Influence of Surface Modification on the Transient Dehumidification Performance of Fin-and-tube Heat Exchanger

•Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop dep...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 173; p. 121202
Main Authors Yang, Kai-Shing, Lin, Hong-Yi, Wu, Yu-Lieh, Wu, Shih-Kuo, Wang, Chi-Chuan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2021.121202

Cover

Abstract •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop depends on the relative humidity (RH) and coating considerably.•The droplet distribution density was less uniform and the surface contains fewer droplets. In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity.
AbstractList •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop depends on the relative humidity (RH) and coating considerably.•The droplet distribution density was less uniform and the surface contains fewer droplets. In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity.
In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity.
ArticleNumber 121202
Author Lin, Hong-Yi
Wu, Shih-Kuo
Yang, Kai-Shing
Wu, Yu-Lieh
Wang, Chi-Chuan
Author_xml – sequence: 1
  givenname: Kai-Shing
  surname: Yang
  fullname: Yang, Kai-Shing
  organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
– sequence: 2
  givenname: Hong-Yi
  surname: Lin
  fullname: Lin, Hong-Yi
  organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
– sequence: 3
  givenname: Yu-Lieh
  surname: Wu
  fullname: Wu, Yu-Lieh
  organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
– sequence: 4
  givenname: Shih-Kuo
  surname: Wu
  fullname: Wu, Shih-Kuo
  organization: Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
– sequence: 5
  givenname: Chi-Chuan
  orcidid: 0000-0002-4451-3401
  surname: Wang
  fullname: Wang, Chi-Chuan
  email: ccwang@mail.nctu.edu.tw
  organization: Department of Mechanical Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 300, Taiwan
BookMark eNqVkctOAyEUhonRxHp5h0ncuJnKpVOYnUatl2g0sa4JwxwskxYUGKNvL2NdGN1oQnIO4c934GMHbTrvAKFDgscEk-lRN7bdAlRaqRhTUC4aCGOKKRkTSnLdQCMieF1SIupNNMKY8LJmBG-jnRi7YYsn0xFyV84se3AaCm-Khz4Yldtb31pjtUrWuyKvtIBiPgyx4FJxBot-Zb8l7iEYH1bqizKzrlSuLVPfQHGZ71icv-mFck8Q9tCWUcsI-191Fz3Ozuenl-XN3cXV6clNqRnHqRSCUNWQyvCWT7nAHFOoGMWKV4LSquHaNFrkvm0MJqKqGSWcAsVVpVvOJmwXHay5z8G_9BCT7HwfXB4pacUYr0nNRE7N1ikdfIwBjNQ2fT4pG7VLSbAcXMtO_nYtB9dy7TqDjn-AnoNdqfD-H8T1GgFZy6vNp1Hb4V9aG0An2Xr7d9gHgAOsTw
CitedBy_id crossref_primary_10_1016_j_ijheatfluidflow_2025_109747
crossref_primary_10_3390_app131810450
crossref_primary_10_1002_apj_2742
crossref_primary_10_1016_j_applthermaleng_2022_119532
crossref_primary_10_1016_j_applthermaleng_2023_120447
crossref_primary_10_1016_j_applthermaleng_2023_121338
crossref_primary_10_1016_j_applthermaleng_2025_125833
crossref_primary_10_1016_j_energy_2023_128335
crossref_primary_10_1016_j_ijthermalsci_2024_109168
crossref_primary_10_1016_j_ijhydene_2024_11_381
crossref_primary_10_1016_j_enconman_2022_115295
crossref_primary_10_1016_j_icheatmasstransfer_2022_106595
Cites_doi 10.1016/j.enconman.2020.113740
10.1002/adfm.201101302
10.1016/j.ijheatmasstransfer.2014.05.052
10.1098/rstl.1805.0005
10.1115/1.2994722
10.1080/15567036.2018.1511642
10.1016/j.ijrefrig.2007.03.001
10.1007/s12206-007-1015-8
10.1016/j.icheatmasstransfer.2016.02.017
10.1115/1.4003742
10.1063/1.3460275
10.1016/S0017-9310(98)00060-X
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2021.121202
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2021_121202
S0017931021003057
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-8812ab15f7d76780702e5320a758225b7cfbc8582dbf0185932172e2055cd7343
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Sun Jul 13 04:20:58 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Oct 01 05:22:33 EDT 2025
Fri Feb 23 02:45:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords hydrophilic
dehumidification
hydrophobic
Fin-and-tube heat exchanger
transient performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-8812ab15f7d76780702e5320a758225b7cfbc8582dbf0185932172e2055cd7343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4451-3401
PQID 2533791938
PQPubID 2045464
ParticipantIDs proquest_journals_2533791938
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121202
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121202
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Rose (bib0009) 2002; 216
Kim, Kim (bib0006) 2011; 133
Wang, Chang (bib0012) 1998; 41
Liu, Jacobi (bib0014) 2009; 131
Dietz, Rykaczewski, Fedorov, Joshi (bib0010) 2010; 97
Y. Li, P. Supervisor, P. Steven, Investigation of the Effect of Superhydrophobic Coatings on the Performance of Heat Exchangers, (2017).
Young (bib0005) 1805; 95
Chen, Wu, Ma, Hua, Koratkar, Yao, Wang (bib0007) 2011; 21
Muneeshwaran, Wang (bib0008) 2021; 229
Ahmad, van den Boogaert, Miller, Presswell, Jouhara (bib0001) 2018; 40
Peng, Ma, Lan, Xu, Wen (bib0002) 2014; 77
Ma, Ding, Zhang, Wang (bib0011) 2007; 30
Carey (bib0003) 2020
Chung, Kim, Ahmadinejad (bib0004) 2008; 22
Ganesan, Vanaki, Thoo, Chin (bib0013) 2016; 74
Ahmad (10.1016/j.ijheatmasstransfer.2021.121202_bib0001) 2018; 40
Peng (10.1016/j.ijheatmasstransfer.2021.121202_bib0002) 2014; 77
Ma (10.1016/j.ijheatmasstransfer.2021.121202_bib0011) 2007; 30
Muneeshwaran (10.1016/j.ijheatmasstransfer.2021.121202_bib0008) 2021; 229
Wang (10.1016/j.ijheatmasstransfer.2021.121202_bib0012) 1998; 41
Chung (10.1016/j.ijheatmasstransfer.2021.121202_bib0004) 2008; 22
Dietz (10.1016/j.ijheatmasstransfer.2021.121202_bib0010) 2010; 97
10.1016/j.ijheatmasstransfer.2021.121202_bib0015
Carey (10.1016/j.ijheatmasstransfer.2021.121202_bib0003) 2020
Ganesan (10.1016/j.ijheatmasstransfer.2021.121202_bib0013) 2016; 74
Chen (10.1016/j.ijheatmasstransfer.2021.121202_bib0007) 2011; 21
Rose (10.1016/j.ijheatmasstransfer.2021.121202_bib0009) 2002; 216
Young (10.1016/j.ijheatmasstransfer.2021.121202_bib0005) 1805; 95
Liu (10.1016/j.ijheatmasstransfer.2021.121202_bib0014) 2009; 131
Kim (10.1016/j.ijheatmasstransfer.2021.121202_bib0006) 2011; 133
References_xml – volume: 22
  start-page: 127
  year: 2008
  end-page: 133
  ident: bib0004
  article-title: Film-wise and drop-wise condensation of steam on short inclined plates
  publication-title: Journal of Mechanical Science and Technology
– volume: 216
  start-page: 115
  year: 2002
  end-page: 128
  ident: bib0009
  article-title: Dropwise condensation theory and experiment: A review
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
– volume: 41
  start-page: 3109
  year: 1998
  end-page: 3120
  ident: bib0012
  article-title: Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating
  publication-title: International Journal of Heat and Mass Transfer
– volume: 131
  start-page: 1
  year: 2009
  end-page: 9
  ident: bib0014
  article-title: Air-Side surface wettability effects on the performance of slit-fin-and-tube heat exchangers operating under wet-surface conditions
  publication-title: Journal of Heat Transfer
– year: 2020
  ident: bib0003
  article-title: Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment
– volume: 74
  start-page: 27
  year: 2016
  end-page: 35
  ident: bib0013
  article-title: Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review
  publication-title: International Communications in Heat and Mass Transfer
– volume: 77
  start-page: 785
  year: 2014
  end-page: 794
  ident: bib0002
  article-title: Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect
  publication-title: International Journal of Heat and Mass Transfer
– volume: 97
  year: 2010
  ident: bib0010
  article-title: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation
  publication-title: Applied Physics Letters
– volume: 229
  year: 2021
  ident: bib0008
  article-title: Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating
  publication-title: Energy Conversion and Management
– reference: Y. Li, P. Supervisor, P. Steven, Investigation of the Effect of Superhydrophobic Coatings on the Performance of Heat Exchangers, (2017).
– volume: 21
  start-page: 4617
  year: 2011
  end-page: 4623
  ident: bib0007
  article-title: Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
  publication-title: Advanced Functional Materials
– volume: 30
  start-page: 1153
  year: 2007
  end-page: 1167
  ident: bib0011
  article-title: Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions
  publication-title: International Journal of Refrigeration
– volume: 95
  start-page: 65
  year: 1805
  end-page: 87
  ident: bib0005
  article-title: An essay on the cohesion of fluids
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 133
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0006
  article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces
  publication-title: Journal of Heat Transfer
– volume: 40
  start-page: 2686
  year: 2018
  end-page: 2725
  ident: bib0001
  article-title: Hydrophilic and hydrophobic materials and their applications
  publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
– ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0015
– volume: 229
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0008
  article-title: Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2020.113740
– volume: 216
  start-page: 115
  issue: 2
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0009
  article-title: Dropwise condensation theory and experiment: A review
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
– volume: 21
  start-page: 4617
  issue: 24
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0007
  article-title: Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201101302
– volume: 77
  start-page: 785
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0002
  article-title: Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.05.052
– volume: 95
  start-page: 65
  year: 1805
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0005
  article-title: An essay on the cohesion of fluids
  publication-title: Philosophical Transactions of the Royal Society of London
  doi: 10.1098/rstl.1805.0005
– volume: 131
  start-page: 1
  issue: 5
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0014
  article-title: Air-Side surface wettability effects on the performance of slit-fin-and-tube heat exchangers operating under wet-surface conditions
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2994722
– volume: 40
  start-page: 2686
  issue: 22
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0001
  article-title: Hydrophilic and hydrophobic materials and their applications
  publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
  doi: 10.1080/15567036.2018.1511642
– volume: 30
  start-page: 1153
  issue: 7
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0011
  article-title: Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions
  publication-title: International Journal of Refrigeration
  doi: 10.1016/j.ijrefrig.2007.03.001
– volume: 22
  start-page: 127
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0004
  article-title: Film-wise and drop-wise condensation of steam on short inclined plates
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-007-1015-8
– volume: 74
  start-page: 27
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0013
  article-title: Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2016.02.017
– volume: 133
  start-page: 1
  issue: 8
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0006
  article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.4003742
– volume: 97
  issue: 3
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0010
  article-title: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3460275
– year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0003
– volume: 41
  start-page: 3109
  issue: 20
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0012
  article-title: Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(98)00060-X
SSID ssj0017046
Score 2.4164448
Snippet •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat...
In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121202
SubjectTerms Condensation
Contact angle
Copper
Dehumidification
Density
Droplets
Fin-and-tube heat exchanger
Flow visualization
Heat exchangers
Humidity
hydrophilic
Hydrophilicity
hydrophobic
Hydrophobicity
Polydimethylsiloxane
Pressure drop
Relative humidity
Steady state
transient performance
Tube heat exchangers
Wettability
Title Influence of Surface Modification on the Transient Dehumidification Performance of Fin-and-tube Heat Exchanger
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121202
https://www.proquest.com/docview/2533791938
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EUbyIT3yzBw9eVtNs0rQnkWqplhbxgd6W7AsjNi1tCp787c5sNr4vghDIg91NsjM7MwnfN0PIgVI8UlwmrM5txMBDaCZBd1jMLY9TmQZNh83p9eudu-jyIX6YIa2KC4OwSm_7S5vurLW_cuxn83iUZcjxReXC0tQuEEZGOWb_Ap0-en2HedSSoCTroDXG1gvk8APjlT2hxRtAmFq4MNFghtCwhikXQv-j5RdX9c1oO0_UXiZLPoSkp-VTrpAZk6-SeQflVJM1kl9UdUfo0NKb6dimcNgbagQFOTlQ2CDuo85PIR-SnpnH6SD71OLqg0-Ao7SznKW5ZsVUGtqBl6HnL54yvE7u2ue3rQ7zVRWY4klQsAa49FTWYpvoBDwVLPnQYHWIFL4cYHHLRFmpGnCspQ1qmA4Na1iZMIhjpRMe8Q0ymw9zs0loGNiozpHcozVS6lOQgwrqTR1aA52jLXJSTaBQPuU4Vr54FhW27En8FIFAEYhSBFuk-T7CqEy_8Ye-rUpm4otKCfAWfxhltxK38Mt7IkIIkpMmxL6N7X-5yQ5ZxLMSBrxLZovx1OxBsFPIfafN-2Tu9KLb6eO-e33ffQMPEQNq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7RIAoXVGgrnmUPPXBZ4XjtbHJCKCVyCokqFSRuK-9LOCoOAkfi5zNjr6EFLkiVfFjZ3rW9Mzvz2Z5vBuC7MSIxQkveEz7h6CEs16g7PBVepLnOo0EdmzOZ9rLL5OdVerUEw5YLQ2GVwfY3Nr221mHPUZjNo9uiII4vKReVpq6BsPwAy0mKNrkDyyfjs2z69DNBRg1fhwwydfgIh89hXsWMjN4NItWqRoqOkoTGXcq6EIdvLW94qxd2u3ZGo0-wHlAkO2ludAOWXLkJK3U0p7n_DOW4LT3C5p79Xtz5HJuTuaW4oFoUDDeEfqx2VUSJZD_c9eKm-OuMX8-UAhplVJQ8Ly2vFtqxDB-GnT4E1vAXuBydXgwzHgorcCNkVPE-evVcd1MvrURnhas-dlQgIseXB1zfWhqvTR_bVvuoSxnRqIyVi6M0NVaKRHyFTjkv3RawOPJJTxC_x1pi1ecoChP1Bjb2Djsn23DcTqAyIes4Fb_4o9rwspl6LQJFIlCNCLZh8DTCbZOB4x19h63M1D9apdBhvGOUvVbcKqzwexUjTpYDhL_9nf9ykQNYzS4m5-p8PD3bhTU60kQF70Gnulu4fcQ-lf4WdPsRsJAEcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Surface+Modification+on+the+Transient+Dehumidification+Performance+of+Fin-and-tube+Heat+Exchanger&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yang%2C+Kai-Shing&rft.au=Lin%2C+Hong-Yi&rft.au=Wu%2C+Yu-Lieh&rft.au=Wu%2C+Shih-Kuo&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=173&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121202&rft.externalDocID=S0017931021003057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon