Early prediction of mortality and morbidities in VLBW preterm neonates using machine learning

Background Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Hypothesis Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict surv...

Full description

Saved in:
Bibliographic Details
Published inPediatric research Vol. 97; no. 6; pp. 2056 - 2064
Main Authors Shu, Chi-Hung, Zebda, Rema, Espinosa, Camilo, Reiss, Jonathan, Debuyserie, Anne, Reber, Kristina, Aghaeepour, Nima, Pammi, Mohan
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.05.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0031-3998
1530-0447
1530-0447
DOI10.1038/s41390-024-03604-7

Cover

Abstract Background Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Hypothesis Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants. Methods ML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort ( n  = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort ( n  = 447) to evaluate the final model performance. Results Among the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants. Conclusions Our study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine. Impact Reliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.
AbstractList Background Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Hypothesis Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants. Methods ML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort ( n  = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort ( n  = 447) to evaluate the final model performance. Results Among the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants. Conclusions Our study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine. Impact Reliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.
Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants. ML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort (n = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort (n = 447) to evaluate the final model performance. Among the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants. Our study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine. Reliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.
BackgroundPredicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories.HypothesisIntegrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants.MethodsML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort (n = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort (n = 447) to evaluate the final model performance.ResultsAmong the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants.ConclusionsOur study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine.ImpactReliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants.We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants.Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.
Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories.BACKGROUNDPredicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories.Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants.HYPOTHESISIntegrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants.ML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort (n = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort (n = 447) to evaluate the final model performance.METHODSML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort (n = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort (n = 447) to evaluate the final model performance.Among the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants.RESULTSAmong the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants.Our study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine.CONCLUSIONSOur study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine.Reliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.IMPACTReliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.
Author Aghaeepour, Nima
Debuyserie, Anne
Reiss, Jonathan
Shu, Chi-Hung
Pammi, Mohan
Reber, Kristina
Zebda, Rema
Espinosa, Camilo
Author_xml – sequence: 1
  givenname: Chi-Hung
  surname: Shu
  fullname: Shu, Chi-Hung
  organization: Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine
– sequence: 2
  givenname: Rema
  surname: Zebda
  fullname: Zebda, Rema
  organization: Department of Pediatrics and Neonatology, Texas Children’s Hospital, Baylor College of Medicine
– sequence: 3
  givenname: Camilo
  surname: Espinosa
  fullname: Espinosa, Camilo
  organization: Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine
– sequence: 4
  givenname: Jonathan
  surname: Reiss
  fullname: Reiss, Jonathan
  organization: Department of Pediatrics, Stanford University School of Medicine
– sequence: 5
  givenname: Anne
  surname: Debuyserie
  fullname: Debuyserie, Anne
  organization: Department of Pediatrics and Neonatology, Texas Children’s Hospital, Baylor College of Medicine
– sequence: 6
  givenname: Kristina
  surname: Reber
  fullname: Reber, Kristina
  organization: Department of Pediatrics and Neonatology, Texas Children’s Hospital, Baylor College of Medicine
– sequence: 7
  givenname: Nima
  surname: Aghaeepour
  fullname: Aghaeepour, Nima
  organization: Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Department of Pediatrics, Stanford University School of Medicine, Department of Biomedical Data Science, Stanford University School of Medicine
– sequence: 8
  givenname: Mohan
  surname: Pammi
  fullname: Pammi, Mohan
  email: mohanv@bcm.edu
  organization: Department of Pediatrics and Neonatology, Texas Children’s Hospital, Baylor College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39379627$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1r3DAQhkVIaTZp_0AORdBLL05HHtmSjm3IFyz00o9TEbI9ThVseSvZlP331WY3KfRQehBCo-edmfc9ZcdhCsTYuYALAajfJynQQAGlLABrkIU6YitRYS5JqY7ZCgBFgcboE3aa0gOAkJWWL9kJGlSmLtWKfb9ycdjyTaTOt7OfAp96Pk5xdoOft9yFbvdqfOdnT4n7wL-uP37b8TPFkQeagpvzx5J8uOeja3_4QHwgF0MuvGIvejcken24z9iX66vPl7fF-tPN3eWHddGigrnQWmrTdD1S3TUSBEClJACBLLVzTvRApamhzlaMEbrqdFX2TWOIlGnywTOG-75L2LjtLzcMdhP96OLWCrC7sOw-LJvDso9hWZVV7_aqTZx-LpRmO_rU0jC4bGtJFoWQMqeHZUbf_oU-TEsM2ZPFUmCtFcKu4ZsDtTQjdc87PMWdgXIPtHFKKVL_f2sezKUMh3uKf2b_Q_UbjIugSQ
Cites_doi 10.1186/s12859-023-05156-9
10.1038/s41598-022-25746-6
10.1038/s43588-023-00429-y
10.1016/S0140-6736(15)60722-X
10.1038/s41598-022-16234-y
10.1007/s00431-024-05505-7
10.1056/NEJMoa073059
10.1038/s41390-020-0968-5
10.3349/ymj.2022.63.7.640
10.1111/j.2517-6161.1974.tb00994.x
10.1016/j.vaccine.2016.03.045
10.21105/joss.00861
10.1007/BF00994018
10.1542/peds.2020-1209
10.1001/jama.2016.14117
10.1001/jama.2015.10244
10.1126/scitranslmed.adc9854
10.1109/TIT.1967.1053964
10.1111/j.2517-6161.1996.tb02080.x
10.1038/s41372-023-01719-z
10.17226/11622
10.1038/s41372-020-0635-z
10.1080/00401706.1970.10488634
10.1007/978-3-642-04898-2_394
10.3389/fped.2021.801955
10.1111/j.2517-6161.1958.tb00292.x
10.1214/aoms/1177730491
10.1067/mpd.2001.109608
10.1080/14767058.2023.2245530
10.3390/microorganisms11020396
10.1038/s41746-023-00941-5
10.1146/annurev.physiol.62.1.825
10.15620/cdc/158789
10.3389/fped.2020.590578
10.1097/01.AOG.0000192400.31757.a6
10.1093/bioinformatics/btr597
10.7759/cureus.11918
10.1080/14786440009463897
10.1145/2939672.2939785
10.1016/j.jfma.2021.09.018
10.1023/A:1010933404324
ContentType Journal Article
Copyright The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
Copyright Nature Publishing Group May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
– notice: Copyright Nature Publishing Group May 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ADTOC
UNPAY
DOI 10.1038/s41390-024-03604-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1530-0447
EndPage 2064
ExternalDocumentID oai:pubmedcentral.nih.gov:12249422
39379627
10_1038_s41390_024_03604_7
Genre Journal Article
GrantInformation_xml – fundername: Gates Foundation
  grantid: INV-037517
– fundername: NICHD NIH HHS
  grantid: R01 HD112886
– fundername: NIGMS NIH HHS
  grantid: R35 GM138353
GroupedDBID ---
-Q-
.-D
.55
.GJ
08G
0R~
123
2WC
406
4Q1
4Q2
4Q3
53G
5RE
5VS
70F
77Y
7X7
88E
8C1
8FI
8FJ
AACDK
AAKAS
AANZL
AASML
AATNV
AAWTL
AAYEP
AAYZH
ABAKF
ABAWZ
ABBRH
ABDBE
ABJNI
ABLJU
ABOCM
ABPPZ
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMFV
ACMJI
ACRQY
ACZOJ
ADBBV
ADBIZ
ADFPA
ADZCM
AE3
AE6
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFDZB
AFKRA
AFSHS
AFTRI
AFUWQ
AGAYW
AGHAI
AGQEE
AHRYX
AHSBF
AHVBC
AIGIU
AILAN
AIZYK
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ATHPR
AXYYD
AYFIA
BAWUL
BENPR
BKKNO
BPHCQ
BS7
BVXVI
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EE.
EIOEI
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FDQFY
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
H0~
HMCUK
IWAJR
JF9
JG8
JK3
JSO
JZLTJ
K8S
KD2
KMI
L7B
M18
M1P
N9A
NQJWS
NXXTH
N~M
OAG
OAH
ODA
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
PHGZM
PHGZT
PMFND
PQQKQ
PROAC
PSQYO
R58
RNT
RNTTT
ROL
S4R
SJN
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
T8P
TAOOD
TBHMF
TDRGL
TEORI
TR2
UKHRP
VVN
W2D
W3M
WOQ
WOW
X7M
XXN
XYM
YFH
YOC
ZFV
ZXP
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PPXIY
K9.
7X8
ADTOC
PJZUB
UNPAY
ID FETCH-LOGICAL-c370t-88489bdf3e6db4010057400e0428aaa1f0e2960639999185d852fbb9ee79be793
IEDL.DBID UNPAY
ISSN 0031-3998
1530-0447
IngestDate Sun Oct 26 03:45:34 EDT 2025
Fri Sep 05 09:51:26 EDT 2025
Tue Oct 07 05:47:15 EDT 2025
Tue Jul 15 01:30:37 EDT 2025
Wed Oct 01 06:02:14 EDT 2025
Fri May 30 10:54:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2024. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-88489bdf3e6db4010057400e0428aaa1f0e2960639999185d852fbb9ee79be793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/12249422
PMID 39379627
PQID 3213687307
PQPubID 105497
PageCount 9
ParticipantIDs unpaywall_primary_10_1038_s41390_024_03604_7
proquest_miscellaneous_3114499832
proquest_journals_3213687307
pubmed_primary_39379627
crossref_primary_10_1038_s41390_024_03604_7
springer_journals_10_1038_s41390_024_03604_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Official publication of the American Pediatric Society, the European Society for Paediatric Research and the Society for Pediatric Research
PublicationTitle Pediatric research
PublicationTitleAbbrev Pediatr Res
PublicationTitleAlternate Pediatr Res
PublicationYear 2025
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References AH Jobe (3604_CR41) 2000; 62
J-A Quinn (3604_CR1) 2016; 34
M Stone (3604_CR26) 1974; 36
E Keles (3604_CR40) 2023; 6
AL Beam (3604_CR4) 2020; 40
HC Lee (3604_CR32) 2006; 107
3604_CR33
L McInnes (3604_CR17) 2018; 3
C Cortes (3604_CR24) 1995; 20
CJ Crilly (3604_CR43) 2021; 89
BJ Stoll (3604_CR8) 2015; 314
VJ Dzau (3604_CR30) 2016; 316
3604_CR12
3604_CR19
3604_CR5
DR Cox (3604_CR21) 1958; 20
R Tibshirani (3604_CR22) 1996; 58
3604_CR3
T Cover (3604_CR25) 1967; 13
S Parkerson (3604_CR37) 2021; 8
3604_CR2
HG Jang (3604_CR34) 2023; 36
KX Pearson (3604_CR15) 1900; 50
H Cho (3604_CR10) 2022; 12
H Cho (3604_CR9) 2022; 12
F Miselli (3604_CR38) 2023; 11
L Breiman (3604_CR20) 2001; 45
AE Hoerl (3604_CR23) 1970; 12
GL Goh (3604_CR39) 2022; 9
F Kermani (3604_CR35) 2020; 9
W-T Lin (3604_CR13) 2022; 121
3604_CR28
D Rajput (3604_CR44) 2023; 24
DJ Stekhoven (3604_CR18) 2012; 28
3604_CR27
M Becker (3604_CR16) 2023; 3
DK Richardson (3604_CR6) 2001; 138
JE Tyson (3604_CR7) 2008; 358
SEG Hamrick (3604_CR36) 2020; 146
JH Han (3604_CR11) 2022; 63
HB Mann (3604_CR14) 1947; 18
VJ Dzau (3604_CR31) 2015; 385
K Beam (3604_CR29) 2024; 44
D De Francesco (3604_CR42) 2023; 15
References_xml – volume: 24
  year: 2023
  ident: 3604_CR44
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-023-05156-9
– volume: 12
  year: 2022
  ident: 3604_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25746-6
– volume: 3
  start-page: 346
  year: 2023
  ident: 3604_CR16
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-023-00429-y
– volume: 385
  start-page: 2118
  year: 2015
  ident: 3604_CR31
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)60722-X
– volume: 12
  year: 2022
  ident: 3604_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-16234-y
– ident: 3604_CR12
  doi: 10.1007/s00431-024-05505-7
– volume: 358
  start-page: 1672
  year: 2008
  ident: 3604_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa073059
– volume: 89
  start-page: 426
  year: 2021
  ident: 3604_CR43
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-020-0968-5
– volume: 9
  year: 2020
  ident: 3604_CR35
  publication-title: J. Pediatr. Neonatal Individ. Med.
– volume: 63
  start-page: 640
  year: 2022
  ident: 3604_CR11
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2022.63.7.640
– volume: 36
  start-page: 111
  year: 1974
  ident: 3604_CR26
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 34
  start-page: 6047
  year: 2016
  ident: 3604_CR1
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.03.045
– volume: 3
  start-page: 861
  year: 2018
  ident: 3604_CR17
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 20
  start-page: 273
  year: 1995
  ident: 3604_CR24
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 146
  year: 2020
  ident: 3604_CR36
  publication-title: Pediatrics
  doi: 10.1542/peds.2020-1209
– volume: 316
  start-page: 1659
  year: 2016
  ident: 3604_CR30
  publication-title: JAMA
  doi: 10.1001/jama.2016.14117
– volume: 314
  start-page: 1039
  year: 2015
  ident: 3604_CR8
  publication-title: JAMA
  doi: 10.1001/jama.2015.10244
– ident: 3604_CR5
– volume: 15
  year: 2023
  ident: 3604_CR42
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.adc9854
– volume: 13
  start-page: 21
  year: 1967
  ident: 3604_CR25
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 58
  start-page: 267
  year: 1996
  ident: 3604_CR22
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 44
  start-page: 131
  year: 2024
  ident: 3604_CR29
  publication-title: J. Perinatol.
  doi: 10.1038/s41372-023-01719-z
– ident: 3604_CR2
  doi: 10.17226/11622
– volume: 40
  start-page: 1091
  year: 2020
  ident: 3604_CR4
  publication-title: J. Perinatol.
  doi: 10.1038/s41372-020-0635-z
– volume: 12
  start-page: 55
  year: 1970
  ident: 3604_CR23
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– ident: 3604_CR27
  doi: 10.1007/978-3-642-04898-2_394
– volume: 9
  year: 2022
  ident: 3604_CR39
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2021.801955
– volume: 20
  start-page: 215
  year: 1958
  ident: 3604_CR21
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 18
  start-page: 50
  year: 1947
  ident: 3604_CR14
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730491
– ident: 3604_CR28
– volume: 138
  start-page: 92
  year: 2001
  ident: 3604_CR6
  publication-title: J. Pediatr.
  doi: 10.1067/mpd.2001.109608
– volume: 36
  start-page: 2245530
  year: 2023
  ident: 3604_CR34
  publication-title: J. Matern. Fetal Neonatal Med.
  doi: 10.1080/14767058.2023.2245530
– volume: 11
  start-page: 396
  year: 2023
  ident: 3604_CR38
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11020396
– volume: 6
  year: 2023
  ident: 3604_CR40
  publication-title: npj Digit. Med.
  doi: 10.1038/s41746-023-00941-5
– volume: 62
  start-page: 825
  year: 2000
  ident: 3604_CR41
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.62.1.825
– ident: 3604_CR3
  doi: 10.15620/cdc/158789
– volume: 8
  start-page: 590578
  year: 2021
  ident: 3604_CR37
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2020.590578
– volume: 107
  start-page: 97
  year: 2006
  ident: 3604_CR32
  publication-title: Obstet. Gynecol.
  doi: 10.1097/01.AOG.0000192400.31757.a6
– volume: 28
  start-page: 112
  year: 2012
  ident: 3604_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– ident: 3604_CR33
  doi: 10.7759/cureus.11918
– volume: 50
  start-page: 157
  year: 1900
  ident: 3604_CR15
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440009463897
– ident: 3604_CR19
  doi: 10.1145/2939672.2939785
– volume: 121
  start-page: 1141
  year: 2022
  ident: 3604_CR13
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2021.09.018
– volume: 45
  start-page: 5
  year: 2001
  ident: 3604_CR20
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
SSID ssj0014584
Score 2.4826236
Snippet Background Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Hypothesis...
Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories. Integrating key maternal and...
BackgroundPredicting mortality and specific morbidities before they occur may allow for interventions that may improve health...
Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories.BACKGROUNDPredicting mortality...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2056
SubjectTerms Algorithms
Bronchopulmonary Dysplasia - mortality
Clinical Research Article
Enterocolitis, Necrotizing
Female
Humans
Infant Mortality
Infant, Newborn
Infant, Premature
Infant, Premature, Diseases - mortality
Infant, Very Low Birth Weight
Machine Learning
Male
Medicine
Medicine & Public Health
Morbidity
Mortality
Newborn babies
Pediatric Surgery
Pediatrics
Precision medicine
Premature babies
Retrospective Studies
ROC Curve
Sepsis
Title Early prediction of mortality and morbidities in VLBW preterm neonates using machine learning
URI https://link.springer.com/article/10.1038/s41390-024-03604-7
https://www.ncbi.nlm.nih.gov/pubmed/39379627
https://www.proquest.com/docview/3213687307
https://www.proquest.com/docview/3114499832
https://www.ncbi.nlm.nih.gov/pmc/articles/12249422
UnpaywallVersion submittedVersion
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-0447
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014584
  issn: 0031-3998
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5ViQT0QHk3tFSLxI1u4sfaXh8TRFQhGnEgUA7I2pdLROJGTSLU_npm1nYoICF68MG7K79m99tvPLPfArxKTaKcFJZLYSzH-VhzHeQIhpGxSI9dKfzPnNNJejIV786Ssx2I2rUwPmnf6Fm_mi_61eybz61cLsygzRMbUCgoFxHCbjdNkH93oDudfBh-qfUXQ44zrqxFUilvUWTNSpkgloMVInaOpZHgCNyB4Nnvs9FfFPNGeHQX7m6qpbr6oebzGzPQeK9eFbjywoWUePK9v1nrvrn-Q9bxdi_3AO43hJQN67qHsOOqR3DntAm5P4avXgKZLS-phKzILkq28KQdCTxTlaUzPbNempXNKvbp_egztSfQZ5Wj3_NYQQn252zhczcdazarOH8C0_Hbj29OeLMnAzdxFqy5lELm2paxS61G34wWsyIMOHK9lFJhGbiInCK0AjJPmViZRKXWuXNZrvGIn0KnuqjcPrDEIjdIs1QEGn1SEypRIhgY0vcJMy1dD163timWtfRG4UPmsSxqSxZoycJbssh6cNiar2iG4aqIozBOJYIYVr_cVuMAoqiIwi-wwTboEaLbh8jWg2e12be3I7VA2p2oB8dtP_h18X89y_G2r_zHoz-_XfMDuBfRJsQ-6_IQOuvLjXuBzGitj6A7HI9Gk6NmSPwEYZ4GNA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VW4nSA4_y6EKpjNQb9W4eTuIcC6KqUFtx6LblgCK_UlbsuqvurhD8emacZCkgIXrIIbaV19ifv8mMPwPs5SZTTgrLpTCW43ysuY5KBMPEWKTHrhbhZ87JaX40Eh8us8s1SLq1MCFp3-jxwE-mAz_-EnIrZ1Mz7PLEhhQKKkWCsLueZ8i_e7A-Ov148KnRX4w5zriyEUmlvEVRtCtlolQO54jYJZYmgiNwR4IXv89Gf1HMW-HRTdhY-pn6_k1NJrdmoMOHzarAeRAupMSTr4PlQg_Mjz9kHe_2co_gQUtI2UFT9xjWnN-CeydtyP0JfA4SyGx2QyVkRXZds2kg7UjgmfKWzvTYBmlWNvbs_PjtBbUn0Gfe0e95rKAE-ys2DbmbjrWbVVw9hdHh-7N3R7zdk4GbtIgWXEohS23r1OVWo29Gi1kRBhy5XkqpuI5cQk4RWgGZp8yszJJa69K5otR4pM-g56-92waWWeQGeZGLSKNPamIlagQDQ_o-caGl68ObzjbVrJHeqELIPJVVY8kKLVkFS1ZFH3Y681XtMJxXaRKnuUQQw-rXq2ocQBQVUfgFltgGPUJ0-xDZ-vC8MfvqdqQWSLsT9WG_6we_Lv6vZ9lf9ZX_ePQXd2v-Eu4ntAlxyLrcgd7iZuleITNa6N12KPwEOHsEuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+prediction+of+mortality+and+morbidities+in+VLBW+preterm+neonates+using+machine+learning&rft.jtitle=Pediatric+research&rft.au=Shu%2C+Chi-Hung&rft.au=Zebda%2C+Rema&rft.au=Espinosa%2C+Camilo&rft.au=Reiss%2C+Jonathan&rft.date=2025-05-01&rft.pub=Nature+Publishing+Group+US&rft.issn=0031-3998&rft.eissn=1530-0447&rft.volume=97&rft.issue=6&rft.spage=2056&rft.epage=2064&rft_id=info:doi/10.1038%2Fs41390-024-03604-7&rft.externalDocID=10_1038_s41390_024_03604_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3998&client=summon