Influence of Surface Modification on the Transient Dehumidification Performance of Fin-and-tube Heat Exchanger
•Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop dep...
Saved in:
Published in | International journal of heat and mass transfer Vol. 173; p. 121202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0017-9310 1879-2189 |
DOI | 10.1016/j.ijheatmasstransfer.2021.121202 |
Cover
Abstract | •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop depends on the relative humidity (RH) and coating considerably.•The droplet distribution density was less uniform and the surface contains fewer droplets.
In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity. |
---|---|
AbstractList | •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat transfer performance.•Hydrophobic surface promotes dropwise condensation and shows 3.4 times higher pressure drop.•The transient pressure drop depends on the relative humidity (RH) and coating considerably.•The droplet distribution density was less uniform and the surface contains fewer droplets.
In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity. In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the dehumidification performance. Polydimethylsiloxane was used to coat on the surface of heat exchangers to increase the hydrophobicity with a contact angle of 105° while the uncoated copper surface is 76°. The effects of fin spacing and relative humidity on the transient dehumidifying performance are examined in details. The experimental results indicate that surface modification imposes negligible influence on the heat transfer performance. Hydrophobic surface promotes dropwise condensation and may form water bridging which may impede the droplets from falling, thereby showing some 3.4 times higher pressure drop than the hydrophilic one. Upon condensation on the hydrophilic surface, the size of the droplets plays pivotal influence on the transient pressure drop of the heat exchangers. The flow visualization indicates that liquid films prevails on the fin surfaces due to high surface wettability. However, the behavior of transient pressure drop depends on the relative humidity (RH) considerably. For RH = 50%, the required time to reach steady state is much longer than that of RH = 80%. Interestingly, an overshoot of pressure drop vs. time before reaching the steady state is clearly seen for RH = 65%. This phenomenon is associated with the dynamic condensate removal from the fin surface. The droplet distribution density is comparatively uniform at a low frontal velocity (i.e. 0.5 m s−1). Upon raising frontal velocity, the droplet distribution density becomes less uniform with fewer droplets adhering on the fin surfaces. Hence, the wet and dry pressure drop ratio exhibits a decreasing trend at a higher frontal velocity. |
ArticleNumber | 121202 |
Author | Lin, Hong-Yi Wu, Shih-Kuo Yang, Kai-Shing Wu, Yu-Lieh Wang, Chi-Chuan |
Author_xml | – sequence: 1 givenname: Kai-Shing surname: Yang fullname: Yang, Kai-Shing organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan – sequence: 2 givenname: Hong-Yi surname: Lin fullname: Lin, Hong-Yi organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan – sequence: 3 givenname: Yu-Lieh surname: Wu fullname: Wu, Yu-Lieh organization: Department of Refrigeration, Air Conditioning, and Energy Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan – sequence: 4 givenname: Shih-Kuo surname: Wu fullname: Wu, Shih-Kuo organization: Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan – sequence: 5 givenname: Chi-Chuan orcidid: 0000-0002-4451-3401 surname: Wang fullname: Wang, Chi-Chuan email: ccwang@mail.nctu.edu.tw organization: Department of Mechanical Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 300, Taiwan |
BookMark | eNqVkctOAyEUhonRxHp5h0ncuJnKpVOYnUatl2g0sa4JwxwskxYUGKNvL2NdGN1oQnIO4c934GMHbTrvAKFDgscEk-lRN7bdAlRaqRhTUC4aCGOKKRkTSnLdQCMieF1SIupNNMKY8LJmBG-jnRi7YYsn0xFyV84se3AaCm-Khz4Yldtb31pjtUrWuyKvtIBiPgyx4FJxBot-Zb8l7iEYH1bqizKzrlSuLVPfQHGZ71icv-mFck8Q9tCWUcsI-191Fz3Ozuenl-XN3cXV6clNqRnHqRSCUNWQyvCWT7nAHFOoGMWKV4LSquHaNFrkvm0MJqKqGSWcAsVVpVvOJmwXHay5z8G_9BCT7HwfXB4pacUYr0nNRE7N1ikdfIwBjNQ2fT4pG7VLSbAcXMtO_nYtB9dy7TqDjn-AnoNdqfD-H8T1GgFZy6vNp1Hb4V9aG0An2Xr7d9gHgAOsTw |
CitedBy_id | crossref_primary_10_1016_j_ijheatfluidflow_2025_109747 crossref_primary_10_3390_app131810450 crossref_primary_10_1002_apj_2742 crossref_primary_10_1016_j_applthermaleng_2022_119532 crossref_primary_10_1016_j_applthermaleng_2023_120447 crossref_primary_10_1016_j_applthermaleng_2023_121338 crossref_primary_10_1016_j_applthermaleng_2025_125833 crossref_primary_10_1016_j_energy_2023_128335 crossref_primary_10_1016_j_ijthermalsci_2024_109168 crossref_primary_10_1016_j_ijhydene_2024_11_381 crossref_primary_10_1016_j_enconman_2022_115295 crossref_primary_10_1016_j_icheatmasstransfer_2022_106595 |
Cites_doi | 10.1016/j.enconman.2020.113740 10.1002/adfm.201101302 10.1016/j.ijheatmasstransfer.2014.05.052 10.1098/rstl.1805.0005 10.1115/1.2994722 10.1080/15567036.2018.1511642 10.1016/j.ijrefrig.2007.03.001 10.1007/s12206-007-1015-8 10.1016/j.icheatmasstransfer.2016.02.017 10.1115/1.4003742 10.1063/1.3460275 10.1016/S0017-9310(98)00060-X |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2021.121202 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2021_121202 S0017931021003057 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
ID | FETCH-LOGICAL-c370t-8812ab15f7d76780702e5320a758225b7cfbc8582dbf0185932172e2055cd7343 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Sun Jul 13 04:20:58 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Wed Oct 01 05:22:33 EDT 2025 Fri Feb 23 02:45:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | hydrophilic dehumidification hydrophobic Fin-and-tube heat exchanger transient performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-8812ab15f7d76780702e5320a758225b7cfbc8582dbf0185932172e2055cd7343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4451-3401 |
PQID | 2533791938 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2533791938 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2021_121202 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121202 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2021_121202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Rose (bib0009) 2002; 216 Kim, Kim (bib0006) 2011; 133 Wang, Chang (bib0012) 1998; 41 Liu, Jacobi (bib0014) 2009; 131 Dietz, Rykaczewski, Fedorov, Joshi (bib0010) 2010; 97 Y. Li, P. Supervisor, P. Steven, Investigation of the Effect of Superhydrophobic Coatings on the Performance of Heat Exchangers, (2017). Young (bib0005) 1805; 95 Chen, Wu, Ma, Hua, Koratkar, Yao, Wang (bib0007) 2011; 21 Muneeshwaran, Wang (bib0008) 2021; 229 Ahmad, van den Boogaert, Miller, Presswell, Jouhara (bib0001) 2018; 40 Peng, Ma, Lan, Xu, Wen (bib0002) 2014; 77 Ma, Ding, Zhang, Wang (bib0011) 2007; 30 Carey (bib0003) 2020 Chung, Kim, Ahmadinejad (bib0004) 2008; 22 Ganesan, Vanaki, Thoo, Chin (bib0013) 2016; 74 Ahmad (10.1016/j.ijheatmasstransfer.2021.121202_bib0001) 2018; 40 Peng (10.1016/j.ijheatmasstransfer.2021.121202_bib0002) 2014; 77 Ma (10.1016/j.ijheatmasstransfer.2021.121202_bib0011) 2007; 30 Muneeshwaran (10.1016/j.ijheatmasstransfer.2021.121202_bib0008) 2021; 229 Wang (10.1016/j.ijheatmasstransfer.2021.121202_bib0012) 1998; 41 Chung (10.1016/j.ijheatmasstransfer.2021.121202_bib0004) 2008; 22 Dietz (10.1016/j.ijheatmasstransfer.2021.121202_bib0010) 2010; 97 10.1016/j.ijheatmasstransfer.2021.121202_bib0015 Carey (10.1016/j.ijheatmasstransfer.2021.121202_bib0003) 2020 Ganesan (10.1016/j.ijheatmasstransfer.2021.121202_bib0013) 2016; 74 Chen (10.1016/j.ijheatmasstransfer.2021.121202_bib0007) 2011; 21 Rose (10.1016/j.ijheatmasstransfer.2021.121202_bib0009) 2002; 216 Young (10.1016/j.ijheatmasstransfer.2021.121202_bib0005) 1805; 95 Liu (10.1016/j.ijheatmasstransfer.2021.121202_bib0014) 2009; 131 Kim (10.1016/j.ijheatmasstransfer.2021.121202_bib0006) 2011; 133 |
References_xml | – volume: 22 start-page: 127 year: 2008 end-page: 133 ident: bib0004 article-title: Film-wise and drop-wise condensation of steam on short inclined plates publication-title: Journal of Mechanical Science and Technology – volume: 216 start-page: 115 year: 2002 end-page: 128 ident: bib0009 article-title: Dropwise condensation theory and experiment: A review publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy – volume: 41 start-page: 3109 year: 1998 end-page: 3120 ident: bib0012 article-title: Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating publication-title: International Journal of Heat and Mass Transfer – volume: 131 start-page: 1 year: 2009 end-page: 9 ident: bib0014 article-title: Air-Side surface wettability effects on the performance of slit-fin-and-tube heat exchangers operating under wet-surface conditions publication-title: Journal of Heat Transfer – year: 2020 ident: bib0003 article-title: Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment – volume: 74 start-page: 27 year: 2016 end-page: 35 ident: bib0013 article-title: Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review publication-title: International Communications in Heat and Mass Transfer – volume: 77 start-page: 785 year: 2014 end-page: 794 ident: bib0002 article-title: Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect publication-title: International Journal of Heat and Mass Transfer – volume: 97 year: 2010 ident: bib0010 article-title: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation publication-title: Applied Physics Letters – volume: 229 year: 2021 ident: bib0008 article-title: Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating publication-title: Energy Conversion and Management – reference: Y. Li, P. Supervisor, P. Steven, Investigation of the Effect of Superhydrophobic Coatings on the Performance of Heat Exchangers, (2017). – volume: 21 start-page: 4617 year: 2011 end-page: 4623 ident: bib0007 article-title: Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation publication-title: Advanced Functional Materials – volume: 30 start-page: 1153 year: 2007 end-page: 1167 ident: bib0011 article-title: Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions publication-title: International Journal of Refrigeration – volume: 95 start-page: 65 year: 1805 end-page: 87 ident: bib0005 article-title: An essay on the cohesion of fluids publication-title: Philosophical Transactions of the Royal Society of London – volume: 133 start-page: 1 year: 2011 end-page: 8 ident: bib0006 article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces publication-title: Journal of Heat Transfer – volume: 40 start-page: 2686 year: 2018 end-page: 2725 ident: bib0001 article-title: Hydrophilic and hydrophobic materials and their applications publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects – ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0015 – volume: 229 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0008 article-title: Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2020.113740 – volume: 216 start-page: 115 issue: 2 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0009 article-title: Dropwise condensation theory and experiment: A review publication-title: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy – volume: 21 start-page: 4617 issue: 24 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0007 article-title: Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation publication-title: Advanced Functional Materials doi: 10.1002/adfm.201101302 – volume: 77 start-page: 785 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0002 article-title: Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: Droplet sizes effect publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.05.052 – volume: 95 start-page: 65 year: 1805 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0005 article-title: An essay on the cohesion of fluids publication-title: Philosophical Transactions of the Royal Society of London doi: 10.1098/rstl.1805.0005 – volume: 131 start-page: 1 issue: 5 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0014 article-title: Air-Side surface wettability effects on the performance of slit-fin-and-tube heat exchangers operating under wet-surface conditions publication-title: Journal of Heat Transfer doi: 10.1115/1.2994722 – volume: 40 start-page: 2686 issue: 22 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0001 article-title: Hydrophilic and hydrophobic materials and their applications publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects doi: 10.1080/15567036.2018.1511642 – volume: 30 start-page: 1153 issue: 7 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0011 article-title: Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions publication-title: International Journal of Refrigeration doi: 10.1016/j.ijrefrig.2007.03.001 – volume: 22 start-page: 127 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0004 article-title: Film-wise and drop-wise condensation of steam on short inclined plates publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-007-1015-8 – volume: 74 start-page: 27 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0013 article-title: Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2016.02.017 – volume: 133 start-page: 1 issue: 8 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0006 article-title: Dropwise condensation modeling suitable for superhydrophobic surfaces publication-title: Journal of Heat Transfer doi: 10.1115/1.4003742 – volume: 97 issue: 3 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0010 article-title: Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation publication-title: Applied Physics Letters doi: 10.1063/1.3460275 – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0003 – volume: 41 start-page: 3109 issue: 20 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2021.121202_bib0012 article-title: Heat and mass transfer for plate fin-and-tube heat exchangers, with and without hydrophilic coating publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(98)00060-X |
SSID | ssj0017046 |
Score | 2.4164448 |
Snippet | •Performance of hydrophobic fin-and-tube heat exchanger is conducted in dry/wet conditions.•Surface modification has no significant influence on the heat... In this study, surface modifications subject to hydrophilic and hydrophobic conditions are made for copper fin-and-tube heat exchanger to examine the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121202 |
SubjectTerms | Condensation Contact angle Copper Dehumidification Density Droplets Fin-and-tube heat exchanger Flow visualization Heat exchangers Humidity hydrophilic Hydrophilicity hydrophobic Hydrophobicity Polydimethylsiloxane Pressure drop Relative humidity Steady state transient performance Tube heat exchangers Wettability |
Title | Influence of Surface Modification on the Transient Dehumidification Performance of Fin-and-tube Heat Exchanger |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121202 https://www.proquest.com/docview/2533791938 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EUbyIT3yzBw9eVtNs0rQnkWqplhbxgd6W7AsjNi1tCp787c5sNr4vghDIg91NsjM7MwnfN0PIgVI8UlwmrM5txMBDaCZBd1jMLY9TmQZNh83p9eudu-jyIX6YIa2KC4OwSm_7S5vurLW_cuxn83iUZcjxReXC0tQuEEZGOWb_Ap0-en2HedSSoCTroDXG1gvk8APjlT2hxRtAmFq4MNFghtCwhikXQv-j5RdX9c1oO0_UXiZLPoSkp-VTrpAZk6-SeQflVJM1kl9UdUfo0NKb6dimcNgbagQFOTlQ2CDuo85PIR-SnpnH6SD71OLqg0-Ao7SznKW5ZsVUGtqBl6HnL54yvE7u2ue3rQ7zVRWY4klQsAa49FTWYpvoBDwVLPnQYHWIFL4cYHHLRFmpGnCspQ1qmA4Na1iZMIhjpRMe8Q0ymw9zs0loGNiozpHcozVS6lOQgwrqTR1aA52jLXJSTaBQPuU4Vr54FhW27En8FIFAEYhSBFuk-T7CqEy_8Ye-rUpm4otKCfAWfxhltxK38Mt7IkIIkpMmxL6N7X-5yQ5ZxLMSBrxLZovx1OxBsFPIfafN-2Tu9KLb6eO-e33ffQMPEQNq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7RIAoXVGgrnmUPPXBZ4XjtbHJCKCVyCokqFSRuK-9LOCoOAkfi5zNjr6EFLkiVfFjZ3rW9Mzvz2Z5vBuC7MSIxQkveEz7h6CEs16g7PBVepLnOo0EdmzOZ9rLL5OdVerUEw5YLQ2GVwfY3Nr221mHPUZjNo9uiII4vKReVpq6BsPwAy0mKNrkDyyfjs2z69DNBRg1fhwwydfgIh89hXsWMjN4NItWqRoqOkoTGXcq6EIdvLW94qxd2u3ZGo0-wHlAkO2ludAOWXLkJK3U0p7n_DOW4LT3C5p79Xtz5HJuTuaW4oFoUDDeEfqx2VUSJZD_c9eKm-OuMX8-UAhplVJQ8Ly2vFtqxDB-GnT4E1vAXuBydXgwzHgorcCNkVPE-evVcd1MvrURnhas-dlQgIseXB1zfWhqvTR_bVvuoSxnRqIyVi6M0NVaKRHyFTjkv3RawOPJJTxC_x1pi1ecoChP1Bjb2Djsn23DcTqAyIes4Fb_4o9rwspl6LQJFIlCNCLZh8DTCbZOB4x19h63M1D9apdBhvGOUvVbcKqzwexUjTpYDhL_9nf9ykQNYzS4m5-p8PD3bhTU60kQF70Gnulu4fcQ-lf4WdPsRsJAEcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Surface+Modification+on+the+Transient+Dehumidification+Performance+of+Fin-and-tube+Heat+Exchanger&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yang%2C+Kai-Shing&rft.au=Lin%2C+Hong-Yi&rft.au=Wu%2C+Yu-Lieh&rft.au=Wu%2C+Shih-Kuo&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=173&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2021.121202&rft.externalDocID=S0017931021003057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |