpea11030032
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of low power electronics and applications
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rueckauer (ref_10) 2017; 11
Davies (ref_46) 2018; 38
ref_14
ref_36
Neil (ref_39) 2013; 7
ref_13
ref_35
ref_12
ref_34
Indiveri (ref_7) 2015; 103
ref_11
ref_33
ref_32
ref_31
Krizhevsky (ref_24) 2012; 25
ref_30
Pani (ref_43) 2017; 11
Deng (ref_27) 2012; 29
ref_19
ref_18
ref_17
ref_16
ref_38
ref_15
ref_37
LeCun (ref_23) 1998; 86
Shawahna (ref_5) 2018; 7
Frenkel (ref_45) 2018; 13
ref_25
Wan (ref_1) 2021; 21
ref_22
ref_21
ref_20
ref_41
Han (ref_44) 2020; 25
ref_40
ref_3
ref_2
ref_29
ref_28
Stuijt (ref_47) 2021; 15
ref_26
ref_8
Wang (ref_42) 2018; 12
ref_4
ref_6
Neil (ref_9) 2014; 22
References_xml – ident: ref_13
  doi: 10.1109/HPEC.2019.8916237
– ident: ref_30
– ident: ref_14
  doi: 10.1109/TC.2020.3033730
– ident: ref_11
– ident: ref_4
  doi: 10.1109/INCIT.2017.8257866
– volume: 11
  start-page: 682
  year: 2017
  ident: ref_10
  article-title: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00682
– volume: 7
  start-page: 178
  year: 2013
  ident: ref_39
  article-title: Real-time classification and sensor fusion with a spiking deep belief network
  publication-title: Front. Neurosci.
– ident: ref_28
  doi: 10.1109/IJCNN.2017.7966217
– ident: ref_22
  doi: 10.3390/app10051897
– volume: 38
  start-page: 82
  year: 2018
  ident: ref_46
  article-title: Loihi: A neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– ident: ref_6
  doi: 10.1145/3020078.3021744
– ident: ref_40
– ident: ref_19
  doi: 10.1109/ReConFig.2016.7857144
– ident: ref_35
  doi: 10.1109/ISWCS.2016.7600973
– ident: ref_37
  doi: 10.1109/FCCM.2012.32
– ident: ref_8
  doi: 10.1145/3444950.3444951
– volume: 13
  start-page: 145
  year: 2018
  ident: ref_45
  article-title: A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– ident: ref_38
  doi: 10.1109/ISCAS.2016.7539099
– volume: 11
  start-page: 90
  year: 2017
  ident: ref_43
  article-title: An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00090
– ident: ref_16
  doi: 10.3233/APC200099
– ident: ref_34
  doi: 10.1109/ISWCS.2016.7600972
– volume: 12
  start-page: 213
  year: 2018
  ident: ref_42
  article-title: An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00213
– volume: 15
  start-page: 538
  year: 2021
  ident: ref_47
  article-title: μBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking Neural Networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.664208
– ident: ref_32
  doi: 10.1109/ICCCBDA49378.2020.9095722
– ident: ref_17
  doi: 10.1109/MWSCAS48704.2020.9184640
– ident: ref_3
  doi: 10.1109/FPL.2014.6927483
– ident: ref_2
  doi: 10.1145/3444950.3444958
– ident: ref_33
  doi: 10.1109/ISPA/IUCC.2017.00030
– volume: 22
  start-page: 2621
  year: 2014
  ident: ref_9
  article-title: Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2013.2294916
– ident: ref_21
  doi: 10.1109/FPL53798.2021.00061
– ident: ref_25
– volume: 103
  start-page: 1379
  year: 2015
  ident: ref_7
  article-title: Memory and information processing in neuromorphic systems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2444094
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_23
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_31
– ident: ref_29
– ident: ref_12
– ident: ref_15
  doi: 10.1109/IPDPSW.2018.00031
– volume: 21
  start-page: 48
  year: 2021
  ident: ref_1
  article-title: A survey of fpga-based robotic computing
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2021.3071609
– volume: 7
  start-page: 7823
  year: 2018
  ident: ref_5
  article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890150
– ident: ref_20
  doi: 10.1109/SIU53274.2021.9477823
– volume: 29
  start-page: 141
  year: 2012
  ident: ref_27
  article-title: The mnist database of handwritten digit images for machine learning research [best of the web]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2211477
– ident: ref_26
  doi: 10.1109/ICDSP.2018.8631588
– ident: ref_36
– ident: ref_41
  doi: 10.1109/ISCAS.2014.6865169
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_24
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 479
  year: 2020
  ident: ref_44
  article-title: Hardware implementation of spiking neural networks on FPGA
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2019.9010019
– ident: ref_18
  doi: 10.1109/TCAD.2021.3061520
SSID ssj0000913843
Score 2.3375282
Snippet This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 32
SubjectTerms Accelerators
Accuracy
Artificial intelligence
Artificial neural networks
Classification
CNN
Design
Design optimization
Field programmable gate arrays
FPGA
Hardware
Image classification
Neural networks
Neurons
partial reconfiguration
Reconfiguration
Robotics
SNN
Spiking
Switching
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kF_UgPrFaZQ-iF0OTbDbJHvuwFsEiaKG3sJvdSCWkpQ-l_96ZJC3pQb14XQayzEz2my-Z_YaQm8RREFXmW8IYbnkxDy3AGWlBuc-wPgEKjbeRnwd-f-g9jfioMuoLe8IKeeDCcU3JWMI14Kb2lQfFuxSBgBM1ES6crdrN2bodigqZys9g4bDQY4WoJgNe3_xIp0Y6OFTLZu4WCOVa_VsF5u4ym8rVl0zTCtb0DslBWSTSVrG5I7JjsmOyX5EOPCFpi3aLYfIUGWSWjN-XM7wGRVuVXwMUSlLaX-GtLPo6HeNncSozTTuT7LPMOXhO7-WxZbUBzjRFrQ5YGRTN4bSb93fMT8mw9_DW6Vvl5AQrZoG9AMcDS2HSUwmwE8mE4VqEOLPOMCcJHC8WCEtGuj5YuYGWnCtbaZvHCU4BDdgZqWWTzJwTqnjoqyR0YxVIDxwYaj__e-f7SmoAtjq5X7syiktZcZxukUZAL9Dz0Zbn6-R2Yz4t9DR-MmxjXDZGKIOdL0ByRGVyRH8lR5001lGNyndzHiHFwmYgz6mTu02kf9_NxX_s5pLsudgRk3eoNUhtMVuaKyhpFuo6z95v9x7vxA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwEB2Vclg4IGB3RaEgH9By2YgkjvNxQKgFSoW0FYJF4hbZsYNAURpKC-LfM5OP0h7gGo2SyGP7zdgz7wEcpo5Cr3LfiowRlpeI0EKckRaG-5ziE0yhqRv538gf3nlX9-K-BaOmF4bKKps9sdyo9TihM_JjCoyphMNzTotni1Sj6Ha1kdCQtbSCPikpxlZg1SVmrDas9i9G1zfzUxdiwQw9XpFtcsz3j5-ywkiHxLZs7i6BU8nhvxR4_pjlhXx_k1m2gEGDTdiog0fWq7y9BS2Tb8P6AqXgT8h67LwSmWeUWebp48NsQu1RrLdwZcAwVGXDd-rWYrfFIx2XM5lrdjbOX-u5iN8ZXF_2rD7CnGbE4YFPRlXRODsv6z5efsHd4OL_2dCqFRWshAf2FB2C2QuXnkoxa5E8MkJHIWnZGe6kgeMlEcGVka6PVm6gpRDKVtoWSUrqoAH_De18nJsdYEqEvkpDN1GB9HAAQ-2Xt3q-r6RGwOvA32Yo46SmGyfViyzGtINGPl4a-Q78mZsXFc_GV4Z98svciOixywfjyUNcr7ZYcp4KjcGW9pWHGZ-MgghhOI1cBGTt2h3oNl6N6zX7En_OsA4czT39_d_sfv-iPVhzqQamrEnrQns6mZl9DGKm6qCemR8czO8j
  priority: 102
  providerName: ProQuest
Title A Dynamic Reconfigurable Architecture for Hybrid Spiking and Convolutional FPGA-Based Neural Network Designs
URI https://www.proquest.com/docview/2576423741
https://research.tue.nl/en/publications/0ee6d32d-0d5e-49a5-91b5-eb98810722e9
https://doaj.org/article/a33f5d643d6b4114a979847f92801d20
UnpaywallVersion submittedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: ADMLS
  dateStart: 20111001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: BENPR
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9268
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913843
  issn: 2079-9268
  databaseCode: 8FG
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZY-wB74PdEYVR-QPCC28SOnfix3dZVSFQVUGk8RXbsjEGWVl0LGn89d0latUggHniNToqjO-fus---j5BXeWjBq0Ix7b1kUSYTBnnGMCj3BdYnAKFxGvn9RI1n0bsLedGMR-MsTENx86W3WgM4L_q-7C92zq_6gffKCe5Y4KRnkTaoNGgl81YnCUAZzr0-IG0loTJvkfZsMh18Rn25INZMc5XUNJsCkH7_a7HwJkSZrUDwvbRUsffvlZx31-XC3P4wRbGTfUYPyPVm3XXTybfeemV72c_fKB3_14c9JPebMpUO6rh6RO748jE53CEvfEKKAT2t5ewpYtgyv7pcL3EQiw52LicoFMV0fItzYfTj4goP5qkpHT2Zl9-bqIf3jKbnAzaEhOoosoXAk0ndnk5Pqw6Tm6dkNjr7dDJmjXYDy0QcrMD1gJOEiWwO-MgI7aXTCarmeRHmcRhlGhOjN1yBFY-dkdIG1gUyy1GHNBZHpFXOS_-MUCsTZfOEZzY2ETgscaq6P1TKGgeptUPeblyXZg2xOeprFCkAHPR0uufpDnm9NV_UjB5_MhxiHGyNkIi7ejBfXqbNvk6NELl0UNY5ZSPAlkbHGhJ-rjmkfseDDjneRFHa_B1uUgR52I4UhR3yZhtZf1_N83-2fEHucWy8qRrhjklrtVz7l1A5rWyXHCSj8y5pD88m0w_d6vyh22ySXwGRFvg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCa69tDtMOyJpes2Hfa4zKhtSX4ciiFpmqVrGxRbC_TmSZZcdDAcN48V-XP7bSP9yJLDeutVEGyBpMSPEskP4H3madQqD5zYWumIVEYO-hnlINznhE8whKZq5NNRMLwQ3y7l5Qb8aWthKK2yPROrg9qMU7oj3yNgTCkcwvtS3jjEGkWvqy2FhmqoFcx-1WKsKew4totbDOGm-0d91PcH3x8cnh8MnYZlwEl56M5wkYjouRI6QySveGyliSPid7Pcy0JPpDEd4Vb5Ac7yQ6Ok1K42rkwzYswMOX73AWwJLmIM_rZ6h6Oz78tbHuq6GQleN_fkPHb3fuWlVR6Re7ncX3OGFWfAGtDdnhelWtyqPF_xeYMn8LgBq6xbW9dT2LDFM3i00sLwOeRd1q9J7RlFskV2fTWfUDkW6648UTCExmy4oOow9qO8put5pgrDDsbF78b28T-Ds69dp4du1TDqGYIjozpJnfWrPJPpC7i4F9m-hM1iXNhXwLSMAp1FfqpDJVCAkQmqV8Qg0Mqgg-3A51aUSdq0NyeWjTzBMIckn6xJvgMfl9PLuq_H_yb2SC_LSdSOuxoYT66SZncnivNMGgR3JtACI0wVhzG6_Sz2EQAY3-3AbqvVpDkjpsk_i-7Ap6Wm717Nzt0fegfbw_PTk-TkaHT8Gh76lH9T5cPtwuZsMrdvEEDN9NvGShn8vO-N8Rd5ISp4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4VDzFQgs-8LgQbWLHeRxQte2SbimsKkGl3oIdO1VRlA37oNq_xq_rTB7L7oHeerWsxJoZe76xZ-YDeJt7GrUqAie2Vjp-JiMH_YxyEO4LwicYQlM18rdxMDrzv5zL8y3429XCUFpldybWB7WZZHRH3idgTCkcvtfP27SI02GyX_12iEGKXlo7Oo3GRE7s8grDt9mn4yHq-h3nyecfhyOnZRhwMhG6c1wgonmhfJ0jilcittLEEXG7WeHloednMR3fVvEAZ_HQKCm1q40rs5zYMkOB370Dd0Pq4k5V6snR6n6H-m1GvmjaegoRu_1fRWWVR7ReruAbbrBmC9iAuPcXZaWWV6oo1rxd8gh2WpjKBo1dPYYtWz6Bh2vNC59CMWDDhs6eUQxb5pcXiykVYrHB2uMEQ1DMRkuqC2Pfq0u6mGeqNOxwUv5prR7_k5weDZwDdKiGUbcQHBk36elsWGeYzJ7B2a1I9jlsl5PSvgCmZRToPOKZDpWPAoxMUL8fBoFWBl1rDz52okyztrE58WsUKQY4JPl0Q_I9eL-aXjUdPf438YD0sppEjbjrgcn0Im33daqEyKVBWGcC7WNsqeIwRoefxxxdv-FuD3Y7rabt6TBL_9lyDz6sNH3zal7e_KE3cA-3Q_r1eHzyCh5wSrypE-F2YXs-Xdg9RE5z_bo2UQY_b3tPXANIiigS
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELWgewAOfCMKC_IBwQW3iR078TG7S6mQqFaCSsspsmNnWQhp1E1Ay69nJkmrFgnEgWs0UhzNODPPnnmPkBdFaMGrQjHtvWRRLhMGecYwKPcF1icAoXEa-f1CzZfRuzN5NoxH4yzMQHHzedK0AM7Lqa-m9c751TTwXjnBHQuc9CzSBpUGrWTe6iQBKMO519fJgZJQmY_IwXJxmn5Cfbkg1kxzlfQ0mwKQ_vRLWXsTosxWIPheWurY-_dKzhttVZurH6Ysd7LP7A75tll333TyddI2dpL__I3S8X992F1yeyhTadrH1T1yzVf3ya0d8sIHpEzpSS9nTxHDVsXFebvGQSya7lxOUCiK6fwK58Loh_oCD-apqRw9XlXfh6iH98xO36bsCBKqo8gWAk8WfXs6Pek6TC4fkuXszcfjORu0G1gu4qAB1wNOEiayBeAjI7SXTieomudFWMRhlGtMjN5wBVY8dkZKG1gXyLxAHdJYPCKjalX5x4RamShbJDy3sYnAYYlT3f2hUtY4SK1j8nrjuiwfiM1RX6PMAOCgp7M9T4_Jy6153TN6_MnwCONga4RE3N2D1fo8G_Z1ZoQopIOyzikbAbY0OtaQ8AvNIfU7HozJ4SaKsuHvcJkhyMN2pCgck1fbyPr7ap78s-VTcpNj403XCHdIRs269c-gcmrs82FD_AJhMROD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Reconfigurable+Architecture+for+Hybrid+Spiking+and+Convolutional+FPGA-Based+Neural+Network+Designs&rft.jtitle=Journal+of+low+power+electronics+and+applications&rft.au=Hasan+Irmak&rft.au=Federico+Corradi&rft.au=Paul+Detterer&rft.au=Nikolaos+Alachiotis&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2079-9268&rft.volume=11&rft.issue=3&rft.spage=32&rft_id=info:doi/10.3390%2Fjlpea11030032&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a33f5d643d6b4114a979847f92801d20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9268&client=summon