Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study

Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many...

Full description

Saved in:
Bibliographic Details
Published inJournal of Zhejiang University. A. Science Vol. 17; no. 4; pp. 273 - 285
Main Authors Rezaei, Hossein, Nazir, Ramli, Momeni, Ehsan
Format Journal Article
LanguageEnglish
Published Hangzhou Zhejiang University Press 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-565X
1862-1775
DOI10.1631/jzus.A1500033

Cover

Abstract Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity (Qu), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio (Lw/B). Apart from Qu, other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when LJB is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity.
AbstractList Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity (Qu), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio (Lw/B). Apart from Qu, other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when LJB is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity.
Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity (Qu), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio (Lw/B). Apart from Qu, other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when Lw/B is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity.
Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity ( Q u ), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio ( L w / B ). Apart from Q u , other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when L w / B is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity.
Author Hossein REZAEI Ramli NAZIR Ehsan MOMENI
AuthorAffiliation Faculty of Engineering, Lorestan University, Khorram A bad 68151-44316, Iran Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
Author_xml – sequence: 1
  givenname: Hossein
  surname: Rezaei
  fullname: Rezaei, Hossein
  organization: Faculty of Engineering, Lorestan University
– sequence: 2
  givenname: Ramli
  surname: Nazir
  fullname: Nazir, Ramli
  organization: Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia
– sequence: 3
  givenname: Ehsan
  surname: Momeni
  fullname: Momeni, Ehsan
  email: mehsan23@live.utm.my
  organization: Faculty of Engineering, Lorestan University, Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia
BookMark eNp1kM9KAzEQxoMo2KpH74uetybNJtkeq_gPBC8K3pY0mW1T1mSbZKn1UXwW38lXMLVVRPA0M_B9M9_8-mjXOgsIHRM8IJySs_lrFwZjwjDGlO6gHin5MCdCsN3Uc0FzxtnTPuqHMMeYCcxFD9lzkN7YaaZkK5WJq8zVWZwZmy9l04DOwixVt8xq11kto3E2fLy_ZdJm8NKCN89go2zSrDPpo6mNMmk0NkLTmClYBflEhvWi2OnVIdqrZRPgaFsP0OPV5cPFTX53f317Mb7LFRU45iXIES0oqwvgWtdEKEh5tWYK12xESyYKCoRgKbWAiZiUheJ8ohWlI66HmtIDdLrZ23q36CDEau46b9PJipSjEgs-LHlS5RuV8i4ED3XVpoekX1UEV2uk1Rpp9Y006ekffSL2xSR6aZp_XYONK7Rr0uB_ZfnHcLI9M3N2ukien1ycl4yxQgj6CcP4m8U
CitedBy_id crossref_primary_10_2174_1874836802014010237
crossref_primary_10_1007_s40098_020_00440_4
crossref_primary_10_1007_s00366_021_01380_0
crossref_primary_10_1007_s42452_020_2239_9
crossref_primary_10_1007_s10706_020_01536_7
crossref_primary_10_1007_s11053_020_09773_6
crossref_primary_10_3390_ma13173902
crossref_primary_10_3390_math12050733
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1016_j_trgeo_2020_100446
crossref_primary_10_18185_erzifbed_862650
crossref_primary_10_1016_j_undsp_2023_12_005
crossref_primary_10_1051_e3sconf_202340501010
crossref_primary_10_1631_jzus_A1600787
crossref_primary_10_1016_j_measurement_2021_109720
crossref_primary_10_1007_s41939_024_00446_y
crossref_primary_10_1007_s11831_020_09442_0
crossref_primary_10_1007_s00521_016_2728_3
crossref_primary_10_1007_s12205_021_1124_4
crossref_primary_10_1016_j_engappai_2020_104015
crossref_primary_10_1007_s00521_016_2618_8
crossref_primary_10_1007_s40808_023_01823_1
crossref_primary_10_1007_s13369_020_04683_4
crossref_primary_10_1088_1757_899X_981_3_032061
crossref_primary_10_1007_s10706_024_02863_9
crossref_primary_10_1007_s41939_022_00115_y
crossref_primary_10_1007_s10462_021_10065_5
crossref_primary_10_3390_su141811769
crossref_primary_10_1007_s00366_017_0542_x
crossref_primary_10_3390_buildings13051297
crossref_primary_10_3390_app14156453
Cites_doi 10.1139/t63-003
10.1016/j.compgeo.2007.03.001
10.11113/jt.v61.1777
10.1016/j.enggeo.2007.10.009
10.1016/S1365-1609(00)00078-2
10.1016/0893-6080(89)90020-8
10.1016/j.enggeo.2010.10.002
10.1061/(ASCE)GT.1943-5606.0000135
10.1007/s13369-014-1247-8
10.1061/(ASCE)1090-0241(1999)125:9(787)
10.1007/s10064-014-0638-0
10.15446/esrj.v19n1.38712
10.1007/s10706-013-9646-2
10.1007/BFb0040810
10.1016/j.measurement.2014.08.007
10.1061/40744(154)56
10.1109/IJCNN.1991.155275
10.1061/(ASCE)1090-0241(2008)134:7(1021)
10.1016/j.ijrmms.2009.09.011
10.1061/(ASCE)GM.1943-5622.0000237
10.1139/T08-134
10.1016/j.aej.2013.01.007
10.1016/j.ijrmms.2012.07.033
10.1680/gein.2006.13.4.161
10.1007/s10064-014-0687-4
10.4028/www.scientific.net/AMM.567.681
10.1016/S0148-9062(99)00007-8
10.1016/S0148-9062(98)00173-9
10.1061/(ASCE)0733-9410(1996)122:6(492)
10.1002/9780470172766
10.1061/(ASCE)0887-3801(1994)8:2(129)
10.1179/1939787914Y.0000000058
10.1016/j.measurement.2014.09.075
10.1061/(ASCE)1090-0241(1998)124:12(1177)
10.1680/grim.2004.8.4.171
10.1061/(ASCE)1090-0241(1997)123:1(66)
10.1080/17486020802509393
10.1016/j.sandf.2012.01.002
10.1109/ICNN.1995.488968
10.1061/JSFEAQ.0001846
ContentType Journal Article
Copyright Zhejiang University and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Zhejiang University and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1631/jzus.A1500033
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study
DocumentTitle_FL 基于人工智能的薄壁浅地基的承重能力研究
EISSN 1862-1775
EndPage 285
ExternalDocumentID 10_1631_jzus_A1500033
668555477
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29L
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AAKDD
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UGNYK
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
~WA
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEC
H13
Q--
U1G
U5M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c370t-8ea93435f4e6ddf17ce570dd5c0f59385743e110aad7eb7b84c66bdc3396d2d33
IEDL.DBID AGYKE
ISSN 1673-565X
IngestDate Wed Sep 17 13:52:05 EDT 2025
Thu Apr 24 23:13:28 EDT 2025
Tue Jul 01 01:18:37 EDT 2025
Fri Feb 21 02:32:48 EST 2025
Wed Feb 14 10:20:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Sand
Bearing capacity
粒子群优化
Thin-walled foundation
Particle swarm optimization (PSO)
承重能力
人工神经网络
TU43

Artificial neural network (ANN)
薄壁地基
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8ea93435f4e6ddf17ce570dd5c0f59385743e110aad7eb7b84c66bdc3396d2d33
Notes Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for this kind of foundation is of interest due to the fact that the famous bearing capacity equations are proposed for conventional footings. Many studies underlined the applicability of artificial neural networks (ANNs) in predicting the bearing capacity of foundations. However, the majority of these models are built using conventional ANNs, which suffer from slow rate of learning as well as getting trapped in local minima. Moreover, they are mainly developed for conventional footings. The prime objective of this study is to propose an improved ANN-based predictive model of bearing capacity for thin-walled shallow foundations. In this regard, a relatively large dataset comprising 145 recorded cases of related footing load tests was compiled from the literature. The dataset includes bearing capacity (Qu), friction angle, unit weight of sand, footing width, and thin-wall length to footing width ratio (Lw/B). Apart from Qu, other parameters were set as model inputs. To enhance the diversity of the data, four more related laboratory footing load tests were conducted on the Johor Bahru sand, and results were added to the dataset. Experimental findings suggest an almost 0.5 times increase in the bearing capacity in loose and dense sands when LJB is increased from 0.5 to 1.12. Overall, findings show the feasibility of the ANN-based predictive model improved with particle swarm optimization (PSO). The correlation coefficient was 0.98 for testing data, suggesting that the model serves as a reliable tool in predicting the bearing capacity.
Thin-walled foundation, Sand, Bearing capacity, Artificial neural network (ANN), Particle swarm optimization (PSO)
33-1236/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1631/jzus.A1500033.pdf
PQID 1898076286
PQPubID 2043632
PageCount 13
ParticipantIDs proquest_journals_1898076286
crossref_primary_10_1631_jzus_A1500033
crossref_citationtrail_10_1631_jzus_A1500033
springer_journals_10_1631_jzus_A1500033
chongqing_primary_668555477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationSubtitle Applied Physics & Engineering
PublicationTitle Journal of Zhejiang University. A. Science
PublicationTitleAbbrev J. Zhejiang Univ. Sci. A
PublicationTitleAlternate Journal of Zhejiang University Science
PublicationYear 2016
Publisher Zhejiang University Press
Springer Nature B.V
Publisher_xml – name: Zhejiang University Press
– name: Springer Nature B.V
References Momeni, Jahed Armaghani, Hajihassani (CR40) 2015; 60
Jahed Armaghani, Tonnizam Mohamad, Momeni (CR22) 2014; 74
Wakil (CR60) 2013; 52
Holland (CR19) 1975
Momeni, Nazir, Jahed Armaghani (CR37) 2014; 57
Tripathy (CR57) 2013
Khari, Kassim, Adnan (CR25) 2014; 39
Shahin, Jaksa, Maier (CR49) 2001; 36
Soleimanbeigi, Hataf (CR53) 2006; 13
Zorlu, Gokceoglu, Ocakoglu (CR62) 2008; 96
Mendes, Cortes, Rocha (CR33) 2002
Momeni, Maizir, Gofar (CR36) 2013; 61
Hornik, Stinchcombe, White (CR20) 1989; 2
Garrett (CR14) 1994; 8
Gibbens, Briaud (CR15) 1995
Lok, Che (CR29) 2004
Madabhushi, Houghton, Haigh (CR30) 2006
Hagan, Demuth, Beale (CR18) 1996
Kalinli, Acar, Gunduz (CR23) 2011; 117
Villalobos (CR59) 2007
Shi, Eberhart (CR50) 1998
Singh, Singh, Singh (CR52) 2001; 38
Vesic (CR58) 1973; 99
Jadav, Panchal (CR21) 2012; 1
Majdi, Beiki (CR31) 2010; 47
Alvarez Grima, Babuška (CR5) 1999; 36
Chen, Abu-Farsakh, Sharma (CR8) 2007
Dreyfus (CR9) 2005
Pal, Deswal (CR45) 2008; 134
Eid, Alansari, Odeh (CR12) 2009; 46
Eid (CR11) 2013; 13
Zhao, Tu, Shi (CR61) 2010
Rashidian, Hassanlourad (CR47) 2013; 31
Meulenkamp, Alvarez Grima (CR34) 1999; 36
Marto, Hajihasaani, Momeni (CR32) 2014; 567
Ornek, Laman, Demir (CR43) 2012; 52
Kiefa (CR26) 1998; 124
Lee, Oh, Kim (CR27) 1991; 1
Briaud, Gibbens (CR7) 1999; 125
Adams, Collin (CR1) 1997; 123
Liu, Zhang, Wu, Liu (CR28) 2012
Benali, Nechnech (CR6) 2011
Terzaghi (CR55) 1943
Habib (CR17) 1974
Rabbani, Sharif, Koolivand Salooki (CR46) 2012; 56
Tonnizam Mohamad, Jahed Armaghani, Momeni (CR56) 2014; 74
Akbas, Kulhawy (CR2) 2009; 135
Goh (CR16) 1996; 122
Al-Aghbari, Dutta (CR4) 2008; 3
Kennedy, Eberhart (CR24) 1995
Padmini, Ilamparuthi, Sudheer (CR44) 2008; 35
Shahin (CR48) 2015; 9
Fausett (CR13) 1994
Meyerhof (CR35) 1963; 1
Momeni, Nazir, Jahed Armaghani (CR38) 2015; 19
Eberhart, Shi (CR10) 2001
Nazir, Momeni, Hajihassani (CR42) 2014
Al-Aghbari, Mohamedzein (CR3) 2004; 8
Shi, Eberhart (CR51) 1999
Momeni, Nazir, Jahed Armaghani (CR39) 2015; 168
Nazir, Momeni, Marsono (CR41) 2013
Taylor (CR54) 1995
R. Nazir (73_CR42) 2014
E. Momeni (73_CR39) 2015; 168
A.T. Goh (73_CR16) 1996; 122
A.S. Vesic (73_CR58) 1973; 99
E. Momeni (73_CR36) 2013; 61
M.A. Shahin (73_CR48) 2015; 9
G. Dreyfus (73_CR9) 2005
S.O. Akbas (73_CR2) 2009; 135
F. Villalobos (73_CR59) 2007
A. Soleimanbeigi (73_CR53) 2006; 13
D. Jahed Armaghani (73_CR22) 2014; 74
J.B. Zhao (73_CR61) 2010
A. Majdi (73_CR31) 2010; 47
H.T. Eid (73_CR11) 2013; 13
L.V. Fausett (73_CR13) 1994
M.T. Hagan (73_CR18) 1996
G.G. Meyerhof (73_CR35) 1963; 1
D. Padmini (73_CR44) 2008; 35
R. Mendes (73_CR33) 2002
J.L. Briaud (73_CR7) 1999; 125
E. Rabbani (73_CR46) 2012; 56
S. Tripathy (73_CR57) 2013
R.N. Taylor (73_CR54) 1995
V. Rashidian (73_CR47) 2013; 31
M.T. Adams (73_CR1) 1997; 123
E. Tonnizam Mohamad (73_CR56) 2014; 74
Q. Chen (73_CR8) 2007
E. Momeni (73_CR38) 2015; 19
M.A. Shahin (73_CR49) 2001; 36
Y. Shi (73_CR50) 1998
V.K. Singh (73_CR52) 2001; 38
E. Momeni (73_CR40) 2015; 60
H.T. Eid (73_CR12) 2009; 46
R. Nazir (73_CR41) 2013
J. Kennedy (73_CR24) 1995
M.A. Kiefa (73_CR26) 1998; 124
M.Y. Al-Aghbari (73_CR3) 2004; 8
M. Ornek (73_CR43) 2012; 52
K. Terzaghi (73_CR55) 1943
A. Marto (73_CR32) 2014; 567
F. Meulenkamp (73_CR34) 1999; 36
E. Momeni (73_CR37) 2014; 57
J. Holland (73_CR19) 1975
Y. Shi (73_CR51) 1999
Y. Lee (73_CR27) 1991; 1
R.C. Eberhart (73_CR10) 2001
A.Z.E.L. Wakil (73_CR60) 2013; 52
M. Alvarez Grima (73_CR5) 1999; 36
A. Benali (73_CR6) 2011
J.H. Garrett (73_CR14) 1994; 8
M. Khari (73_CR25) 2014; 39
M. Pal (73_CR45) 2008; 134
K. Zorlu (73_CR62) 2008; 96
S.P.G. Madabhushi (73_CR30) 2006
K. Jadav (73_CR21) 2012; 1
R.M. Gibbens (73_CR15) 1995
T.X. Liu (73_CR28) 2012
K. Hornik (73_CR20) 1989; 2
P.A. Habib (73_CR17) 1974
A. Kalinli (73_CR23) 2011; 117
T.M.H. Lok (73_CR29) 2004
M.Y. Al-Aghbari (73_CR4) 2008; 3
References_xml – volume: 1
  start-page: 16
  issue: 1
  year: 1963
  end-page: 26
  ident: CR35
  article-title: Some recent research on the bearing capacity of foundations
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t63-003
– volume: 35
  start-page: 33
  issue: 1
  year: 2008
  end-page: 46
  ident: CR44
  article-title: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2007.03.001
– volume: 61
  start-page: 15
  issue: 3
  year: 2013
  end-page: 20
  ident: CR36
  article-title: Comparative study on prediction of axial bearing capacity of driven piles in granular materials
  publication-title: Jurnal Teknologi
  doi: 10.11113/jt.v61.1777
– year: 1995
  ident: CR15
  publication-title: Load Tests on Five Large Spread Footings on Sand and Evaluation of Prediction Methods
– volume: 96
  start-page: 141
  issue: 3–4
  year: 2008
  end-page: 158
  ident: CR62
  article-title: Prediction of uniaxial compressive strength of sandstones using petrography-based models
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2007.10.009
– year: 1974
  ident: CR17
  article-title: Scale effect for shallow footings on dense sand
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– year: 1996
  ident: CR18
  publication-title: Neural Network Design
– volume: 38
  start-page: 269
  issue: 2
  year: 2001
  end-page: 284
  ident: CR52
  article-title: Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S1365-1609(00)00078-2
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  ident: CR20
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 117
  start-page: 29
  issue: 1–2
  year: 2011
  end-page: 38
  ident: CR23
  article-title: New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2010.10.002
– year: 2007
  ident: CR8
  article-title: Laboratory investigation of behavior of foundations on geosynthetic-reinforced clayey soil
  publication-title: Journal of the Transportation Research Board
– volume: 135
  start-page: 1562
  issue: 11
  year: 2009
  end-page: 1574
  ident: CR2
  article-title: Axial compression of footings in cohesionless soils. I: Load-settlement behavior
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)GT.1943-5606.0000135
– volume: 39
  start-page: 6825
  issue: 10
  year: 2014
  end-page: 6834
  ident: CR25
  article-title: Sand samples’ preparation using mobile pluviator
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-014-1247-8
– year: 2005
  ident: CR9
  publication-title: Neural Networks: Methodology and Application
– year: 2006
  ident: CR30
  publication-title: A new automatic sand pourer for model preparation at University of Cambridge
– volume: 125
  start-page: 787
  issue: 9
  year: 1999
  end-page: 796
  ident: CR7
  article-title: Behavior of five large spread footings in sand
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1999)125:9(787)
– start-page: 465
  year: 2012
  end-page: 471
  ident: CR28
  article-title: Research of agricultural land classification and evaluation based on genetic algorithm optimized neural network model
  publication-title: Software Engineering and Knowledge Engineering: Theory and Practice
– volume: 74
  start-page: 745
  issue: 3
  year: 2014
  end-page: 757
  ident: CR56
  article-title: Prediction on unconfined compressive strength of soft rocks: a PSO-based ANN approach
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0638-0
– year: 2013
  ident: CR57
  article-title: Load Carrying Capacity of Skirted Foundation on Sand
  publication-title: MS Thesis, National Institute of Technology, Rourkela, India
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  end-page: 93
  ident: CR38
  article-title: Application of artificial neural network for predicting shaft and tip resistance of concrete piles
  publication-title: Earth Sciences Research Journal
  doi: 10.15446/esrj.v19n1.38712
– volume: 31
  start-page: 1231
  issue: 4
  year: 2013
  end-page: 1248
  ident: CR47
  article-title: Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-013-9646-2
– start-page: 591
  year: 1998
  end-page: 600
  ident: CR50
  article-title: Parameter selection in particle swarm optimization
  publication-title: Evolutionary Programming VII: 7th International Conference, San Diego, California, USA
  doi: 10.1007/BFb0040810
– start-page: 13
  year: 2013
  end-page: 15
  ident: CR41
  article-title: Precast spread foundation in industrialized building system
  publication-title: Proceedings of the 3rd International Conference on Geotechnique, Construction Materials and Environment, Nagoya, Japan
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: CR37
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 99
  start-page: 45
  issue: 1
  year: 1973
  end-page: 73
  ident: CR58
  article-title: Analysis of ultimate loads of shallow foundations
  publication-title: Journal of the Soil Mechanics and Foundations Division
– start-page: 697
  year: 2004
  end-page: 704
  ident: CR29
  article-title: Axial capacity prediction for driven piles using ANN: model comparison
  publication-title: Geotechnical Engineering for Transportation Projects, Los Angeles, USA
  doi: 10.1061/40744(154)56
– volume: 1
  start-page: 765
  year: 1991
  end-page: 770
  ident: CR27
  article-title: The effect of initial weights on premature saturation in back-propagation learning
  publication-title: International Joint Conference on Neural Networks, Seattle, USA
  doi: 10.1109/IJCNN.1991.155275
– volume: 134
  start-page: 1021
  issue: 7
  year: 2008
  end-page: 1024
  ident: CR45
  article-title: Modeling pile capacity using support vector machines and generalized regression neural network
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(2008)134:7(1021)
– volume: 47
  start-page: 246
  issue: 2
  year: 2010
  end-page: 253
  ident: CR31
  article-title: Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2009.09.011
– start-page: 20
  year: 2014
  end-page: 24
  ident: CR42
  article-title: Prediction of spread foundation’s settlement in cohesionless soils using a hybrid particle swarm optimization-based ANN approach
  publication-title: International Conference on Advances in Civil, Structural and Mechanical Engineering, London, UK
– volume: 13
  start-page: 645
  issue: 5
  year: 2013
  end-page: 652
  ident: CR11
  article-title: Bearing capacity and settlement of skirted shallow foundations on sand
  publication-title: International Journal of Geomechanics
  doi: 10.1061/(ASCE)GM.1943-5622.0000237
– volume: 46
  start-page: 438
  issue: 4
  year: 2009
  end-page: 453
  ident: CR12
  article-title: Comparative study on the behavior of square foundations resting on confined sand
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/T08-134
– year: 2010
  ident: CR61
  article-title: An ANN model for predicting level ultimate bearing capacity of PHC pipe pile
  publication-title: Earth and Space
– start-page: 1945
  year: 1999
  end-page: 1950
  ident: CR51
  article-title: Empirical study of particle swarm optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation, New York
– volume: 1
  start-page: 47
  year: 2012
  end-page: 51
  ident: CR21
  article-title: Optimizing weights of artificial neural networks using genetic algorithms
  publication-title: International Journal of Advanced Research in Computer Science and Electronics Engineering
– year: 1995
  ident: CR54
  publication-title: Geotechnical Centrifuge Technology, 1st Edition
– volume: 52
  start-page: 359
  issue: 3
  year: 2013
  end-page: 364
  ident: CR60
  article-title: Bearing capacity of skirt circular footing on sand
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2013.01.007
– start-page: 94
  year: 2001
  end-page: 100
  ident: CR10
  publication-title: Tracking and optimizing dynamic systems with particle swarms
– year: 1975
  ident: CR19
  publication-title: Adaptation in Natural and Artificial Systems
– year: 1994
  ident: CR13
  publication-title: Fundamentals of Neural Networks: Architecture, Algorithms and Applications
– volume: 56
  start-page: 100
  year: 2012
  end-page: 111
  ident: CR46
  article-title: Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties
  publication-title: Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2012.07.033
– year: 2007
  ident: CR59
  publication-title: Bearing capacity of skirted foundations in sand. VI Congreso Chileno de Geotecnia
– start-page: 23
  year: 2011
  end-page: 25
  ident: CR6
  publication-title: Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks. International Seminar, Innovation and Valorization in Civil Engineering and Construction Materials, Rabat, Morocco
– volume: 13
  start-page: 161
  issue: 4
  year: 2006
  end-page: 170
  ident: CR53
  article-title: Prediction of settlement of shallow foundations on reinforced soils using neural networks
  publication-title: Geosynthetics International
  doi: 10.1680/gein.2006.13.4.161
– volume: 74
  start-page: 1301
  issue: 4
  year: 2014
  end-page: 1319
  ident: CR22
  article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range Granite
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0687-4
– volume: 567
  start-page: 681
  year: 2014
  end-page: 686
  ident: CR32
  article-title: Prediction of bearing capacity of shallow foundation through hybrid artificial neural networks
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.567.681
– volume: 36
  start-page: 339
  issue: 3
  year: 1999
  end-page: 349
  ident: CR5
  article-title: Fuzzy model for the prediction of unconfined compressive strength of rock samples
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S0148-9062(99)00007-8
– volume: 36
  start-page: 29
  issue: 1
  year: 1999
  end-page: 39
  ident: CR34
  article-title: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S0148-9062(98)00173-9
– volume: 122
  start-page: 492
  issue: 6
  year: 1996
  end-page: 495
  ident: CR16
  article-title: Pile driving records reanalyzed using neural networks
  publication-title: Journal of Geotechnical Engineering
  doi: 10.1061/(ASCE)0733-9410(1996)122:6(492)
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  end-page: 62
  ident: CR49
  article-title: Artificial neural network application in geotechnical engineering
  publication-title: Australian Geomechanics
– year: 1943
  ident: CR55
  publication-title: Theoretical Soil Mechanics
  doi: 10.1002/9780470172766
– volume: 8
  start-page: 129
  issue: 2
  year: 1994
  end-page: 130
  ident: CR14
  article-title: Where and why artificial neural networks are applicable in civil engineering
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(129)
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR24
  article-title: Particle swarm optimization
  publication-title: IEEE International Conference on Neural Networks, Perth, Australia
– volume: 9
  start-page: 49
  issue: 1
  year: 2015
  end-page: 60
  ident: CR48
  article-title: A review of artificial intelligence applications in shallow foundations
  publication-title: International Journal of Geotechnical Engineering
  doi: 10.1179/1939787914Y.0000000058
– start-page: 1895
  year: 2002
  end-page: 1899
  ident: CR33
  article-title: Particle swarms for feed forward neural net training
  publication-title: Proceedings of the IEEE International Conference on Neural Networks, Honolulu, HI, USA
– volume: 60
  start-page: 50
  year: 2015
  end-page: 63
  ident: CR40
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimizationbased artificial neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 124
  start-page: 1177
  issue: 12
  year: 1998
  end-page: 1185
  ident: CR26
  article-title: General regression neural networks for driven piles in cohesionless soils
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1998)124:12(1177)
– volume: 168
  start-page: 539
  issue: 6
  year: 2015
  end-page: 550
  ident: CR39
  article-title: Bearing capacity of precast thin-walled foundation in sand
  publication-title: Geotechnical Engineering
– volume: 8
  start-page: 171
  issue: 4
  year: 2004
  end-page: 177
  ident: CR3
  article-title: Model testing of strip footings with structural skirts
  publication-title: Proceedings of the ICE-Ground Improvement
  doi: 10.1680/grim.2004.8.4.171
– volume: 123
  start-page: 66
  issue: 1
  year: 1997
  end-page: 72
  ident: CR1
  article-title: Large model spread footing load tests on geosynthetic reinforced soil foundations
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1997)123:1(66)
– volume: 3
  start-page: 271
  issue: 4
  year: 2008
  end-page: 277
  ident: CR4
  article-title: Performance of square footing with structural skirt resting on sand
  publication-title: Geomechanics and Geoengineering
  doi: 10.1080/17486020802509393
– volume: 52
  start-page: 69
  issue: 1
  year: 2012
  end-page: 80
  ident: CR43
  article-title: Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil
  publication-title: Soils and Foundations
  doi: 10.1016/j.sandf.2012.01.002
– volume-title: Journal of the Transportation Research Board
  year: 2007
  ident: 73_CR8
– volume: 9
  start-page: 49
  issue: 1
  year: 2015
  ident: 73_CR48
  publication-title: International Journal of Geotechnical Engineering
  doi: 10.1179/1939787914Y.0000000058
– volume: 168
  start-page: 539
  issue: 6
  year: 2015
  ident: 73_CR39
  publication-title: Geotechnical Engineering
– volume: 31
  start-page: 1231
  issue: 4
  year: 2013
  ident: 73_CR47
  publication-title: Geotechnical and Geological Engineering
  doi: 10.1007/s10706-013-9646-2
– volume: 74
  start-page: 745
  issue: 3
  year: 2014
  ident: 73_CR56
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0638-0
– volume: 134
  start-page: 1021
  issue: 7
  year: 2008
  ident: 73_CR45
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(2008)134:7(1021)
– volume: 117
  start-page: 29
  issue: 1–2
  year: 2011
  ident: 73_CR23
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2010.10.002
– volume: 47
  start-page: 246
  issue: 2
  year: 2010
  ident: 73_CR31
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2009.09.011
– start-page: 13
  volume-title: Proceedings of the 3rd International Conference on Geotechnique, Construction Materials and Environment, Nagoya, Japan
  year: 2013
  ident: 73_CR41
– volume: 74
  start-page: 1301
  issue: 4
  year: 2014
  ident: 73_CR22
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-014-0687-4
– volume-title: Geotechnical Centrifuge Technology, 1st Edition
  year: 1995
  ident: 73_CR54
– volume: 36
  start-page: 49
  issue: 1
  year: 2001
  ident: 73_CR49
  publication-title: Australian Geomechanics
– volume: 3
  start-page: 271
  issue: 4
  year: 2008
  ident: 73_CR4
  publication-title: Geomechanics and Geoengineering
  doi: 10.1080/17486020802509393
– volume: 52
  start-page: 69
  issue: 1
  year: 2012
  ident: 73_CR43
  publication-title: Soils and Foundations
  doi: 10.1016/j.sandf.2012.01.002
– volume-title: Bearing capacity of skirted foundations in sand. VI Congreso Chileno de Geotecnia
  year: 2007
  ident: 73_CR59
– volume-title: Theoretical Soil Mechanics
  year: 1943
  ident: 73_CR55
  doi: 10.1002/9780470172766
– volume: 567
  start-page: 681
  year: 2014
  ident: 73_CR32
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.567.681
– volume: 123
  start-page: 66
  issue: 1
  year: 1997
  ident: 73_CR1
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1997)123:1(66)
– volume: 125
  start-page: 787
  issue: 9
  year: 1999
  ident: 73_CR7
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1999)125:9(787)
– volume-title: Fundamentals of Neural Networks: Architecture, Algorithms and Applications
  year: 1994
  ident: 73_CR13
– volume: 60
  start-page: 50
  year: 2015
  ident: 73_CR40
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 73_CR20
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 19
  start-page: 85
  issue: 1
  year: 2015
  ident: 73_CR38
  publication-title: Earth Sciences Research Journal
  doi: 10.15446/esrj.v19n1.38712
– volume-title: Neural Networks: Methodology and Application
  year: 2005
  ident: 73_CR9
– volume: 56
  start-page: 100
  year: 2012
  ident: 73_CR46
  publication-title: Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/j.ijrmms.2012.07.033
– volume: 124
  start-page: 1177
  issue: 12
  year: 1998
  ident: 73_CR26
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)1090-0241(1998)124:12(1177)
– start-page: 23
  volume-title: Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks. International Seminar, Innovation and Valorization in Civil Engineering and Construction Materials, Rabat, Morocco
  year: 2011
  ident: 73_CR6
– volume: 13
  start-page: 161
  issue: 4
  year: 2006
  ident: 73_CR53
  publication-title: Geosynthetics International
  doi: 10.1680/gein.2006.13.4.161
– start-page: 591
  volume-title: Evolutionary Programming VII: 7th International Conference, San Diego, California, USA
  year: 1998
  ident: 73_CR50
  doi: 10.1007/BFb0040810
– volume: 135
  start-page: 1562
  issue: 11
  year: 2009
  ident: 73_CR2
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
  doi: 10.1061/(ASCE)GT.1943-5606.0000135
– start-page: 94
  volume-title: Tracking and optimizing dynamic systems with particle swarms
  year: 2001
  ident: 73_CR10
– volume: 35
  start-page: 33
  issue: 1
  year: 2008
  ident: 73_CR44
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2007.03.001
– start-page: 1945
  volume-title: Proceedings of the IEEE Congress on Evolutionary Computation, New York
  year: 1999
  ident: 73_CR51
– volume: 13
  start-page: 645
  issue: 5
  year: 2013
  ident: 73_CR11
  publication-title: International Journal of Geomechanics
  doi: 10.1061/(ASCE)GM.1943-5622.0000237
– volume-title: Earth and Space
  year: 2010
  ident: 73_CR61
– volume: 61
  start-page: 15
  issue: 3
  year: 2013
  ident: 73_CR36
  publication-title: Jurnal Teknologi
  doi: 10.11113/jt.v61.1777
– volume: 1
  start-page: 765
  year: 1991
  ident: 73_CR27
  publication-title: International Joint Conference on Neural Networks, Seattle, USA
  doi: 10.1109/IJCNN.1991.155275
– start-page: 1895
  volume-title: Proceedings of the IEEE International Conference on Neural Networks, Honolulu, HI, USA
  year: 2002
  ident: 73_CR33
– start-page: 697
  volume-title: Geotechnical Engineering for Transportation Projects, Los Angeles, USA
  year: 2004
  ident: 73_CR29
  doi: 10.1061/40744(154)56
– volume: 46
  start-page: 438
  issue: 4
  year: 2009
  ident: 73_CR12
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/T08-134
– volume: 122
  start-page: 492
  issue: 6
  year: 1996
  ident: 73_CR16
  publication-title: Journal of Geotechnical Engineering
  doi: 10.1061/(ASCE)0733-9410(1996)122:6(492)
– volume: 96
  start-page: 141
  issue: 3–4
  year: 2008
  ident: 73_CR62
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2007.10.009
– volume-title: Journal of Geotechnical and Geoenvironmental Engineering
  year: 1974
  ident: 73_CR17
– volume: 36
  start-page: 29
  issue: 1
  year: 1999
  ident: 73_CR34
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S0148-9062(98)00173-9
– volume: 52
  start-page: 359
  issue: 3
  year: 2013
  ident: 73_CR60
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2013.01.007
– volume: 57
  start-page: 122
  year: 2014
  ident: 73_CR37
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– volume: 1
  start-page: 16
  issue: 1
  year: 1963
  ident: 73_CR35
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t63-003
– volume: 38
  start-page: 269
  issue: 2
  year: 2001
  ident: 73_CR52
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S1365-1609(00)00078-2
– volume: 36
  start-page: 339
  issue: 3
  year: 1999
  ident: 73_CR5
  publication-title: International Journal of Rock Mechanics and Mining Sciences
  doi: 10.1016/S0148-9062(99)00007-8
– start-page: 20
  volume-title: International Conference on Advances in Civil, Structural and Mechanical Engineering, London, UK
  year: 2014
  ident: 73_CR42
– volume-title: MS Thesis, National Institute of Technology, Rourkela, India
  year: 2013
  ident: 73_CR57
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: 73_CR19
– volume-title: Neural Network Design
  year: 1996
  ident: 73_CR18
– start-page: 1942
  volume-title: IEEE International Conference on Neural Networks, Perth, Australia
  year: 1995
  ident: 73_CR24
  doi: 10.1109/ICNN.1995.488968
– volume: 99
  start-page: 45
  issue: 1
  year: 1973
  ident: 73_CR58
  publication-title: Journal of the Soil Mechanics and Foundations Division
  doi: 10.1061/JSFEAQ.0001846
– volume: 39
  start-page: 6825
  issue: 10
  year: 2014
  ident: 73_CR25
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-014-1247-8
– volume-title: Load Tests on Five Large Spread Footings on Sand and Evaluation of Prediction Methods
  year: 1995
  ident: 73_CR15
– volume: 8
  start-page: 129
  issue: 2
  year: 1994
  ident: 73_CR14
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)0887-3801(1994)8:2(129)
– volume-title: A new automatic sand pourer for model preparation at University of Cambridge
  year: 2006
  ident: 73_CR30
– volume: 8
  start-page: 171
  issue: 4
  year: 2004
  ident: 73_CR3
  publication-title: Proceedings of the ICE-Ground Improvement
  doi: 10.1680/grim.2004.8.4.171
– start-page: 465
  volume-title: Software Engineering and Knowledge Engineering: Theory and Practice
  year: 2012
  ident: 73_CR28
– volume: 1
  start-page: 47
  year: 2012
  ident: 73_CR21
  publication-title: International Journal of Advanced Research in Computer Science and Electronics Engineering
SSID ssj0057067
Score 2.2627587
Snippet Thin-walled spread foundations are used in coastal projects where the soil strength is relatively low. Developing a predictive model of bearing capacity for...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 273
SubjectTerms Airports
Artificial intelligence
Artificial neural networks
Civil Engineering
Classical and Continuum Physics
Correlation coefficient
Correlation coefficients
Datasets
Engineering
Industrial Chemistry/Chemical Engineering
Learning theory
Load tests
Mechanical Engineering
Neural networks
Particle swarm optimization
Prediction models
Sand
Shallow foundations
Site planning
Soil bearing capacity
Soil strength
Spread foundations
Swarm intelligence
Title Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study
URI http://lib.cqvip.com/qk/88140X/201604/668555477.html
https://link.springer.com/article/10.1631/jzus.A1500033
https://www.proquest.com/docview/1898076286
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuJRDebSILbDyAZVWqpckjh_htluxRVSgHrrS9hQltgO0KNuSrJD49Yw38XZLWwmOka2x45nxfCPb3wAcxCLPMxYENJMRp3FRJFQZZanKMNrgzDGGu_fO5xfidBSfjfl4CY78W5jZbXd_JDnbqZ1bCxYefb-fVr1-6Aj8GVuGVY65CXriav_Tt88nfvPlMpgVjQ2FZBSxyril1fxLgKNSuJqUl79woD9D0m-c-ehodBZxhuvwxc-1uWjyozet856-f0Tj-Iyf2YCXLfok_cZcNmHJlluwtsBJuAWbrbdX5F1LSf3-FdwM0CGwmWiMrRqBO5kUpL66Lumdq8ViSOVqskzuSDGv0lQdk6wkiwUE8NsQZ6kNaQW5XmADpS6aohhHdvsaRsOTrx9PaVungWomg5oqmyUMYVcRW2FMEUptUQ_GcB0UPGGKI0qxCDOyzEiby1zFWojcaMYSYSLD2DaslJPS7gDh7ty4CEwkZO5SN4UJKsdNQ0dJlGmtO7A7V1v6s-HjSIVQHFGRlB344BWZ6pbi3FXauEldqoPrnrp1T_26d-DtvLuX9Z-Oe94q0tbFqzRUiQqke9nbgUOv5IXmfwl68-Seu_ACnUU0d4T2YKW-ndp9hD913kWTHw4GF93W9LuwPIr6D2RFBKU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5ReqAcqgKtukBbHyoeUg1JHD_S21IVbXmdWGlvVmI7BYSyQBYh9dd3JptsF2ilHiM7TuRvxvONbH8D8DlVRZGLKOK5TiRPyzLjxpvATY7RBv8cYzjddz49U4NhejSSowXY7-7CNKfduy3JZqUmt1Yi3r_6dV_v9WMS8BfiBbykHUbKtoZJv1t6pY6akrGx0oIjUxm1oprPXichhYtx9fMWP_M4IP1hmU82Rpt4c_gGXrdEkfWnyK7AQqhWYXlOPnAVVlrHrNlOqx69uwbXB2i72MwchkGHHJuNSza5uKz4A5VN8aym8injB1bOCirVX1lesXmtf3z2jIxqqi_BLueEOzkFPhyGdGnfwvDw-_m3AW9LKnAndDThJuSZQIZUpkF5X8baBZw076WLSpkJI5FQBGQEee51KHRhUqdU4Z0QmfKJF-IdLFbjKrwHJgmAMvKJ0gVlWQZzSYn-7ZIsyZ1zPdiYzbG9mUpnWKWMRAKjdQ--dLNuXatGTkUxri1lJQiYJcBsB1gPtmbdu7H-0XGzg9C23ljb2GQm0nQJtwfbHaxzzX8baP2_e36CpcH56Yk9-XF2vAGv0MbV9GjPJixO7u7DB2Qtk-JjY6m_Afkp6FY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VIlX0oeoBYnuAHxClEqZJHB-Bp-VYFQoVD11p36zERw9V2bZJVYlf33GOZSlF4jHykcgzk--z7PkG4FUqiiJnUURzmXCaep9RZZWjKke0wS9HDA_5zj-OxME4_TbhkwX40OfCNLfd-yPJNqchqDSV9f6l9U2ICxbvn_-6qd4N4yDmz9gjeJwiTIf7XONk2P-GuYya8rGxkIwia5l0Apt_DQ-iCqfT8uQKX_knOP1mnPcOSRvsGa3CSkcaybC18hosuHIdluekBNdhrQvSirzplKT3NuDiI_oxNhODkGiQb5OpJ_XpWUlvQwkVS6pQSmV6S_ysuFL1nuQlmdf9x2dLgoO1WhPkbE7EkwYQxGmCRu1TGI--HH86oF15BWqYjGqqXJ4xZEs-dcJaH0vjcNGs5SbyPGOKI7lwyA7y3EpXyEKlRojCGsYyYRPL2DNYLKelew6Eh-NeH9lEyCLsuBTuKznGukmyJDfGDGBrtsb6spXR0EIojmRGygG87Vddm06ZPBTIuNBhh4IG08FgujfYAF7Puvdz_aPjdm9C3UVmpWOVqUiGhNwB7PZmnWt-aKLN_-75EpZ-fh7p71-PDrfgCbq7aG_5bMNifX3jdpDA1MWLxlHvAC0j7Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bearing+capacity+of+thin-walled+shallow+foundations%3A+an+experimental+and+artificial+intelligence-based+study&rft.jtitle=Journal+of+Zhejiang+University.+A.+Science&rft.au=Rezaei%2C+Hossein&rft.au=Nazir%2C+Ramli&rft.au=Momeni%2C+Ehsan&rft.date=2016-04-01&rft.issn=1673-565X&rft.eissn=1862-1775&rft.volume=17&rft.issue=4&rft.spage=273&rft.epage=285&rft_id=info:doi/10.1631%2Fjzus.A1500033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1631_jzus_A1500033
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88140X%2F88140X.jpg