Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data

•A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 162; p. 120351
Main Authors Zhou, Liwei, Garg, Deepak, Qiu, Yue, Kim, Sung-Min, Mudawar, Issam, Kharangate, Chirag R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2020.120351

Cover

Abstract •A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than prior universal correlations.•Models could predict data points from databases not included in the training database. Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels.
AbstractList Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels.
•A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than prior universal correlations.•Models could predict data points from databases not included in the training database. Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels.
ArticleNumber 120351
Author Qiu, Yue
Garg, Deepak
Kharangate, Chirag R.
Mudawar, Issam
Zhou, Liwei
Kim, Sung-Min
Author_xml – sequence: 1
  givenname: Liwei
  surname: Zhou
  fullname: Zhou, Liwei
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
– sequence: 2
  givenname: Deepak
  surname: Garg
  fullname: Garg, Deepak
  organization: Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, 90095, USA
– sequence: 3
  givenname: Yue
  surname: Qiu
  fullname: Qiu, Yue
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
– sequence: 4
  givenname: Sung-Min
  surname: Kim
  fullname: Kim, Sung-Min
  organization: School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon, 16419, South Korea
– sequence: 5
  givenname: Issam
  surname: Mudawar
  fullname: Mudawar, Issam
  organization: School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN, 47907-2088, USA
– sequence: 6
  givenname: Chirag R.
  surname: Kharangate
  fullname: Kharangate, Chirag R.
  email: chirag.kharangate@case.edu
  organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
BookMark eNqVkU1v1DAURS3USkwL_8ESGzaZ2okncXagin6gIjZ0bXmeXzovSuzB9hS1O_45DgMb2MDKsu7VudbxGTvxwSNjb6VYSyHbi3FN4w5tnm1KOVqfBozrWtQlrkWzkS_YSuqur2qp-xO2EkJ2Vd9I8ZKdpTQuV6HaFfv-ycKOPPIJbfTkH7idHkKkvJsTz4HvIzqCzIcpfOMQvEOfbKbg-TLOfy-XCIeBgNBnTp7P5OliJoihgp31Hid-yDTR87Jw8PSIMdmJO5vtK3Y62Cnh61_nObu_-vDl8qa6-3x9e_n-roKmE7nSUrutho1uxQCyB429E0JA3bROogSFVqlWywbUsAXVN-C2NTRQt43aOmmbc_bmyN3H8PWAKZsxHKIvk6ZWm1Z3na5Vab07tsrTU4o4mH2k2cYnI4VZxJvR_C3eLOLNUXxBXP2BAMo_nZU6Tf8D-ngEYdHySCVNi2AoPxIRsnGB_h32A6A2trI
CitedBy_id crossref_primary_10_1021_acs_iecr_2c01036
crossref_primary_10_1016_j_energy_2022_124053
crossref_primary_10_1088_1742_6596_2766_1_012152
crossref_primary_10_1063_5_0174985
crossref_primary_10_1016_j_enganabound_2023_01_010
crossref_primary_10_1016_j_tsep_2023_102241
crossref_primary_10_3390_en17061380
crossref_primary_10_1016_j_csite_2023_102818
crossref_primary_10_1016_j_est_2022_105230
crossref_primary_10_1016_j_ijrefrig_2024_04_007
crossref_primary_10_2139_ssrn_3991770
crossref_primary_10_2139_ssrn_4120039
crossref_primary_10_1016_j_csite_2024_104380
crossref_primary_10_1080_10407782_2024_2357582
crossref_primary_10_32604_fhmt_2024_058231
crossref_primary_10_1016_j_icheatmasstransfer_2024_108258
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122501
crossref_primary_10_1016_j_applthermaleng_2025_125451
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123217
crossref_primary_10_1007_s10973_022_11602_2
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123223
crossref_primary_10_1007_s40997_023_00648_8
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124998
crossref_primary_10_3390_en16031500
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126017
crossref_primary_10_1155_2024_2880812
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126099
crossref_primary_10_1080_10407790_2024_2316196
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121607
crossref_primary_10_1016_j_applthermaleng_2024_122630
crossref_primary_10_1016_j_ijheatfluidflow_2024_109477
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123109
crossref_primary_10_1016_j_eswa_2025_126635
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124107
crossref_primary_10_1115_1_4067339
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124188
crossref_primary_10_1016_j_expthermflusci_2021_110347
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123078
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125299
crossref_primary_10_1115_1_4052814
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126266
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125330
crossref_primary_10_1007_s10853_024_09802_2
crossref_primary_10_1016_j_applthermaleng_2023_120429
crossref_primary_10_1007_s44189_023_00025_9
crossref_primary_10_1007_s44189_023_00029_5
crossref_primary_10_1063_5_0108757
crossref_primary_10_1016_j_enss_2024_09_003
crossref_primary_10_1016_j_applthermaleng_2021_117737
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123118
crossref_primary_10_3390_pr10020243
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121712
crossref_primary_10_1016_j_csite_2024_104232
crossref_primary_10_2139_ssrn_4065420
crossref_primary_10_1016_j_icheatmasstransfer_2021_105600
crossref_primary_10_1016_j_applthermaleng_2023_120872
crossref_primary_10_1016_j_engappai_2022_105750
crossref_primary_10_1080_10407790_2023_2266770
crossref_primary_10_1080_10407790_2023_2266772
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126592
crossref_primary_10_1080_10407782_2024_2321524
crossref_primary_10_1016_j_applthermaleng_2024_123587
crossref_primary_10_1016_j_applthermaleng_2023_122090
crossref_primary_10_1016_j_aej_2024_10_103
crossref_primary_10_3389_fenrg_2023_1294531
crossref_primary_10_3390_en17164074
crossref_primary_10_1016_j_ijheatfluidflow_2024_109330
crossref_primary_10_1016_j_ijrefrig_2024_01_009
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125827
crossref_primary_10_1016_j_icheatmasstransfer_2024_108563
crossref_primary_10_1088_2631_7990_ad12d4
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123016
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121451
crossref_primary_10_3390_pr11113143
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125278
crossref_primary_10_1115_1_4052510
crossref_primary_10_1016_j_ijthermalsci_2021_107202
crossref_primary_10_1016_j_egyai_2024_100370
crossref_primary_10_1016_j_energy_2023_128711
crossref_primary_10_1016_j_applthermaleng_2024_122885
crossref_primary_10_1016_j_egyai_2024_100372
crossref_primary_10_1016_j_energy_2025_134592
crossref_primary_10_1016_j_jtice_2023_104818
crossref_primary_10_1016_j_csite_2024_105556
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126747
crossref_primary_10_1007_s12206_025_0137_1
crossref_primary_10_1016_j_ijthermalsci_2024_109165
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122450
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125802
crossref_primary_10_1016_j_icheatmasstransfer_2025_108813
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124431
crossref_primary_10_1016_j_physd_2023_133711
crossref_primary_10_1039_D2NA00669C
crossref_primary_10_1007_s13369_024_08986_8
crossref_primary_10_1080_10407790_2023_2269307
crossref_primary_10_1039_D3LC00355H
crossref_primary_10_1016_j_csite_2022_102276
crossref_primary_10_1016_j_icheatmasstransfer_2024_107771
crossref_primary_10_1016_j_cherd_2023_10_003
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123395
crossref_primary_10_1016_j_csite_2024_104087
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126102
crossref_primary_10_1063_5_0120937
crossref_primary_10_1007_s40962_024_01291_y
crossref_primary_10_1016_j_ijhydene_2023_09_058
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126190
crossref_primary_10_1115_1_4056539
crossref_primary_10_1016_j_tsep_2022_101563
crossref_primary_10_1016_j_tsep_2022_101203
crossref_primary_10_1016_j_icheatmasstransfer_2024_108357
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122209
crossref_primary_10_1007_s10973_023_12213_1
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123438
Cites_doi 10.1016/j.ijheatmasstransfer.2008.11.013
10.1016/j.applthermaleng.2016.03.073
10.1016/j.ijheatmasstransfer.2011.10.013
10.1016/S1290-0729(02)01398-4
10.1016/j.eswa.2011.09.058
10.1016/j.ijheatmasstransfer.2017.11.091
10.1016/S0894-1777(02)00162-0
10.1016/j.ijrefrig.2009.01.030
10.1016/0017-9310(79)90058-9
10.1299/jsme1958.16.1357
10.1016/j.icheatmasstransfer.2004.08.029
10.1016/j.ijheatmasstransfer.2018.09.041
10.1016/j.expthermflusci.2013.01.002
10.1080/01457630590907194
10.1016/j.icheatmasstransfer.2008.07.012
10.1016/0017-9310(95)00332-0
10.1016/S0017-9310(03)00217-5
10.1016/j.ijrefrig.2010.07.020
10.1016/j.petrol.2010.02.001
10.1016/j.ijrefrig.2013.05.008
10.1016/S0301-9322(01)00054-4
10.1016/j.expthermflusci.2010.11.006
10.1016/S0140-7007(02)00013-0
10.1080/10789669.2009.10390871
10.1023/A:1007607513941
10.1016/j.ijheatmasstransfer.2012.09.032
10.1016/j.ijrefrig.2014.11.014
10.1016/S0140-7007(03)00049-5
10.1016/j.ijheatmasstransfer.2011.10.014
10.1016/j.ijrefrig.2009.09.008
10.1016/0017-9310(91)90217-3
10.1023/A:1010933404324
10.1007/s12217-011-9275-4
10.1016/S0017-9310(03)00287-4
10.1016/j.expthermflusci.2011.01.005
10.1016/S0017-9310(00)00228-3
10.1016/j.ijheatmasstransfer.2011.09.002
10.1016/j.ijheatmasstransfer.2013.04.020
10.1016/j.ijheatmasstransfer.2011.10.012
10.1115/1.2345427
10.1115/1.2830043
10.1016/j.enbuild.2005.02.005
10.1016/j.enbuild.2017.04.038
10.1016/j.applthermaleng.2005.04.006
10.1016/j.neucom.2016.06.014
10.1016/j.ijrefrig.2009.12.033
10.1016/j.ijheatmasstransfer.2018.11.073
10.1016/j.ijheatmasstransfer.2016.05.095
10.1016/j.ijrefrig.2012.01.002
10.1016/0301-9322(96)00002-X
10.1016/j.icheatmasstransfer.2017.03.014
10.1016/j.ijrefrig.2011.10.015
10.1115/1.2824265
10.1016/j.ijheatmasstransfer.2013.05.044
10.1115/1.2789723
10.1016/j.ijheatmasstransfer.2013.08.013
10.1016/j.ijheatmasstransfer.2011.01.005
10.1016/j.ijheatmasstransfer.2016.08.090
10.1016/S0140-7007(02)00155-X
10.1080/10407782.2015.1081029
10.1016/j.cep.2013.12.004
10.1016/S0017-9310(98)00217-8
10.1615/IHTC5.1220
10.1080/10789669.1999.10391233
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Dec 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.120351
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_120351
S0017931020332877
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c370t-818db8c5860fc19c8e9d000c236d1e1c4ea446813c4fbc493cdb2c3c2634bd1a3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Sun Jul 13 04:52:13 EDT 2025
Wed Oct 01 05:21:11 EDT 2025
Thu Apr 24 22:52:07 EDT 2025
Tue Jul 16 04:31:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Gradient boosted trees
Neural networks
Condensation
Heat transfer
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-818db8c5860fc19c8e9d000c236d1e1c4ea446813c4fbc493cdb2c3c2634bd1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2456877824
PQPubID 2045464
ParticipantIDs proquest_journals_2456877824
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120351
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_120351
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_120351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dı́az, Sen, Yang, McClain (bib0032) 2001; 44
Ağra, Teke (bib0054) 2008; 35
Derby, Lee, Peles, Jensen (bib0067) 2012; 55
Bergstra, Bardenet, Bengio, Kégl (bib0098) 2011
Kaew-On, Naphattharanun, Binmud, Wongwises (bib0075) 2016; 102
Thibault, Grandjean (bib0037) 1991; 34
Dobson, Chato, Hinde, Wang (bib0047) 1993
Akers (bib0009) 1960; 56
Kim, Cho, Kim, Youn (bib0082) 2003; 26
Guelman (bib0091) 2012; 39
Baghban, Kahani, Nazari, Ahmadi, Yan (bib0046) 2019; 128
Wadsworth, Mudawar (bib0003) 1992
Zhang, Li, Minkowycz (bib0022) 2016; 69
Yang, Rivard, Zmeureanu (bib0029) 2005; 37
Ganapathy, Shooshtari, Choo, Dessiatoun, Alshehhi, Ohadi (bib0020) 2013; 65
Hossain, Onaka, Miyara (bib0068) 2012; 35
Díaz, Sen, Yang, McClain (bib0034) 1999; 5
Simon (bib0103) 1977
Heo, Park, Yun (bib0072) 2013; 36
Shah (bib0025) 2009; 15
Park, Hrnjak (bib0058) 2009; 32
Kim, Mudawar (bib0018) 2012; 55
Friedman (bib0094) 2001
M. Zhang, A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes, ProQuest Information and Learning, 1998.
Cavallini, Del Col, Doretti, Matkovic, Rossetto, Zilio (bib0049) 2005; 26
Kharangate, Mudawar (bib0023) 2017
Bohdal, Charun, Sikora (bib0017) 2011; 54
Illan-Gomez, Lopez-Belchi, Garcia-Cascales, Vera-Garcia (bib0073) 2015; 51
Yan, Lio, Lin (bib0080) 1999; 42
Naphon, Arisariyawong (bib0039) 2016; 4
Pacheco-Vega, Sen, McClain (bib0035) 2000; 366
Jang, Hrnjak (bib0083) 2004
Simon (bib0102) 1954; 49
Dobson, Chato, Wang, Hinde, Gaibel (bib0048) 1993
Cavallini, Zecchin (bib0010) 1974; 3
Collier, Thome (bib0006) 1994
Naphon, Arisariyawong, Nualboonrueng (bib0040) 2016; 11
Huang, Ding, Hu, Zhu, Peng, Gao, Deng (bib0063) 2010; 33
Agarwal, Bandhauer, Garimella (bib0060) 2010; 33
Freund, Schapire (bib0090) 1996
Prieto, Prieto, Ortigosa, Ros, Pelayo, Ortega, Rojas (bib0086) 2016; 214
B. Mitra, Supercritical gas cooling and condensation of refrigerant R410A at near-critical pressures, (2005).
Hirofumi, Webb (bib0070) 1995
Y. Qiu, D. Garg, L. Zhou, C. Kharangate, S.-M. Kim, I. Mudawar, An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data, Int. J. Heat Mass Transf. (n.d.).
Tran, Wambsganss, France (bib0001) 1996; 22
Dobson, Chato (bib0013) 1998; 120
Bar, Bandyopadhyay, Biswas, Das (bib0033) 2010; 71
Chen, Yang, Duan, Chen, Wu (bib0021) 2014; 76
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0084) 2011; 12
Lakehal, Fulgosi, Yadigaroglu (bib0024) 2008; 130
Moser, Webb, Na (bib0014) 1998; 120
Ghahdarijani, Hormozi, Asl (bib0041) 2017; 84
Koyama, Kuwahara, Nakashita, Yamamoto (bib0016) 2003; 26
Naphon, Wiriyasart, Arisariyawong, Nakharintr (bib0044) 2019; 131
Kim, Jang, Hrnjak, Kim (bib0055) 2009
Lecoeuche, Lalot, Desmet (bib0031) 2005; 32
Matkovic, Cavallini, Del Col, Rossetto (bib0057) 2009; 52
Liu, Xiao, Li (bib0076) 2016; 102
Wang, Radcliff, Christensen (bib0015) 2002; 26
Chen, Guestrin (bib0095) 2016
Kim, Mudawar (bib0077) 2012; 55
Shah (bib0011) 1979; 22
Ghim, Lee (bib0074) 2017; 104
Jambunathan, Hartle, Ashforth-Frost, Fontama (bib0038) 1996; 39
S. Bortolin, Two-phase heat transfer inside minichannels, (2010).
Lee, Lee (bib0002) 2001; 27
Brownlee (bib0097) 2016
Haraguchi (bib0012) 1994; 60
Widrow, Hoff (bib0087) 1960
Lin, Ponnappan (bib0005) 2003; 46
Bergstra, Bengio (bib0099) 2012; 13
Massie (bib0028) 2002; 41
Del Col, Torresin, Cavallini (bib0062) 2010; 33
Friedman, Hastie, Tibshirani (bib0027) 2001
Park, Vakili-Farahani, Consolini, Thome (bib0066) 2011; 35
Sakamatapan, Kaew-On, Dalkilic, Mahian, Wongwises (bib0069) 2013; 64
Iqbal, Bansal (bib0064) 2012; 35
Baird, Fletcher, Haynes (bib0081) 2003; 46
Abbassi, Bahar (bib0030) 2005; 25
Naphon, Wiriyasart, Arisariyawong (bib0043) 2018; 118
K.A. Maråk, Condensation heat transfer and pressure drop for methane and binary methane fluids in small channels, (2009).
Fauzan, Murfi (bib0101) 2018
P. Reasor, V. Aute, R. Radermacher, Refrigerant R1234yf performance comparison investigation, (2010).
Mehrabi, Sharifpur, Meyer (bib0042) 2013; 67
Kim, Kim, Mudawar (bib0008) 2012; 55
Bishop (bib0085) 1995
T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, (2006).
Dobson (bib0059) 1994
Katto, Kunihiro (bib0004) 1973; 16
Oh, Son (bib0065) 2011; 35
D. Nielsen, Tree boosting with xgboost-why does xgboost win" every" machine learning competition?, (2016).
Liu, Li, Sun, Wang (bib0071) 2013; 47
W.-W.W. Wang, Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134a, (1999).
Dietterich, Kong (bib0088) 1995
Zhang, Mayer, Dauvilliers, Plazzi, Pizza, Fronczek, Santamaria, Partinen, Overeem, Peraita-Adrados (bib0092) 2018; 8
Coleman, Garimella (bib0007) 2003; 26
Breiman (bib0093) 2001; 45
Kim, Mudawar (bib0026) 2013; 56
Ahmad, Mourshed, Rezgui (bib0036) 2017; 147
U.C. Andresen, Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels, (2006).
Da Riva, Del Col (bib0019) 2011; 23
Dietterich (bib0089) 2000; 40
Yang, Zhang (bib0100) 2018; 10
Shin, Kim (bib0051) 2004
10.1016/j.ijheatmasstransfer.2020.120351_bib0050
Baird (10.1016/j.ijheatmasstransfer.2020.120351_bib0081) 2003; 46
Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0048) 1993
10.1016/j.ijheatmasstransfer.2020.120351_bib0053
Derby (10.1016/j.ijheatmasstransfer.2020.120351_bib0067) 2012; 55
10.1016/j.ijheatmasstransfer.2020.120351_bib0052
Zhang (10.1016/j.ijheatmasstransfer.2020.120351_bib0022) 2016; 69
Liu (10.1016/j.ijheatmasstransfer.2020.120351_bib0076) 2016; 102
Bergstra (10.1016/j.ijheatmasstransfer.2020.120351_bib0099) 2012; 13
Simon (10.1016/j.ijheatmasstransfer.2020.120351_bib0102) 1954; 49
10.1016/j.ijheatmasstransfer.2020.120351_bib0056
Lecoeuche (10.1016/j.ijheatmasstransfer.2020.120351_bib0031) 2005; 32
Prieto (10.1016/j.ijheatmasstransfer.2020.120351_bib0086) 2016; 214
Pedregosa (10.1016/j.ijheatmasstransfer.2020.120351_bib0084) 2011; 12
Yang (10.1016/j.ijheatmasstransfer.2020.120351_bib0029) 2005; 37
Dietterich (10.1016/j.ijheatmasstransfer.2020.120351_bib0089) 2000; 40
Ghahdarijani (10.1016/j.ijheatmasstransfer.2020.120351_bib0041) 2017; 84
Del Col (10.1016/j.ijheatmasstransfer.2020.120351_bib0062) 2010; 33
Zhang (10.1016/j.ijheatmasstransfer.2020.120351_bib0092) 2018; 8
10.1016/j.ijheatmasstransfer.2020.120351_bib0045
Ağra (10.1016/j.ijheatmasstransfer.2020.120351_bib0054) 2008; 35
Koyama (10.1016/j.ijheatmasstransfer.2020.120351_bib0016) 2003; 26
Cavallini (10.1016/j.ijheatmasstransfer.2020.120351_bib0049) 2005; 26
Huang (10.1016/j.ijheatmasstransfer.2020.120351_bib0063) 2010; 33
Yang (10.1016/j.ijheatmasstransfer.2020.120351_bib0100) 2018; 10
Wang (10.1016/j.ijheatmasstransfer.2020.120351_bib0015) 2002; 26
Bar (10.1016/j.ijheatmasstransfer.2020.120351_bib0033) 2010; 71
Coleman (10.1016/j.ijheatmasstransfer.2020.120351_bib0007) 2003; 26
Abbassi (10.1016/j.ijheatmasstransfer.2020.120351_bib0030) 2005; 25
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0082) 2003; 26
Cavallini (10.1016/j.ijheatmasstransfer.2020.120351_bib0010) 1974; 3
Lee (10.1016/j.ijheatmasstransfer.2020.120351_bib0002) 2001; 27
Matkovic (10.1016/j.ijheatmasstransfer.2020.120351_bib0057) 2009; 52
10.1016/j.ijheatmasstransfer.2020.120351_bib0079
10.1016/j.ijheatmasstransfer.2020.120351_bib0078
Dı́az (10.1016/j.ijheatmasstransfer.2020.120351_bib0032) 2001; 44
Iqbal (10.1016/j.ijheatmasstransfer.2020.120351_bib0064) 2012; 35
10.1016/j.ijheatmasstransfer.2020.120351_bib0061
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0026) 2013; 56
Lakehal (10.1016/j.ijheatmasstransfer.2020.120351_bib0024) 2008; 130
Simon (10.1016/j.ijheatmasstransfer.2020.120351_bib0103) 1977
Kharangate (10.1016/j.ijheatmasstransfer.2020.120351_bib0023) 2017
Tran (10.1016/j.ijheatmasstransfer.2020.120351_bib0001) 1996; 22
Freund (10.1016/j.ijheatmasstransfer.2020.120351_bib0090) 1996
Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0040) 2016; 11
Park (10.1016/j.ijheatmasstransfer.2020.120351_bib0058) 2009; 32
10.1016/j.ijheatmasstransfer.2020.120351_bib0104
Moser (10.1016/j.ijheatmasstransfer.2020.120351_bib0014) 1998; 120
Akers (10.1016/j.ijheatmasstransfer.2020.120351_bib0009) 1960; 56
Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0043) 2018; 118
Guelman (10.1016/j.ijheatmasstransfer.2020.120351_bib0091) 2012; 39
10.1016/j.ijheatmasstransfer.2020.120351_bib0096
Ghim (10.1016/j.ijheatmasstransfer.2020.120351_bib0074) 2017; 104
Oh (10.1016/j.ijheatmasstransfer.2020.120351_bib0065) 2011; 35
Jambunathan (10.1016/j.ijheatmasstransfer.2020.120351_bib0038) 1996; 39
Brownlee (10.1016/j.ijheatmasstransfer.2020.120351_bib0097) 2016
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0018) 2012; 55
Yan (10.1016/j.ijheatmasstransfer.2020.120351_bib0080) 1999; 42
Pacheco-Vega (10.1016/j.ijheatmasstransfer.2020.120351_bib0035) 2000; 366
Shin (10.1016/j.ijheatmasstransfer.2020.120351_bib0051) 2004
Jang (10.1016/j.ijheatmasstransfer.2020.120351_bib0083) 2004
Katto (10.1016/j.ijheatmasstransfer.2020.120351_bib0004) 1973; 16
Shah (10.1016/j.ijheatmasstransfer.2020.120351_bib0011) 1979; 22
Widrow (10.1016/j.ijheatmasstransfer.2020.120351_bib0087) 1960
Fauzan (10.1016/j.ijheatmasstransfer.2020.120351_bib0101) 2018
Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0013) 1998; 120
Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0044) 2019; 131
Chen (10.1016/j.ijheatmasstransfer.2020.120351_bib0095) 2016
Baghban (10.1016/j.ijheatmasstransfer.2020.120351_bib0046) 2019; 128
Thibault (10.1016/j.ijheatmasstransfer.2020.120351_bib0037) 1991; 34
Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0039) 2016; 4
Kaew-On (10.1016/j.ijheatmasstransfer.2020.120351_bib0075) 2016; 102
Díaz (10.1016/j.ijheatmasstransfer.2020.120351_bib0034) 1999; 5
Collier (10.1016/j.ijheatmasstransfer.2020.120351_bib0006) 1994
Breiman (10.1016/j.ijheatmasstransfer.2020.120351_bib0093) 2001; 45
Friedman (10.1016/j.ijheatmasstransfer.2020.120351_bib0094) 2001
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0008) 2012; 55
Bishop (10.1016/j.ijheatmasstransfer.2020.120351_bib0085) 1995
Ganapathy (10.1016/j.ijheatmasstransfer.2020.120351_bib0020) 2013; 65
Wadsworth (10.1016/j.ijheatmasstransfer.2020.120351_bib0003) 1992
Park (10.1016/j.ijheatmasstransfer.2020.120351_bib0066) 2011; 35
Bohdal (10.1016/j.ijheatmasstransfer.2020.120351_bib0017) 2011; 54
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0077) 2012; 55
Mehrabi (10.1016/j.ijheatmasstransfer.2020.120351_bib0042) 2013; 67
Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0047) 1993
Liu (10.1016/j.ijheatmasstransfer.2020.120351_bib0071) 2013; 47
Chen (10.1016/j.ijheatmasstransfer.2020.120351_bib0021) 2014; 76
Friedman (10.1016/j.ijheatmasstransfer.2020.120351_bib0027) 2001
Massie (10.1016/j.ijheatmasstransfer.2020.120351_bib0028) 2002; 41
Agarwal (10.1016/j.ijheatmasstransfer.2020.120351_bib0060) 2010; 33
Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0055) 2009
Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0059) 1994
Sakamatapan (10.1016/j.ijheatmasstransfer.2020.120351_bib0069) 2013; 64
Dietterich (10.1016/j.ijheatmasstransfer.2020.120351_bib0088) 1995
Hossain (10.1016/j.ijheatmasstransfer.2020.120351_bib0068) 2012; 35
Illan-Gomez (10.1016/j.ijheatmasstransfer.2020.120351_bib0073) 2015; 51
Da Riva (10.1016/j.ijheatmasstransfer.2020.120351_bib0019) 2011; 23
Heo (10.1016/j.ijheatmasstransfer.2020.120351_bib0072) 2013; 36
Hirofumi (10.1016/j.ijheatmasstransfer.2020.120351_bib0070) 1995
Bergstra (10.1016/j.ijheatmasstransfer.2020.120351_bib0098) 2011
Lin (10.1016/j.ijheatmasstransfer.2020.120351_bib0005) 2003; 46
Ahmad (10.1016/j.ijheatmasstransfer.2020.120351_bib0036) 2017; 147
Haraguchi (10.1016/j.ijheatmasstransfer.2020.120351_bib0012) 1994; 60
Shah (10.1016/j.ijheatmasstransfer.2020.120351_bib0025) 2009; 15
References_xml – year: 1993
  ident: bib0048
  article-title: Initial Condensation Comparison of R-22 With R-134a and R-321R-125
  publication-title: Air Conditioning and Refrigeration Center. College of Engineering …
– volume: 33
  start-page: 1307
  year: 2010
  end-page: 1318
  ident: bib0062
  article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf
  publication-title: Int. J. Refrig.
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  ident: bib0036
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
– volume: 23
  start-page: 87
  year: 2011
  ident: bib0019
  article-title: Effect of gravity during condensation of R134a in a circular minichannel
  publication-title: Microgravity Sci. Technol.
– volume: 39
  start-page: 3659
  year: 2012
  end-page: 3667
  ident: bib0091
  article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction
  publication-title: Expert Syst. Appl.
– volume: 32
  start-page: 913
  year: 2005
  end-page: 922
  ident: bib0031
  article-title: Modelling a non-stationary single tube heat exchanger using multiple coupled local neural networks
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 35
  start-page: 706
  year: 2011
  end-page: 716
  ident: bib0065
  article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube
  publication-title: Exp. Therm. Fluid Sci.
– volume: 102
  start-page: 86
  year: 2016
  end-page: 97
  ident: bib0075
  article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes
  publication-title: Int. J. Heat Mass Transf.
– start-page: 93
  year: 1977
  end-page: 106
  ident: bib0103
  article-title: Spurious correlation: a causal interpretation
  publication-title: Model. Discov.
– reference: D. Nielsen, Tree boosting with xgboost-why does xgboost win" every" machine learning competition?, (2016).
– volume: 120
  start-page: 193
  year: 1998
  end-page: 213
  ident: bib0013
  article-title: Condensation in smooth horizontal tubes
  publication-title: J. Heat Transf.
– start-page: 148
  year: 1996
  end-page: 156
  ident: bib0090
  article-title: Experiments with a new boosting algorithm, in: Icml
  publication-title: Citeseer
– volume: 15
  start-page: 889
  year: 2009
  end-page: 913
  ident: bib0025
  article-title: An improved and extended general correlation for heat transfer during condensation in plain tubes
  publication-title: Hvac&R Res.
– start-page: 114
  year: 1992
  ident: bib0003
  article-title: Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid
  publication-title: J. Heat Transf. (Transactions ASME (American Soc. Mech. Eng. Ser. C)
– volume: 46
  start-page: 4453
  year: 2003
  end-page: 4466
  ident: bib0081
  article-title: Local condensation heat transfer rates in fine passages
  publication-title: Int. J. Heat Mass Transf.
– volume: 71
  start-page: 187
  year: 2010
  end-page: 194
  ident: bib0033
  article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components
  publication-title: J. Pet. Sci. Eng.
– volume: 40
  start-page: 139
  year: 2000
  end-page: 157
  ident: bib0089
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
  publication-title: Mach. Learn.
– reference: K.A. Maråk, Condensation heat transfer and pressure drop for methane and binary methane fluids in small channels, (2009).
– volume: 35
  start-page: 442
  year: 2011
  end-page: 454
  ident: bib0066
  article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa
  publication-title: Exp. Therm. Fluid Sci.
– volume: 55
  start-page: 971
  year: 2012
  end-page: 983
  ident: bib0008
  article-title: Flow condensation in parallel micro-channels–part 1: experimental results and assessment of pressure drop correlations
  publication-title: Int. J. Heat Mass Transf.
– volume: 128
  start-page: 825
  year: 2019
  end-page: 835
  ident: bib0046
  article-title: Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils
  publication-title: Int. J. Heat Mass Transf.
– start-page: 100
  year: 2016
  end-page: 120
  ident: bib0097
  article-title: Machine Learning Mastery with Python
– start-page: 633
  year: 2004
  end-page: 640
  ident: bib0051
  article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels
  publication-title: Int. Conf. Nanochannels, Microchannels, Minichannels
– start-page: 10
  year: 2018
  ident: bib0101
  article-title: The accuracy of XGBoost for insurance claim prediction
  publication-title: Int. J. Adv. Soft Comput. Appl.
– volume: 35
  start-page: 1165
  year: 2008
  end-page: 1171
  ident: bib0054
  article-title: Experimental investigation of condensation of hydrocarbon refrigerants (R600a) in a horizontal smooth tube
  publication-title: Int. Commun. Heat Mass Transf.
– year: 2004
  ident: bib0083
  article-title: Condensation of CO2 at low temperatures
  publication-title: Air Conditioning and Refrigeration Center. College of Engineering …
– volume: 46
  start-page: 3737
  year: 2003
  end-page: 3746
  ident: bib0005
  article-title: Heat transfer characteristics of spray cooling in a closed loop
  publication-title: Int. J. Heat Mass Transf.
– reference: Y. Qiu, D. Garg, L. Zhou, C. Kharangate, S.-M. Kim, I. Mudawar, An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data, Int. J. Heat Mass Transf. (n.d.).
– volume: 214
  start-page: 242
  year: 2016
  end-page: 268
  ident: bib0086
  article-title: Neural networks: An overview of early research, current frameworks and new challenges
  publication-title: Neurocomputing
– volume: 35
  start-page: 927
  year: 2012
  end-page: 938
  ident: bib0068
  article-title: Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A
  publication-title: Int. J. Refrig.
– volume: 22
  start-page: 547
  year: 1979
  end-page: 556
  ident: bib0011
  article-title: A general correlation for heat transfer during film condensation inside pipes
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 1963
  year: 2011
  end-page: 1974
  ident: bib0017
  article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels
  publication-title: Int. J. Heat Mass Transf.
– volume: 51
  start-page: 12
  year: 2015
  end-page: 23
  ident: bib0073
  article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a
  publication-title: Int. J. Refrig.
– volume: 26
  start-page: 830
  year: 2003
  end-page: 839
  ident: bib0082
  article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins
  publication-title: Int. J. Refrig.
– volume: 64
  start-page: 976
  year: 2013
  end-page: 985
  ident: bib0069
  article-title: Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels
  publication-title: Int. J. Heat Mass Transf.
– year: 1993
  ident: bib0047
  article-title: Experimental evaluation of internal condensation of refrigerants R-134a and R-12
  publication-title: Air Conditioning and Refrigeration Center. College of Engineering …
– reference: U.C. Andresen, Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels, (2006).
– reference: W.-W.W. Wang, Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134a, (1999).
– volume: 33
  start-page: 158
  year: 2010
  end-page: 169
  ident: bib0063
  article-title: Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes
  publication-title: Int. J. Refrig.
– volume: 76
  start-page: 60
  year: 2014
  end-page: 69
  ident: bib0021
  article-title: Simulation of condensation flow in a rectangular microchannel
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 26
  start-page: 425
  year: 2003
  end-page: 432
  ident: bib0016
  article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube
  publication-title: Int. J. Refrig.
– volume: 22
  start-page: 485
  year: 1996
  end-page: 498
  ident: bib0001
  article-title: Small circular-and rectangular-channel boiling with two refrigerants
  publication-title: Int. J. Multiph. Flow.
– volume: 34
  start-page: 2063
  year: 1991
  end-page: 2070
  ident: bib0037
  article-title: A neural network methodology for heat transfer data analysis
  publication-title: Int. J. Heat Mass Transf.
– volume: 26
  start-page: 117
  year: 2003
  end-page: 128
  ident: bib0007
  article-title: Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a
  publication-title: Int. J. Refrig.
– volume: 69
  start-page: 464
  year: 2016
  end-page: 478
  ident: bib0022
  article-title: Numerical simulation of condensation for R410A at varying saturation temperatures in mini/micro tubes
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 26
  start-page: 45
  year: 2005
  end-page: 55
  ident: bib0049
  article-title: Condensation heat transfer and pressure gradient inside multiport minichannels
  publication-title: Heat Transf. Eng.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0084
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 118
  start-page: 1152
  year: 2018
  end-page: 1159
  ident: bib0043
  article-title: Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field
  publication-title: Int. J. Heat Mass Transf.
– volume: 56
  start-page: 145
  year: 1960
  ident: bib0009
  article-title: Condensation inside horizontal tubes
  publication-title: Chem. Engg. Prog. Symp. Ser.
– volume: 49
  start-page: 467
  year: 1954
  end-page: 479
  ident: bib0102
  article-title: Spurious correlation: a causal interpretation
  publication-title: J. Am. Stat. Assoc.
– volume: 16
  start-page: 1357
  year: 1973
  end-page: 1366
  ident: bib0004
  article-title: Study of the mechanism of burn-out in boiling system of high burn-out heat flux
  publication-title: Bull. JSME.
– volume: 25
  start-page: 3176
  year: 2005
  end-page: 3186
  ident: bib0030
  article-title: Application of neural network for the modeling and control of evaporative condenser cooling load
  publication-title: Appl. Therm. Eng.
– volume: 11
  start-page: 3542
  year: 2016
  end-page: 3549
  ident: bib0040
  article-title: Artificial neural network analysis on the heat transfer and friction factor of the double tube with spring insert
  publication-title: Int. J. Appl. Eng. Res.
– volume: 42
  start-page: 993
  year: 1999
  end-page: 1006
  ident: bib0080
  article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
– volume: 39
  start-page: 2329
  year: 1996
  end-page: 2332
  ident: bib0038
  article-title: Evaluating convective heat transfer coefficients using neural networks
  publication-title: Int. J. Heat Mass Transf.
– year: 2001
  ident: bib0027
  article-title: The Elements of Statistical Learning
– volume: 27
  start-page: 2043
  year: 2001
  end-page: 2062
  ident: bib0002
  article-title: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios
  publication-title: Int. J. Multiph. Flow.
– volume: 44
  start-page: 1671
  year: 2001
  end-page: 1679
  ident: bib0032
  article-title: Dynamic prediction and control of heat exchangers using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
– volume: 10
  start-page: 115
  year: 2018
  ident: bib0100
  article-title: Comparison of several data mining methods in credit card default prediction
  publication-title: Intell. Inf. Manag.
– volume: 35
  start-page: 270
  year: 2012
  end-page: 277
  ident: bib0064
  article-title: In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube
  publication-title: Int. J. Refrig.
– volume: 56
  start-page: 238
  year: 2013
  end-page: 250
  ident: bib0026
  article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0093
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 55
  start-page: 984
  year: 2012
  end-page: 994
  ident: bib0077
  article-title: Flow condensation in parallel micro-channels–part 2: heat transfer results and correlation technique
  publication-title: Int. J. Heat Mass Transf.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib0095
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proc. 22nd Acm Sigkdd Int. Conf. Knowl. Discov. Data Min.
– volume: 60
  start-page: 245
  year: 1994
  end-page: 252
  ident: bib0012
  article-title: Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube
  publication-title: Trans. Jpn. Soc. Mech. Eng.
– volume: 36
  start-page: 1657
  year: 2013
  end-page: 1668
  ident: bib0072
  article-title: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel
  publication-title: Int. J. Refrig.
– year: 1995
  ident: bib0070
  article-title: Condensation in extruded aluminum tubes
  publication-title: Penn State
– volume: 131
  start-page: 329
  year: 2019
  end-page: 340
  ident: bib0044
  article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
– reference: M. Zhang, A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes, ProQuest Information and Learning, 1998.
– reference: P. Reasor, V. Aute, R. Radermacher, Refrigerant R1234yf performance comparison investigation, (2010).
– volume: 102
  start-page: 63
  year: 2016
  end-page: 72
  ident: bib0076
  article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels
  publication-title: Appl. Therm. Eng.
– volume: 33
  start-page: 1169
  year: 2010
  end-page: 1179
  ident: bib0060
  article-title: Measurement and modeling of condensation heat transfer in non-circular microchannels
  publication-title: Int. J. Refrig.
– year: 1994
  ident: bib0006
  article-title: Convective Boiling and Condensation
– volume: 5
  start-page: 195
  year: 1999
  end-page: 208
  ident: bib0034
  article-title: Simulation of heat exchanger performance by artificial neural networks
  publication-title: HVAC&R Res.
– volume: 55
  start-page: 958
  year: 2012
  end-page: 970
  ident: bib0018
  article-title: Theoretical model for annular flow condensation in rectangular micro-channels
  publication-title: Int. J. Heat Mass Transf.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0099
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– reference: T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, (2006).
– year: 1995
  ident: bib0088
  publication-title: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms, Technical report, Department of Computer Science
– volume: 47
  start-page: 60
  year: 2013
  end-page: 67
  ident: bib0071
  article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels
  publication-title: Exp. Therm. Fluid Sci.
– volume: 4
  start-page: 135
  year: 2016
  end-page: 147
  ident: bib0039
  article-title: Heat transfer analysis using artificial neural networks of the spirally fluted tubes
  publication-title: J. Res. Appl. Mech. Eng.
– volume: 104
  start-page: 718
  year: 2017
  end-page: 728
  ident: bib0074
  article-title: Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube
  publication-title: Int. J. Heat Mass Transf.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0094
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 55
  start-page: 187
  year: 2012
  end-page: 197
  ident: bib0067
  article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels
  publication-title: Int. J. Heat Mass Transf.
– volume: 52
  start-page: 2311
  year: 2009
  end-page: 2323
  ident: bib0057
  article-title: Experimental study on condensation heat transfer inside a single circular minichannel
  publication-title: Int. J. Heat Mass Transf.
– reference: B. Mitra, Supercritical gas cooling and condensation of refrigerant R410A at near-critical pressures, (2005).
– volume: 84
  start-page: 11
  year: 2017
  end-page: 19
  ident: bib0041
  article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 65
  start-page: 62
  year: 2013
  end-page: 72
  ident: bib0020
  article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels
  publication-title: Int. J. Heat Mass Transf.
– year: 1994
  ident: bib0059
  article-title: Heat transfer and flow regimes during condensation in horizontal tubes
  publication-title: Air Conditioning and Refrigeration Center. College of Engineering…
– start-page: 108
  year: 2017
  ident: bib0023
  article-title: Review of computational studies on boiling and condensation
  publication-title: Int. J. Heat Mass Transf.
– year: 1995
  ident: bib0085
  article-title: Neural Networks for Pattern Recognition
– start-page: 131
  year: 2009
  ident: bib0055
  article-title: Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures
  publication-title: J. Heat Transf.
– volume: 32
  start-page: 1129
  year: 2009
  end-page: 1139
  ident: bib0058
  article-title: CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures
  publication-title: Int. J. Refrig.
– reference: S. Bortolin, Two-phase heat transfer inside minichannels, (2010).
– volume: 366
  start-page: 95
  year: 2000
  end-page: 102
  ident: bib0035
  article-title: Analysis of fin-tube evaporator performance with limited experimental data using artificial neural networks
  publication-title: ASME-Publications-HTD
– volume: 41
  start-page: 1121
  year: 2002
  end-page: 1129
  ident: bib0028
  article-title: Optimization of a building's cooling plant for operating cost and energy use
  publication-title: Int. J. Therm. Sci.
– volume: 120
  start-page: 410
  year: 1998
  end-page: 417
  ident: bib0014
  article-title: A new equivalent Reynolds number model for condensation in smooth tubes
  publication-title: J. Heat Transf.
– volume: 3
  start-page: 309
  year: 1974
  end-page: 313
  ident: bib0010
  article-title: A dimensionless correlation for heat transfer in forced convection condensation
  publication-title: Proc. Sixth Int. Heat Transf. Conf.
– volume: 130
  start-page: 21501
  year: 2008
  ident: bib0024
  article-title: Direct numerical simulation of condensing stratified flow
  publication-title: J. Heat Transfer
– volume: 67
  start-page: 646
  year: 2013
  end-page: 653
  ident: bib0042
  article-title: Modelling and multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low concentration TiO2-water nanofluids in the turbulent flow regime
  publication-title: Int. J. Heat Mass Transf.
– volume: 26
  start-page: 473
  year: 2002
  end-page: 485
  ident: bib0015
  article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition
  publication-title: Exp. Therm. Fluid Sci.
– volume: 37
  start-page: 1250
  year: 2005
  end-page: 1259
  ident: bib0029
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build.
– year: 1960
  ident: bib0087
  article-title: Adaptive Switching Circuits
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0092
  article-title: Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
  publication-title: Sci. Rep.
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: bib0098
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 135
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0039
  article-title: Heat transfer analysis using artificial neural networks of the spirally fluted tubes
  publication-title: J. Res. Appl. Mech. Eng.
– volume: 52
  start-page: 2311
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0057
  article-title: Experimental study on condensation heat transfer inside a single circular minichannel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.11.013
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0059
  article-title: Heat transfer and flow regimes during condensation in horizontal tubes
– volume: 102
  start-page: 63
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0076
  article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.03.073
– volume: 11
  start-page: 3542
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0040
  article-title: Artificial neural network analysis on the heat transfer and friction factor of the double tube with spring insert
  publication-title: Int. J. Appl. Eng. Res.
– volume: 55
  start-page: 971
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0008
  article-title: Flow condensation in parallel micro-channels–part 1: experimental results and assessment of pressure drop correlations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.10.013
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0104
– start-page: 2546
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0098
  article-title: Algorithms for hyper-parameter optimization
– volume: 41
  start-page: 1121
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0028
  article-title: Optimization of a building's cooling plant for operating cost and energy use
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/S1290-0729(02)01398-4
– year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0085
– volume: 39
  start-page: 3659
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0091
  article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.058
– volume: 118
  start-page: 1152
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0043
  article-title: Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.091
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0056
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0079
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0096
– volume: 26
  start-page: 473
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0015
  article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(02)00162-0
– volume: 366
  start-page: 95
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0035
  article-title: Analysis of fin-tube evaporator performance with limited experimental data using artificial neural networks
  publication-title: ASME-Publications-HTD
– year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0088
– volume: 32
  start-page: 1129
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0058
  article-title: CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.01.030
– volume: 49
  start-page: 467
  year: 1954
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0102
  article-title: Spurious correlation: a causal interpretation
  publication-title: J. Am. Stat. Assoc.
– start-page: 1189
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0094
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– start-page: 10
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0101
  article-title: The accuracy of XGBoost for insurance claim prediction
  publication-title: Int. J. Adv. Soft Comput. Appl.
– volume: 22
  start-page: 547
  year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0011
  article-title: A general correlation for heat transfer during film condensation inside pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(79)90058-9
– volume: 16
  start-page: 1357
  year: 1973
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0004
  article-title: Study of the mechanism of burn-out in boiling system of high burn-out heat flux
  publication-title: Bull. JSME.
  doi: 10.1299/jsme1958.16.1357
– volume: 32
  start-page: 913
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0031
  article-title: Modelling a non-stationary single tube heat exchanger using multiple coupled local neural networks
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2004.08.029
– volume: 128
  start-page: 825
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0046
  article-title: Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.09.041
– volume: 47
  start-page: 60
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0071
  article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2013.01.002
– volume: 26
  start-page: 45
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0049
  article-title: Condensation heat transfer and pressure gradient inside multiport minichannels
  publication-title: Heat Transf. Eng.
  doi: 10.1080/01457630590907194
– volume: 35
  start-page: 1165
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0054
  article-title: Experimental investigation of condensation of hydrocarbon refrigerants (R600a) in a horizontal smooth tube
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2008.07.012
– volume: 39
  start-page: 2329
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0038
  article-title: Evaluating convective heat transfer coefficients using neural networks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(95)00332-0
– volume: 10
  start-page: 115
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0100
  article-title: Comparison of several data mining methods in credit card default prediction
  publication-title: Intell. Inf. Manag.
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0045
– volume: 46
  start-page: 3737
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0005
  article-title: Heat transfer characteristics of spray cooling in a closed loop
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00217-5
– volume: 33
  start-page: 1307
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0062
  article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2010.07.020
– volume: 71
  start-page: 187
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0033
  article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2010.02.001
– volume: 36
  start-page: 1657
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0072
  article-title: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2013.05.008
– year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0027
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0061
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0047
  article-title: Experimental evaluation of internal condensation of refrigerants R-134a and R-12
– volume: 27
  start-page: 2043
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0002
  article-title: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/S0301-9322(01)00054-4
– start-page: 114
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0003
  article-title: Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid
  publication-title: J. Heat Transf. (Transactions ASME (American Soc. Mech. Eng. Ser. C)
– volume: 35
  start-page: 442
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0066
  article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2010.11.006
– volume: 26
  start-page: 117
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0007
  article-title: Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(02)00013-0
– volume: 15
  start-page: 889
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0025
  article-title: An improved and extended general correlation for heat transfer during condensation in plain tubes
  publication-title: Hvac&R Res.
  doi: 10.1080/10789669.2009.10390871
– year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0006
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0050
– volume: 40
  start-page: 139
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0089
  article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007607513941
– year: 1960
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0087
– volume: 56
  start-page: 238
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0026
  article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.09.032
– volume: 51
  start-page: 12
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0073
  article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.11.014
– volume: 26
  start-page: 830
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0082
  article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(03)00049-5
– year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0070
  article-title: Condensation in extruded aluminum tubes
  publication-title: Penn State
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0078
– year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0048
  article-title: Initial Condensation Comparison of R-22 With R-134a and R-321R-125
– volume: 55
  start-page: 958
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0018
  article-title: Theoretical model for annular flow condensation in rectangular micro-channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.10.014
– volume: 33
  start-page: 158
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0063
  article-title: Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.09.008
– volume: 34
  start-page: 2063
  year: 1991
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0037
  article-title: A neural network methodology for heat transfer data analysis
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(91)90217-3
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0093
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 23
  start-page: 87
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0019
  article-title: Effect of gravity during condensation of R134a in a circular minichannel
  publication-title: Microgravity Sci. Technol.
  doi: 10.1007/s12217-011-9275-4
– volume: 46
  start-page: 4453
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0081
  article-title: Local condensation heat transfer rates in fine passages
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(03)00287-4
– start-page: 785
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0095
  article-title: Xgboost: a scalable tree boosting system
– volume: 35
  start-page: 706
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0065
  article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.01.005
– start-page: 148
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0090
  article-title: Experiments with a new boosting algorithm, in: Icml
  publication-title: Citeseer
– volume: 44
  start-page: 1671
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0032
  article-title: Dynamic prediction and control of heat exchangers using artificial neural networks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00228-3
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0052
– volume: 55
  start-page: 187
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0067
  article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.09.002
– start-page: 93
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0103
  article-title: Spurious correlation: a causal interpretation
– volume: 64
  start-page: 976
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0069
  article-title: Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.04.020
– volume: 55
  start-page: 984
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0077
  article-title: Flow condensation in parallel micro-channels–part 2: heat transfer results and correlation technique
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.10.012
– start-page: 108
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0023
  article-title: Review of computational studies on boiling and condensation
  publication-title: Int. J. Heat Mass Transf.
– ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0053
  doi: 10.1115/1.2345427
– volume: 60
  start-page: 245
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0012
  article-title: Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube
  publication-title: Trans. Jpn. Soc. Mech. Eng.
– volume: 120
  start-page: 193
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0013
  article-title: Condensation in smooth horizontal tubes
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2830043
– volume: 37
  start-page: 1250
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0029
  article-title: On-line building energy prediction using adaptive artificial neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.02.005
– volume: 147
  start-page: 77
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0036
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.038
– volume: 25
  start-page: 3176
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0030
  article-title: Application of neural network for the modeling and control of evaporative condenser cooling load
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.04.006
– volume: 214
  start-page: 242
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0086
  article-title: Neural networks: An overview of early research, current frameworks and new challenges
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.014
– start-page: 100
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0097
– volume: 33
  start-page: 1169
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0060
  article-title: Measurement and modeling of condensation heat transfer in non-circular microchannels
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.12.033
– year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0083
  article-title: Condensation of CO2 at low temperatures
– volume: 131
  start-page: 329
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0044
  article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.073
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0099
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 102
  start-page: 86
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0075
  article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.095
– volume: 35
  start-page: 927
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0068
  article-title: Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.01.002
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0084
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 485
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0001
  article-title: Small circular-and rectangular-channel boiling with two refrigerants
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/0301-9322(96)00002-X
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0092
  article-title: Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning
  publication-title: Sci. Rep.
– volume: 84
  start-page: 11
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0041
  article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.03.014
– volume: 35
  start-page: 270
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0064
  article-title: In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2011.10.015
– volume: 120
  start-page: 410
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0014
  article-title: A new equivalent Reynolds number model for condensation in smooth tubes
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2824265
– volume: 65
  start-page: 62
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0020
  article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.05.044
– volume: 130
  start-page: 21501
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0024
  article-title: Direct numerical simulation of condensing stratified flow
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2789723
– volume: 67
  start-page: 646
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0042
  article-title: Modelling and multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low concentration TiO2-water nanofluids in the turbulent flow regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.08.013
– volume: 54
  start-page: 1963
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0017
  article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.01.005
– volume: 104
  start-page: 718
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0074
  article-title: Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.090
– volume: 26
  start-page: 425
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0016
  article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube
  publication-title: Int. J. Refrig.
  doi: 10.1016/S0140-7007(02)00155-X
– volume: 69
  start-page: 464
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0022
  article-title: Numerical simulation of condensation for R410A at varying saturation temperatures in mini/micro tubes
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2015.1081029
– start-page: 633
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0051
  article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels
– volume: 76
  start-page: 60
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0021
  article-title: Simulation of condensation flow in a rectangular microchannel
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2013.12.004
– start-page: 131
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0055
  article-title: Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures
  publication-title: J. Heat Transf.
– volume: 42
  start-page: 993
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0080
  article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(98)00217-8
– volume: 56
  start-page: 145
  year: 1960
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0009
  article-title: Condensation inside horizontal tubes
  publication-title: Chem. Engg. Prog. Symp. Ser.
– volume: 3
  start-page: 309
  year: 1974
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0010
  article-title: A dimensionless correlation for heat transfer in forced convection condensation
  publication-title: Proc. Sixth Int. Heat Transf. Conf.
  doi: 10.1615/IHTC5.1220
– volume: 5
  start-page: 195
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0034
  article-title: Simulation of heat exchanger performance by artificial neural networks
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.1999.10391233
SSID ssj0017046
Score 2.6483755
Snippet •A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random...
Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120351
SubjectTerms Algorithms
Computational fluid dynamics
Condensation
Condensers (liquefiers)
Data points
Fluid flow
Gradient boosted trees
Heat transfer
Heat transfer coefficients
Machine learning
Mathematical models
Microchannels
Model accuracy
Neural networks
Optimization
Reynolds number
Working fluids
Title Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120351
https://www.proquest.com/docview/2456877824
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ77JwYOXupsm2yYnkUVZXfQgit5CmqbapdtddiuCB8F_7kwfiooHwVPpM0Nm-s2E-WZCyAFLjJOBYZ50kfGE8I2njOp4XEnHjVHgMrHA-fIq6N2Ki_vO_QzpNrUwSKussb_C9BKt6yutejZb4zTFGl80LoapNA5xP1aUCxHiLgZHrx80Dxa2q2IdRGN8eoEcfnK80gEi3hDC1KIMEx12CPWx5QIm2H5zVd9Au_REZ8tkqQ4h6Ukl5QqZcfkqmS-pnHa6Rt4uS36ko_WGEA_UZA-jSVo8Dqe0GNHxBHMzBU2y0TOF1TAAT8XooSglbUSEW65sLwFeiaY5xR4krSHS9zwsFs5dRsFms_QFR3iq6B0gFTJO18nt2elNt-fVGy14loftwgOnHUfSdmTQTixTVjoVA1Ranwcxc8wKZ2DVKBm3IomsUNzGkW-59QMuopgZvkFm81HuNgkNk1BFEEeBZiCyiYR0YSxCYdpGMeEzu0WOmznVtu5CjpthZLqhmw30T61o1IqutLJF1McXxlVHjj-8223UqL9YmQYH8oev7DYWoOs_fqoxgQxGKH2x_S-D7JBFPKuYM7tktpg8uT2If4povzTwfTJ3ct7vXeGxf33XfweALQ4K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RrVq4oNKHgC6tDxx6SXcdexP7hKoVaNuynEDiZjmOQ4Oy2dVuEBIHJP45M3lQAeoBqdc4sUeeyTdjzTdjgH2eWa8iywPlExtIGdpAWz0KhFZeWKvRZVKB8_QkmpzJX-ej8zUYd7UwRKtssb_B9Bqt2yeDdjcHizynGl8yLk6pNIFxf_wKXstRGNMJ7PvtA8-Dx8OmWofgmF5_C9_-krzyS4K8GcapVR0nemoRGlLPBcqw_ctXPUHt2hUdvYPNNoZkPxoxt2DNl-_hTc3ldKsPcDetCZKetTdCXDBbXMyXefVntmLVnC2WlJypWFbMrxkehxF5GkoPIylZJyIO-bq_BLollpeMmpAMZsTfC6hauPQFQ6Mt8hta4arhd6BURDn9CGdHh6fjSdDetBA4EQ-rAL12mig3UtEwc1w75XWKWOlCEaXccye9xWOj4sLJLHFSC5cmoRMujIRMUm7FJ-iV89JvA4uzWCcYSKFqMLRJpPJxKmNph1ZzGXK3AwfdnhrXtiGn2zAK0_HNLs1zrRjSimm0sgP6YYZF05LjBd-OOzWaR2Zm0IO8YJZ-ZwGm_eVXhjLIaIUqlLv_ZZGvsD45nR6b458nvz_DBo00NJo-9Krlld_DYKhKvtTGfg8rdA38
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+predict+flow+condensation+heat+transfer+coefficient+in+mini%2Fmicro-channel+utilizing+universal+data&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhou%2C+Liwei&rft.au=Garg%2C+Deepak&rft.au=Qiu%2C+Yue&rft.au=Kim%2C+Sung-Min&rft.date=2020-12-01&rft.issn=0017-9310&rft.volume=162&rft.spage=120351&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.120351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_120351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon