Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data
•A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than p...
Saved in:
| Published in | International journal of heat and mass transfer Vol. 162; p. 120351 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.12.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0017-9310 1879-2189 |
| DOI | 10.1016/j.ijheatmasstransfer.2020.120351 |
Cover
| Abstract | •A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than prior universal correlations.•Models could predict data points from databases not included in the training database.
Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels. |
|---|---|
| AbstractList | Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels. •A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random Forest, and XGBoost.•ANN and XGBoost models predict test data with MAE of 6.8% and 9.1%, respectively.•Optimal models performed better than prior universal correlations.•Models could predict data points from databases not included in the training database. Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However, because of the complex behaviors in phase-change systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. In this study, a large database is utilized to develop machine-learning based models for predicting condensation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass velocities of 50 < G < 1403 kg/m2s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, AdaBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, Frf, Frfo, Frg, Frgo, Ga, Ka, Prf, Prg, Ref, Refo, Reg, Rego, Suf, Sug, Sufo, Sugo, Wef, Wefo, Weg, and Wego predicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal machine-learning models performed better than a highly reliable generalized flow condensation correlation. Models were also able to predict excluded datasheets with reasonable accuracy when data points including the specific working fluid were part of the training dataset of the remaining datasheets. The work shows that machine learning algorithms can become a robust new predicting tool for condensation heat transfer coefficients in mini/micro channels. |
| ArticleNumber | 120351 |
| Author | Qiu, Yue Garg, Deepak Kharangate, Chirag R. Mudawar, Issam Zhou, Liwei Kim, Sung-Min |
| Author_xml | – sequence: 1 givenname: Liwei surname: Zhou fullname: Zhou, Liwei organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA – sequence: 2 givenname: Deepak surname: Garg fullname: Garg, Deepak organization: Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, 90095, USA – sequence: 3 givenname: Yue surname: Qiu fullname: Qiu, Yue organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA – sequence: 4 givenname: Sung-Min surname: Kim fullname: Kim, Sung-Min organization: School of Mechanical Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Suwon, 16419, South Korea – sequence: 5 givenname: Issam surname: Mudawar fullname: Mudawar, Issam organization: School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN, 47907-2088, USA – sequence: 6 givenname: Chirag R. surname: Kharangate fullname: Kharangate, Chirag R. email: chirag.kharangate@case.edu organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA |
| BookMark | eNqVkU1v1DAURS3USkwL_8ESGzaZ2okncXagin6gIjZ0bXmeXzovSuzB9hS1O_45DgMb2MDKsu7VudbxGTvxwSNjb6VYSyHbi3FN4w5tnm1KOVqfBozrWtQlrkWzkS_YSuqur2qp-xO2EkJ2Vd9I8ZKdpTQuV6HaFfv-ycKOPPIJbfTkH7idHkKkvJsTz4HvIzqCzIcpfOMQvEOfbKbg-TLOfy-XCIeBgNBnTp7P5OliJoihgp31Hid-yDTR87Jw8PSIMdmJO5vtK3Y62Cnh61_nObu_-vDl8qa6-3x9e_n-roKmE7nSUrutho1uxQCyB429E0JA3bROogSFVqlWywbUsAXVN-C2NTRQt43aOmmbc_bmyN3H8PWAKZsxHKIvk6ZWm1Z3na5Vab07tsrTU4o4mH2k2cYnI4VZxJvR_C3eLOLNUXxBXP2BAMo_nZU6Tf8D-ngEYdHySCVNi2AoPxIRsnGB_h32A6A2trI |
| CitedBy_id | crossref_primary_10_1021_acs_iecr_2c01036 crossref_primary_10_1016_j_energy_2022_124053 crossref_primary_10_1088_1742_6596_2766_1_012152 crossref_primary_10_1063_5_0174985 crossref_primary_10_1016_j_enganabound_2023_01_010 crossref_primary_10_1016_j_tsep_2023_102241 crossref_primary_10_3390_en17061380 crossref_primary_10_1016_j_csite_2023_102818 crossref_primary_10_1016_j_est_2022_105230 crossref_primary_10_1016_j_ijrefrig_2024_04_007 crossref_primary_10_2139_ssrn_3991770 crossref_primary_10_2139_ssrn_4120039 crossref_primary_10_1016_j_csite_2024_104380 crossref_primary_10_1080_10407782_2024_2357582 crossref_primary_10_32604_fhmt_2024_058231 crossref_primary_10_1016_j_icheatmasstransfer_2024_108258 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122501 crossref_primary_10_1016_j_applthermaleng_2025_125451 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123217 crossref_primary_10_1007_s10973_022_11602_2 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123223 crossref_primary_10_1007_s40997_023_00648_8 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124998 crossref_primary_10_3390_en16031500 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126017 crossref_primary_10_1155_2024_2880812 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126099 crossref_primary_10_1080_10407790_2024_2316196 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121607 crossref_primary_10_1016_j_applthermaleng_2024_122630 crossref_primary_10_1016_j_ijheatfluidflow_2024_109477 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123109 crossref_primary_10_1016_j_eswa_2025_126635 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124107 crossref_primary_10_1115_1_4067339 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124188 crossref_primary_10_1016_j_expthermflusci_2021_110347 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123078 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125299 crossref_primary_10_1115_1_4052814 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126266 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125330 crossref_primary_10_1007_s10853_024_09802_2 crossref_primary_10_1016_j_applthermaleng_2023_120429 crossref_primary_10_1007_s44189_023_00025_9 crossref_primary_10_1007_s44189_023_00029_5 crossref_primary_10_1063_5_0108757 crossref_primary_10_1016_j_enss_2024_09_003 crossref_primary_10_1016_j_applthermaleng_2021_117737 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123118 crossref_primary_10_3390_pr10020243 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121712 crossref_primary_10_1016_j_csite_2024_104232 crossref_primary_10_2139_ssrn_4065420 crossref_primary_10_1016_j_icheatmasstransfer_2021_105600 crossref_primary_10_1016_j_applthermaleng_2023_120872 crossref_primary_10_1016_j_engappai_2022_105750 crossref_primary_10_1080_10407790_2023_2266770 crossref_primary_10_1080_10407790_2023_2266772 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126592 crossref_primary_10_1080_10407782_2024_2321524 crossref_primary_10_1016_j_applthermaleng_2024_123587 crossref_primary_10_1016_j_applthermaleng_2023_122090 crossref_primary_10_1016_j_aej_2024_10_103 crossref_primary_10_3389_fenrg_2023_1294531 crossref_primary_10_3390_en17164074 crossref_primary_10_1016_j_ijheatfluidflow_2024_109330 crossref_primary_10_1016_j_ijrefrig_2024_01_009 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125827 crossref_primary_10_1016_j_icheatmasstransfer_2024_108563 crossref_primary_10_1088_2631_7990_ad12d4 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123016 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121451 crossref_primary_10_3390_pr11113143 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125278 crossref_primary_10_1115_1_4052510 crossref_primary_10_1016_j_ijthermalsci_2021_107202 crossref_primary_10_1016_j_egyai_2024_100370 crossref_primary_10_1016_j_energy_2023_128711 crossref_primary_10_1016_j_applthermaleng_2024_122885 crossref_primary_10_1016_j_egyai_2024_100372 crossref_primary_10_1016_j_energy_2025_134592 crossref_primary_10_1016_j_jtice_2023_104818 crossref_primary_10_1016_j_csite_2024_105556 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126747 crossref_primary_10_1007_s12206_025_0137_1 crossref_primary_10_1016_j_ijthermalsci_2024_109165 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122450 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125802 crossref_primary_10_1016_j_icheatmasstransfer_2025_108813 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124431 crossref_primary_10_1016_j_physd_2023_133711 crossref_primary_10_1039_D2NA00669C crossref_primary_10_1007_s13369_024_08986_8 crossref_primary_10_1080_10407790_2023_2269307 crossref_primary_10_1039_D3LC00355H crossref_primary_10_1016_j_csite_2022_102276 crossref_primary_10_1016_j_icheatmasstransfer_2024_107771 crossref_primary_10_1016_j_cherd_2023_10_003 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123395 crossref_primary_10_1016_j_csite_2024_104087 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126102 crossref_primary_10_1063_5_0120937 crossref_primary_10_1007_s40962_024_01291_y crossref_primary_10_1016_j_ijhydene_2023_09_058 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126190 crossref_primary_10_1115_1_4056539 crossref_primary_10_1016_j_tsep_2022_101563 crossref_primary_10_1016_j_tsep_2022_101203 crossref_primary_10_1016_j_icheatmasstransfer_2024_108357 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122209 crossref_primary_10_1007_s10973_023_12213_1 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123438 |
| Cites_doi | 10.1016/j.ijheatmasstransfer.2008.11.013 10.1016/j.applthermaleng.2016.03.073 10.1016/j.ijheatmasstransfer.2011.10.013 10.1016/S1290-0729(02)01398-4 10.1016/j.eswa.2011.09.058 10.1016/j.ijheatmasstransfer.2017.11.091 10.1016/S0894-1777(02)00162-0 10.1016/j.ijrefrig.2009.01.030 10.1016/0017-9310(79)90058-9 10.1299/jsme1958.16.1357 10.1016/j.icheatmasstransfer.2004.08.029 10.1016/j.ijheatmasstransfer.2018.09.041 10.1016/j.expthermflusci.2013.01.002 10.1080/01457630590907194 10.1016/j.icheatmasstransfer.2008.07.012 10.1016/0017-9310(95)00332-0 10.1016/S0017-9310(03)00217-5 10.1016/j.ijrefrig.2010.07.020 10.1016/j.petrol.2010.02.001 10.1016/j.ijrefrig.2013.05.008 10.1016/S0301-9322(01)00054-4 10.1016/j.expthermflusci.2010.11.006 10.1016/S0140-7007(02)00013-0 10.1080/10789669.2009.10390871 10.1023/A:1007607513941 10.1016/j.ijheatmasstransfer.2012.09.032 10.1016/j.ijrefrig.2014.11.014 10.1016/S0140-7007(03)00049-5 10.1016/j.ijheatmasstransfer.2011.10.014 10.1016/j.ijrefrig.2009.09.008 10.1016/0017-9310(91)90217-3 10.1023/A:1010933404324 10.1007/s12217-011-9275-4 10.1016/S0017-9310(03)00287-4 10.1016/j.expthermflusci.2011.01.005 10.1016/S0017-9310(00)00228-3 10.1016/j.ijheatmasstransfer.2011.09.002 10.1016/j.ijheatmasstransfer.2013.04.020 10.1016/j.ijheatmasstransfer.2011.10.012 10.1115/1.2345427 10.1115/1.2830043 10.1016/j.enbuild.2005.02.005 10.1016/j.enbuild.2017.04.038 10.1016/j.applthermaleng.2005.04.006 10.1016/j.neucom.2016.06.014 10.1016/j.ijrefrig.2009.12.033 10.1016/j.ijheatmasstransfer.2018.11.073 10.1016/j.ijheatmasstransfer.2016.05.095 10.1016/j.ijrefrig.2012.01.002 10.1016/0301-9322(96)00002-X 10.1016/j.icheatmasstransfer.2017.03.014 10.1016/j.ijrefrig.2011.10.015 10.1115/1.2824265 10.1016/j.ijheatmasstransfer.2013.05.044 10.1115/1.2789723 10.1016/j.ijheatmasstransfer.2013.08.013 10.1016/j.ijheatmasstransfer.2011.01.005 10.1016/j.ijheatmasstransfer.2016.08.090 10.1016/S0140-7007(02)00155-X 10.1080/10407782.2015.1081029 10.1016/j.cep.2013.12.004 10.1016/S0017-9310(98)00217-8 10.1615/IHTC5.1220 10.1080/10789669.1999.10391233 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Dec 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2020.120351 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_120351 S0017931020332877 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c370t-818db8c5860fc19c8e9d000c236d1e1c4ea446813c4fbc493cdb2c3c2634bd1a3 |
| IEDL.DBID | .~1 |
| ISSN | 0017-9310 |
| IngestDate | Sun Jul 13 04:52:13 EDT 2025 Wed Oct 01 05:21:11 EDT 2025 Thu Apr 24 22:52:07 EDT 2025 Tue Jul 16 04:31:05 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gradient boosted trees Neural networks Condensation Heat transfer Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-818db8c5860fc19c8e9d000c236d1e1c4ea446813c4fbc493cdb2c3c2634bd1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2456877824 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2456877824 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120351 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_120351 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_120351 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Dı́az, Sen, Yang, McClain (bib0032) 2001; 44 Ağra, Teke (bib0054) 2008; 35 Derby, Lee, Peles, Jensen (bib0067) 2012; 55 Bergstra, Bardenet, Bengio, Kégl (bib0098) 2011 Kaew-On, Naphattharanun, Binmud, Wongwises (bib0075) 2016; 102 Thibault, Grandjean (bib0037) 1991; 34 Dobson, Chato, Hinde, Wang (bib0047) 1993 Akers (bib0009) 1960; 56 Kim, Cho, Kim, Youn (bib0082) 2003; 26 Guelman (bib0091) 2012; 39 Baghban, Kahani, Nazari, Ahmadi, Yan (bib0046) 2019; 128 Wadsworth, Mudawar (bib0003) 1992 Zhang, Li, Minkowycz (bib0022) 2016; 69 Yang, Rivard, Zmeureanu (bib0029) 2005; 37 Ganapathy, Shooshtari, Choo, Dessiatoun, Alshehhi, Ohadi (bib0020) 2013; 65 Hossain, Onaka, Miyara (bib0068) 2012; 35 Díaz, Sen, Yang, McClain (bib0034) 1999; 5 Simon (bib0103) 1977 Heo, Park, Yun (bib0072) 2013; 36 Shah (bib0025) 2009; 15 Park, Hrnjak (bib0058) 2009; 32 Kim, Mudawar (bib0018) 2012; 55 Friedman (bib0094) 2001 M. Zhang, A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes, ProQuest Information and Learning, 1998. Cavallini, Del Col, Doretti, Matkovic, Rossetto, Zilio (bib0049) 2005; 26 Kharangate, Mudawar (bib0023) 2017 Bohdal, Charun, Sikora (bib0017) 2011; 54 Illan-Gomez, Lopez-Belchi, Garcia-Cascales, Vera-Garcia (bib0073) 2015; 51 Yan, Lio, Lin (bib0080) 1999; 42 Naphon, Arisariyawong (bib0039) 2016; 4 Pacheco-Vega, Sen, McClain (bib0035) 2000; 366 Jang, Hrnjak (bib0083) 2004 Simon (bib0102) 1954; 49 Dobson, Chato, Wang, Hinde, Gaibel (bib0048) 1993 Cavallini, Zecchin (bib0010) 1974; 3 Collier, Thome (bib0006) 1994 Naphon, Arisariyawong, Nualboonrueng (bib0040) 2016; 11 Huang, Ding, Hu, Zhu, Peng, Gao, Deng (bib0063) 2010; 33 Agarwal, Bandhauer, Garimella (bib0060) 2010; 33 Freund, Schapire (bib0090) 1996 Prieto, Prieto, Ortigosa, Ros, Pelayo, Ortega, Rojas (bib0086) 2016; 214 B. Mitra, Supercritical gas cooling and condensation of refrigerant R410A at near-critical pressures, (2005). Hirofumi, Webb (bib0070) 1995 Y. Qiu, D. Garg, L. Zhou, C. Kharangate, S.-M. Kim, I. Mudawar, An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data, Int. J. Heat Mass Transf. (n.d.). Tran, Wambsganss, France (bib0001) 1996; 22 Dobson, Chato (bib0013) 1998; 120 Bar, Bandyopadhyay, Biswas, Das (bib0033) 2010; 71 Chen, Yang, Duan, Chen, Wu (bib0021) 2014; 76 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0084) 2011; 12 Lakehal, Fulgosi, Yadigaroglu (bib0024) 2008; 130 Moser, Webb, Na (bib0014) 1998; 120 Ghahdarijani, Hormozi, Asl (bib0041) 2017; 84 Koyama, Kuwahara, Nakashita, Yamamoto (bib0016) 2003; 26 Naphon, Wiriyasart, Arisariyawong, Nakharintr (bib0044) 2019; 131 Kim, Jang, Hrnjak, Kim (bib0055) 2009 Lecoeuche, Lalot, Desmet (bib0031) 2005; 32 Matkovic, Cavallini, Del Col, Rossetto (bib0057) 2009; 52 Liu, Xiao, Li (bib0076) 2016; 102 Wang, Radcliff, Christensen (bib0015) 2002; 26 Chen, Guestrin (bib0095) 2016 Kim, Mudawar (bib0077) 2012; 55 Shah (bib0011) 1979; 22 Ghim, Lee (bib0074) 2017; 104 Jambunathan, Hartle, Ashforth-Frost, Fontama (bib0038) 1996; 39 S. Bortolin, Two-phase heat transfer inside minichannels, (2010). Lee, Lee (bib0002) 2001; 27 Brownlee (bib0097) 2016 Haraguchi (bib0012) 1994; 60 Widrow, Hoff (bib0087) 1960 Lin, Ponnappan (bib0005) 2003; 46 Bergstra, Bengio (bib0099) 2012; 13 Massie (bib0028) 2002; 41 Del Col, Torresin, Cavallini (bib0062) 2010; 33 Friedman, Hastie, Tibshirani (bib0027) 2001 Park, Vakili-Farahani, Consolini, Thome (bib0066) 2011; 35 Sakamatapan, Kaew-On, Dalkilic, Mahian, Wongwises (bib0069) 2013; 64 Iqbal, Bansal (bib0064) 2012; 35 Baird, Fletcher, Haynes (bib0081) 2003; 46 Abbassi, Bahar (bib0030) 2005; 25 Naphon, Wiriyasart, Arisariyawong (bib0043) 2018; 118 K.A. Maråk, Condensation heat transfer and pressure drop for methane and binary methane fluids in small channels, (2009). Fauzan, Murfi (bib0101) 2018 P. Reasor, V. Aute, R. Radermacher, Refrigerant R1234yf performance comparison investigation, (2010). Mehrabi, Sharifpur, Meyer (bib0042) 2013; 67 Kim, Kim, Mudawar (bib0008) 2012; 55 Bishop (bib0085) 1995 T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, (2006). Dobson (bib0059) 1994 Katto, Kunihiro (bib0004) 1973; 16 Oh, Son (bib0065) 2011; 35 D. Nielsen, Tree boosting with xgboost-why does xgboost win" every" machine learning competition?, (2016). Liu, Li, Sun, Wang (bib0071) 2013; 47 W.-W.W. Wang, Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134a, (1999). Dietterich, Kong (bib0088) 1995 Zhang, Mayer, Dauvilliers, Plazzi, Pizza, Fronczek, Santamaria, Partinen, Overeem, Peraita-Adrados (bib0092) 2018; 8 Coleman, Garimella (bib0007) 2003; 26 Breiman (bib0093) 2001; 45 Kim, Mudawar (bib0026) 2013; 56 Ahmad, Mourshed, Rezgui (bib0036) 2017; 147 U.C. Andresen, Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels, (2006). Da Riva, Del Col (bib0019) 2011; 23 Dietterich (bib0089) 2000; 40 Yang, Zhang (bib0100) 2018; 10 Shin, Kim (bib0051) 2004 10.1016/j.ijheatmasstransfer.2020.120351_bib0050 Baird (10.1016/j.ijheatmasstransfer.2020.120351_bib0081) 2003; 46 Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0048) 1993 10.1016/j.ijheatmasstransfer.2020.120351_bib0053 Derby (10.1016/j.ijheatmasstransfer.2020.120351_bib0067) 2012; 55 10.1016/j.ijheatmasstransfer.2020.120351_bib0052 Zhang (10.1016/j.ijheatmasstransfer.2020.120351_bib0022) 2016; 69 Liu (10.1016/j.ijheatmasstransfer.2020.120351_bib0076) 2016; 102 Bergstra (10.1016/j.ijheatmasstransfer.2020.120351_bib0099) 2012; 13 Simon (10.1016/j.ijheatmasstransfer.2020.120351_bib0102) 1954; 49 10.1016/j.ijheatmasstransfer.2020.120351_bib0056 Lecoeuche (10.1016/j.ijheatmasstransfer.2020.120351_bib0031) 2005; 32 Prieto (10.1016/j.ijheatmasstransfer.2020.120351_bib0086) 2016; 214 Pedregosa (10.1016/j.ijheatmasstransfer.2020.120351_bib0084) 2011; 12 Yang (10.1016/j.ijheatmasstransfer.2020.120351_bib0029) 2005; 37 Dietterich (10.1016/j.ijheatmasstransfer.2020.120351_bib0089) 2000; 40 Ghahdarijani (10.1016/j.ijheatmasstransfer.2020.120351_bib0041) 2017; 84 Del Col (10.1016/j.ijheatmasstransfer.2020.120351_bib0062) 2010; 33 Zhang (10.1016/j.ijheatmasstransfer.2020.120351_bib0092) 2018; 8 10.1016/j.ijheatmasstransfer.2020.120351_bib0045 Ağra (10.1016/j.ijheatmasstransfer.2020.120351_bib0054) 2008; 35 Koyama (10.1016/j.ijheatmasstransfer.2020.120351_bib0016) 2003; 26 Cavallini (10.1016/j.ijheatmasstransfer.2020.120351_bib0049) 2005; 26 Huang (10.1016/j.ijheatmasstransfer.2020.120351_bib0063) 2010; 33 Yang (10.1016/j.ijheatmasstransfer.2020.120351_bib0100) 2018; 10 Wang (10.1016/j.ijheatmasstransfer.2020.120351_bib0015) 2002; 26 Bar (10.1016/j.ijheatmasstransfer.2020.120351_bib0033) 2010; 71 Coleman (10.1016/j.ijheatmasstransfer.2020.120351_bib0007) 2003; 26 Abbassi (10.1016/j.ijheatmasstransfer.2020.120351_bib0030) 2005; 25 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0082) 2003; 26 Cavallini (10.1016/j.ijheatmasstransfer.2020.120351_bib0010) 1974; 3 Lee (10.1016/j.ijheatmasstransfer.2020.120351_bib0002) 2001; 27 Matkovic (10.1016/j.ijheatmasstransfer.2020.120351_bib0057) 2009; 52 10.1016/j.ijheatmasstransfer.2020.120351_bib0079 10.1016/j.ijheatmasstransfer.2020.120351_bib0078 Dı́az (10.1016/j.ijheatmasstransfer.2020.120351_bib0032) 2001; 44 Iqbal (10.1016/j.ijheatmasstransfer.2020.120351_bib0064) 2012; 35 10.1016/j.ijheatmasstransfer.2020.120351_bib0061 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0026) 2013; 56 Lakehal (10.1016/j.ijheatmasstransfer.2020.120351_bib0024) 2008; 130 Simon (10.1016/j.ijheatmasstransfer.2020.120351_bib0103) 1977 Kharangate (10.1016/j.ijheatmasstransfer.2020.120351_bib0023) 2017 Tran (10.1016/j.ijheatmasstransfer.2020.120351_bib0001) 1996; 22 Freund (10.1016/j.ijheatmasstransfer.2020.120351_bib0090) 1996 Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0040) 2016; 11 Park (10.1016/j.ijheatmasstransfer.2020.120351_bib0058) 2009; 32 10.1016/j.ijheatmasstransfer.2020.120351_bib0104 Moser (10.1016/j.ijheatmasstransfer.2020.120351_bib0014) 1998; 120 Akers (10.1016/j.ijheatmasstransfer.2020.120351_bib0009) 1960; 56 Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0043) 2018; 118 Guelman (10.1016/j.ijheatmasstransfer.2020.120351_bib0091) 2012; 39 10.1016/j.ijheatmasstransfer.2020.120351_bib0096 Ghim (10.1016/j.ijheatmasstransfer.2020.120351_bib0074) 2017; 104 Oh (10.1016/j.ijheatmasstransfer.2020.120351_bib0065) 2011; 35 Jambunathan (10.1016/j.ijheatmasstransfer.2020.120351_bib0038) 1996; 39 Brownlee (10.1016/j.ijheatmasstransfer.2020.120351_bib0097) 2016 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0018) 2012; 55 Yan (10.1016/j.ijheatmasstransfer.2020.120351_bib0080) 1999; 42 Pacheco-Vega (10.1016/j.ijheatmasstransfer.2020.120351_bib0035) 2000; 366 Shin (10.1016/j.ijheatmasstransfer.2020.120351_bib0051) 2004 Jang (10.1016/j.ijheatmasstransfer.2020.120351_bib0083) 2004 Katto (10.1016/j.ijheatmasstransfer.2020.120351_bib0004) 1973; 16 Shah (10.1016/j.ijheatmasstransfer.2020.120351_bib0011) 1979; 22 Widrow (10.1016/j.ijheatmasstransfer.2020.120351_bib0087) 1960 Fauzan (10.1016/j.ijheatmasstransfer.2020.120351_bib0101) 2018 Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0013) 1998; 120 Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0044) 2019; 131 Chen (10.1016/j.ijheatmasstransfer.2020.120351_bib0095) 2016 Baghban (10.1016/j.ijheatmasstransfer.2020.120351_bib0046) 2019; 128 Thibault (10.1016/j.ijheatmasstransfer.2020.120351_bib0037) 1991; 34 Naphon (10.1016/j.ijheatmasstransfer.2020.120351_bib0039) 2016; 4 Kaew-On (10.1016/j.ijheatmasstransfer.2020.120351_bib0075) 2016; 102 Díaz (10.1016/j.ijheatmasstransfer.2020.120351_bib0034) 1999; 5 Collier (10.1016/j.ijheatmasstransfer.2020.120351_bib0006) 1994 Breiman (10.1016/j.ijheatmasstransfer.2020.120351_bib0093) 2001; 45 Friedman (10.1016/j.ijheatmasstransfer.2020.120351_bib0094) 2001 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0008) 2012; 55 Bishop (10.1016/j.ijheatmasstransfer.2020.120351_bib0085) 1995 Ganapathy (10.1016/j.ijheatmasstransfer.2020.120351_bib0020) 2013; 65 Wadsworth (10.1016/j.ijheatmasstransfer.2020.120351_bib0003) 1992 Park (10.1016/j.ijheatmasstransfer.2020.120351_bib0066) 2011; 35 Bohdal (10.1016/j.ijheatmasstransfer.2020.120351_bib0017) 2011; 54 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0077) 2012; 55 Mehrabi (10.1016/j.ijheatmasstransfer.2020.120351_bib0042) 2013; 67 Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0047) 1993 Liu (10.1016/j.ijheatmasstransfer.2020.120351_bib0071) 2013; 47 Chen (10.1016/j.ijheatmasstransfer.2020.120351_bib0021) 2014; 76 Friedman (10.1016/j.ijheatmasstransfer.2020.120351_bib0027) 2001 Massie (10.1016/j.ijheatmasstransfer.2020.120351_bib0028) 2002; 41 Agarwal (10.1016/j.ijheatmasstransfer.2020.120351_bib0060) 2010; 33 Kim (10.1016/j.ijheatmasstransfer.2020.120351_bib0055) 2009 Dobson (10.1016/j.ijheatmasstransfer.2020.120351_bib0059) 1994 Sakamatapan (10.1016/j.ijheatmasstransfer.2020.120351_bib0069) 2013; 64 Dietterich (10.1016/j.ijheatmasstransfer.2020.120351_bib0088) 1995 Hossain (10.1016/j.ijheatmasstransfer.2020.120351_bib0068) 2012; 35 Illan-Gomez (10.1016/j.ijheatmasstransfer.2020.120351_bib0073) 2015; 51 Da Riva (10.1016/j.ijheatmasstransfer.2020.120351_bib0019) 2011; 23 Heo (10.1016/j.ijheatmasstransfer.2020.120351_bib0072) 2013; 36 Hirofumi (10.1016/j.ijheatmasstransfer.2020.120351_bib0070) 1995 Bergstra (10.1016/j.ijheatmasstransfer.2020.120351_bib0098) 2011 Lin (10.1016/j.ijheatmasstransfer.2020.120351_bib0005) 2003; 46 Ahmad (10.1016/j.ijheatmasstransfer.2020.120351_bib0036) 2017; 147 Haraguchi (10.1016/j.ijheatmasstransfer.2020.120351_bib0012) 1994; 60 Shah (10.1016/j.ijheatmasstransfer.2020.120351_bib0025) 2009; 15 |
| References_xml | – year: 1993 ident: bib0048 article-title: Initial Condensation Comparison of R-22 With R-134a and R-321R-125 publication-title: Air Conditioning and Refrigeration Center. College of Engineering … – volume: 33 start-page: 1307 year: 2010 end-page: 1318 ident: bib0062 article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf publication-title: Int. J. Refrig. – volume: 147 start-page: 77 year: 2017 end-page: 89 ident: bib0036 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. – volume: 23 start-page: 87 year: 2011 ident: bib0019 article-title: Effect of gravity during condensation of R134a in a circular minichannel publication-title: Microgravity Sci. Technol. – volume: 39 start-page: 3659 year: 2012 end-page: 3667 ident: bib0091 article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction publication-title: Expert Syst. Appl. – volume: 32 start-page: 913 year: 2005 end-page: 922 ident: bib0031 article-title: Modelling a non-stationary single tube heat exchanger using multiple coupled local neural networks publication-title: Int. Commun. Heat Mass Transf. – volume: 35 start-page: 706 year: 2011 end-page: 716 ident: bib0065 article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube publication-title: Exp. Therm. Fluid Sci. – volume: 102 start-page: 86 year: 2016 end-page: 97 ident: bib0075 article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes publication-title: Int. J. Heat Mass Transf. – start-page: 93 year: 1977 end-page: 106 ident: bib0103 article-title: Spurious correlation: a causal interpretation publication-title: Model. Discov. – reference: D. Nielsen, Tree boosting with xgboost-why does xgboost win" every" machine learning competition?, (2016). – volume: 120 start-page: 193 year: 1998 end-page: 213 ident: bib0013 article-title: Condensation in smooth horizontal tubes publication-title: J. Heat Transf. – start-page: 148 year: 1996 end-page: 156 ident: bib0090 article-title: Experiments with a new boosting algorithm, in: Icml publication-title: Citeseer – volume: 15 start-page: 889 year: 2009 end-page: 913 ident: bib0025 article-title: An improved and extended general correlation for heat transfer during condensation in plain tubes publication-title: Hvac&R Res. – start-page: 114 year: 1992 ident: bib0003 article-title: Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid publication-title: J. Heat Transf. (Transactions ASME (American Soc. Mech. Eng. Ser. C) – volume: 46 start-page: 4453 year: 2003 end-page: 4466 ident: bib0081 article-title: Local condensation heat transfer rates in fine passages publication-title: Int. J. Heat Mass Transf. – volume: 71 start-page: 187 year: 2010 end-page: 194 ident: bib0033 article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components publication-title: J. Pet. Sci. Eng. – volume: 40 start-page: 139 year: 2000 end-page: 157 ident: bib0089 article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization publication-title: Mach. Learn. – reference: K.A. Maråk, Condensation heat transfer and pressure drop for methane and binary methane fluids in small channels, (2009). – volume: 35 start-page: 442 year: 2011 end-page: 454 ident: bib0066 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa publication-title: Exp. Therm. Fluid Sci. – volume: 55 start-page: 971 year: 2012 end-page: 983 ident: bib0008 article-title: Flow condensation in parallel micro-channels–part 1: experimental results and assessment of pressure drop correlations publication-title: Int. J. Heat Mass Transf. – volume: 128 start-page: 825 year: 2019 end-page: 835 ident: bib0046 article-title: Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils publication-title: Int. J. Heat Mass Transf. – start-page: 100 year: 2016 end-page: 120 ident: bib0097 article-title: Machine Learning Mastery with Python – start-page: 633 year: 2004 end-page: 640 ident: bib0051 article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels publication-title: Int. Conf. Nanochannels, Microchannels, Minichannels – start-page: 10 year: 2018 ident: bib0101 article-title: The accuracy of XGBoost for insurance claim prediction publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 35 start-page: 1165 year: 2008 end-page: 1171 ident: bib0054 article-title: Experimental investigation of condensation of hydrocarbon refrigerants (R600a) in a horizontal smooth tube publication-title: Int. Commun. Heat Mass Transf. – year: 2004 ident: bib0083 article-title: Condensation of CO2 at low temperatures publication-title: Air Conditioning and Refrigeration Center. College of Engineering … – volume: 46 start-page: 3737 year: 2003 end-page: 3746 ident: bib0005 article-title: Heat transfer characteristics of spray cooling in a closed loop publication-title: Int. J. Heat Mass Transf. – reference: Y. Qiu, D. Garg, L. Zhou, C. Kharangate, S.-M. Kim, I. Mudawar, An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data, Int. J. Heat Mass Transf. (n.d.). – volume: 214 start-page: 242 year: 2016 end-page: 268 ident: bib0086 article-title: Neural networks: An overview of early research, current frameworks and new challenges publication-title: Neurocomputing – volume: 35 start-page: 927 year: 2012 end-page: 938 ident: bib0068 article-title: Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A publication-title: Int. J. Refrig. – volume: 22 start-page: 547 year: 1979 end-page: 556 ident: bib0011 article-title: A general correlation for heat transfer during film condensation inside pipes publication-title: Int. J. Heat Mass Transf. – volume: 54 start-page: 1963 year: 2011 end-page: 1974 ident: bib0017 article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels publication-title: Int. J. Heat Mass Transf. – volume: 51 start-page: 12 year: 2015 end-page: 23 ident: bib0073 article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a publication-title: Int. J. Refrig. – volume: 26 start-page: 830 year: 2003 end-page: 839 ident: bib0082 article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins publication-title: Int. J. Refrig. – volume: 64 start-page: 976 year: 2013 end-page: 985 ident: bib0069 article-title: Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels publication-title: Int. J. Heat Mass Transf. – year: 1993 ident: bib0047 article-title: Experimental evaluation of internal condensation of refrigerants R-134a and R-12 publication-title: Air Conditioning and Refrigeration Center. College of Engineering … – reference: U.C. Andresen, Supercritical gas cooling and near-critical-pressure condensation of refrigerant blends in microchannels, (2006). – reference: W.-W.W. Wang, Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134a, (1999). – volume: 33 start-page: 158 year: 2010 end-page: 169 ident: bib0063 article-title: Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes publication-title: Int. J. Refrig. – volume: 76 start-page: 60 year: 2014 end-page: 69 ident: bib0021 article-title: Simulation of condensation flow in a rectangular microchannel publication-title: Chem. Eng. Process. Process Intensif. – volume: 26 start-page: 425 year: 2003 end-page: 432 ident: bib0016 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig. – volume: 22 start-page: 485 year: 1996 end-page: 498 ident: bib0001 article-title: Small circular-and rectangular-channel boiling with two refrigerants publication-title: Int. J. Multiph. Flow. – volume: 34 start-page: 2063 year: 1991 end-page: 2070 ident: bib0037 article-title: A neural network methodology for heat transfer data analysis publication-title: Int. J. Heat Mass Transf. – volume: 26 start-page: 117 year: 2003 end-page: 128 ident: bib0007 article-title: Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a publication-title: Int. J. Refrig. – volume: 69 start-page: 464 year: 2016 end-page: 478 ident: bib0022 article-title: Numerical simulation of condensation for R410A at varying saturation temperatures in mini/micro tubes publication-title: Numer. Heat Transf. Part A Appl. – volume: 26 start-page: 45 year: 2005 end-page: 55 ident: bib0049 article-title: Condensation heat transfer and pressure gradient inside multiport minichannels publication-title: Heat Transf. Eng. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0084 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 118 start-page: 1152 year: 2018 end-page: 1159 ident: bib0043 article-title: Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field publication-title: Int. J. Heat Mass Transf. – volume: 56 start-page: 145 year: 1960 ident: bib0009 article-title: Condensation inside horizontal tubes publication-title: Chem. Engg. Prog. Symp. Ser. – volume: 49 start-page: 467 year: 1954 end-page: 479 ident: bib0102 article-title: Spurious correlation: a causal interpretation publication-title: J. Am. Stat. Assoc. – volume: 16 start-page: 1357 year: 1973 end-page: 1366 ident: bib0004 article-title: Study of the mechanism of burn-out in boiling system of high burn-out heat flux publication-title: Bull. JSME. – volume: 25 start-page: 3176 year: 2005 end-page: 3186 ident: bib0030 article-title: Application of neural network for the modeling and control of evaporative condenser cooling load publication-title: Appl. Therm. Eng. – volume: 11 start-page: 3542 year: 2016 end-page: 3549 ident: bib0040 article-title: Artificial neural network analysis on the heat transfer and friction factor of the double tube with spring insert publication-title: Int. J. Appl. Eng. Res. – volume: 42 start-page: 993 year: 1999 end-page: 1006 ident: bib0080 article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger publication-title: Int. J. Heat Mass Transf. – volume: 39 start-page: 2329 year: 1996 end-page: 2332 ident: bib0038 article-title: Evaluating convective heat transfer coefficients using neural networks publication-title: Int. J. Heat Mass Transf. – year: 2001 ident: bib0027 article-title: The Elements of Statistical Learning – volume: 27 start-page: 2043 year: 2001 end-page: 2062 ident: bib0002 article-title: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios publication-title: Int. J. Multiph. Flow. – volume: 44 start-page: 1671 year: 2001 end-page: 1679 ident: bib0032 article-title: Dynamic prediction and control of heat exchangers using artificial neural networks publication-title: Int. J. Heat Mass Transf. – volume: 10 start-page: 115 year: 2018 ident: bib0100 article-title: Comparison of several data mining methods in credit card default prediction publication-title: Intell. Inf. Manag. – volume: 35 start-page: 270 year: 2012 end-page: 277 ident: bib0064 article-title: In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube publication-title: Int. J. Refrig. – volume: 56 start-page: 238 year: 2013 end-page: 250 ident: bib0026 article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow publication-title: Int. J. Heat Mass Transf. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0093 article-title: Random forests publication-title: Mach. Learn. – volume: 55 start-page: 984 year: 2012 end-page: 994 ident: bib0077 article-title: Flow condensation in parallel micro-channels–part 2: heat transfer results and correlation technique publication-title: Int. J. Heat Mass Transf. – start-page: 785 year: 2016 end-page: 794 ident: bib0095 article-title: Xgboost: a scalable tree boosting system publication-title: Proc. 22nd Acm Sigkdd Int. Conf. Knowl. Discov. Data Min. – volume: 60 start-page: 245 year: 1994 end-page: 252 ident: bib0012 article-title: Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube publication-title: Trans. Jpn. Soc. Mech. Eng. – volume: 36 start-page: 1657 year: 2013 end-page: 1668 ident: bib0072 article-title: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel publication-title: Int. J. Refrig. – year: 1995 ident: bib0070 article-title: Condensation in extruded aluminum tubes publication-title: Penn State – volume: 131 start-page: 329 year: 2019 end-page: 340 ident: bib0044 article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink publication-title: Int. J. Heat Mass Transf. – reference: M. Zhang, A new equivalent Reynolds number model for vapor shear-controlled condensation inside smooth and micro-fin tubes, ProQuest Information and Learning, 1998. – reference: P. Reasor, V. Aute, R. Radermacher, Refrigerant R1234yf performance comparison investigation, (2010). – volume: 102 start-page: 63 year: 2016 end-page: 72 ident: bib0076 article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels publication-title: Appl. Therm. Eng. – volume: 33 start-page: 1169 year: 2010 end-page: 1179 ident: bib0060 article-title: Measurement and modeling of condensation heat transfer in non-circular microchannels publication-title: Int. J. Refrig. – year: 1994 ident: bib0006 article-title: Convective Boiling and Condensation – volume: 5 start-page: 195 year: 1999 end-page: 208 ident: bib0034 article-title: Simulation of heat exchanger performance by artificial neural networks publication-title: HVAC&R Res. – volume: 55 start-page: 958 year: 2012 end-page: 970 ident: bib0018 article-title: Theoretical model for annular flow condensation in rectangular micro-channels publication-title: Int. J. Heat Mass Transf. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib0099 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – reference: T.M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, (2006). – year: 1995 ident: bib0088 publication-title: Machine learning bias, statistical bias, and statistical variance of decision tree algorithms, Technical report, Department of Computer Science – volume: 47 start-page: 60 year: 2013 end-page: 67 ident: bib0071 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm. Fluid Sci. – volume: 4 start-page: 135 year: 2016 end-page: 147 ident: bib0039 article-title: Heat transfer analysis using artificial neural networks of the spirally fluted tubes publication-title: J. Res. Appl. Mech. Eng. – volume: 104 start-page: 718 year: 2017 end-page: 728 ident: bib0074 article-title: Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube publication-title: Int. J. Heat Mass Transf. – start-page: 1189 year: 2001 end-page: 1232 ident: bib0094 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 55 start-page: 187 year: 2012 end-page: 197 ident: bib0067 article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels publication-title: Int. J. Heat Mass Transf. – volume: 52 start-page: 2311 year: 2009 end-page: 2323 ident: bib0057 article-title: Experimental study on condensation heat transfer inside a single circular minichannel publication-title: Int. J. Heat Mass Transf. – reference: B. Mitra, Supercritical gas cooling and condensation of refrigerant R410A at near-critical pressures, (2005). – volume: 84 start-page: 11 year: 2017 end-page: 19 ident: bib0041 article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network publication-title: Int. Commun. Heat Mass Transf. – volume: 65 start-page: 62 year: 2013 end-page: 72 ident: bib0020 article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels publication-title: Int. J. Heat Mass Transf. – year: 1994 ident: bib0059 article-title: Heat transfer and flow regimes during condensation in horizontal tubes publication-title: Air Conditioning and Refrigeration Center. College of Engineering… – start-page: 108 year: 2017 ident: bib0023 article-title: Review of computational studies on boiling and condensation publication-title: Int. J. Heat Mass Transf. – year: 1995 ident: bib0085 article-title: Neural Networks for Pattern Recognition – start-page: 131 year: 2009 ident: bib0055 article-title: Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures publication-title: J. Heat Transf. – volume: 32 start-page: 1129 year: 2009 end-page: 1139 ident: bib0058 article-title: CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures publication-title: Int. J. Refrig. – reference: S. Bortolin, Two-phase heat transfer inside minichannels, (2010). – volume: 366 start-page: 95 year: 2000 end-page: 102 ident: bib0035 article-title: Analysis of fin-tube evaporator performance with limited experimental data using artificial neural networks publication-title: ASME-Publications-HTD – volume: 41 start-page: 1121 year: 2002 end-page: 1129 ident: bib0028 article-title: Optimization of a building's cooling plant for operating cost and energy use publication-title: Int. J. Therm. Sci. – volume: 120 start-page: 410 year: 1998 end-page: 417 ident: bib0014 article-title: A new equivalent Reynolds number model for condensation in smooth tubes publication-title: J. Heat Transf. – volume: 3 start-page: 309 year: 1974 end-page: 313 ident: bib0010 article-title: A dimensionless correlation for heat transfer in forced convection condensation publication-title: Proc. Sixth Int. Heat Transf. Conf. – volume: 130 start-page: 21501 year: 2008 ident: bib0024 article-title: Direct numerical simulation of condensing stratified flow publication-title: J. Heat Transfer – volume: 67 start-page: 646 year: 2013 end-page: 653 ident: bib0042 article-title: Modelling and multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low concentration TiO2-water nanofluids in the turbulent flow regime publication-title: Int. J. Heat Mass Transf. – volume: 26 start-page: 473 year: 2002 end-page: 485 ident: bib0015 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm. Fluid Sci. – volume: 37 start-page: 1250 year: 2005 end-page: 1259 ident: bib0029 article-title: On-line building energy prediction using adaptive artificial neural networks publication-title: Energy Build. – year: 1960 ident: bib0087 article-title: Adaptive Switching Circuits – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib0092 article-title: Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning publication-title: Sci. Rep. – start-page: 2546 year: 2011 end-page: 2554 ident: bib0098 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 135 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0039 article-title: Heat transfer analysis using artificial neural networks of the spirally fluted tubes publication-title: J. Res. Appl. Mech. Eng. – volume: 52 start-page: 2311 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0057 article-title: Experimental study on condensation heat transfer inside a single circular minichannel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.11.013 – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0059 article-title: Heat transfer and flow regimes during condensation in horizontal tubes – volume: 102 start-page: 63 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0076 article-title: Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze (E) and R22 in minichannels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.03.073 – volume: 11 start-page: 3542 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0040 article-title: Artificial neural network analysis on the heat transfer and friction factor of the double tube with spring insert publication-title: Int. J. Appl. Eng. Res. – volume: 55 start-page: 971 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0008 article-title: Flow condensation in parallel micro-channels–part 1: experimental results and assessment of pressure drop correlations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.10.013 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0104 – start-page: 2546 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0098 article-title: Algorithms for hyper-parameter optimization – volume: 41 start-page: 1121 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0028 article-title: Optimization of a building's cooling plant for operating cost and energy use publication-title: Int. J. Therm. Sci. doi: 10.1016/S1290-0729(02)01398-4 – year: 1995 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0085 – volume: 39 start-page: 3659 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0091 article-title: Gradient boosting trees for auto insurance loss cost modeling and prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.058 – volume: 118 start-page: 1152 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0043 article-title: Artificial neural network analysis the pulsating Nusselt number and friction factor of TiO2/water nanofluids in the spirally coiled tube with magnetic field publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.091 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0056 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0079 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0096 – volume: 26 start-page: 473 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0015 article-title: A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(02)00162-0 – volume: 366 start-page: 95 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0035 article-title: Analysis of fin-tube evaporator performance with limited experimental data using artificial neural networks publication-title: ASME-Publications-HTD – year: 1995 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0088 – volume: 32 start-page: 1129 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0058 article-title: CO2 flow condensation heat transfer and pressure drop in multi-port microchannels at low temperatures publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.01.030 – volume: 49 start-page: 467 year: 1954 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0102 article-title: Spurious correlation: a causal interpretation publication-title: J. Am. Stat. Assoc. – start-page: 1189 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0094 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – start-page: 10 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0101 article-title: The accuracy of XGBoost for insurance claim prediction publication-title: Int. J. Adv. Soft Comput. Appl. – volume: 22 start-page: 547 year: 1979 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0011 article-title: A general correlation for heat transfer during film condensation inside pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(79)90058-9 – volume: 16 start-page: 1357 year: 1973 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0004 article-title: Study of the mechanism of burn-out in boiling system of high burn-out heat flux publication-title: Bull. JSME. doi: 10.1299/jsme1958.16.1357 – volume: 32 start-page: 913 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0031 article-title: Modelling a non-stationary single tube heat exchanger using multiple coupled local neural networks publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2004.08.029 – volume: 128 start-page: 825 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0046 article-title: Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.09.041 – volume: 47 start-page: 60 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0071 article-title: Heat transfer and pressure drop during condensation of R152a in circular and square microchannels publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2013.01.002 – volume: 26 start-page: 45 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0049 article-title: Condensation heat transfer and pressure gradient inside multiport minichannels publication-title: Heat Transf. Eng. doi: 10.1080/01457630590907194 – volume: 35 start-page: 1165 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0054 article-title: Experimental investigation of condensation of hydrocarbon refrigerants (R600a) in a horizontal smooth tube publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2008.07.012 – volume: 39 start-page: 2329 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0038 article-title: Evaluating convective heat transfer coefficients using neural networks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(95)00332-0 – volume: 10 start-page: 115 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0100 article-title: Comparison of several data mining methods in credit card default prediction publication-title: Intell. Inf. Manag. – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0045 – volume: 46 start-page: 3737 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0005 article-title: Heat transfer characteristics of spray cooling in a closed loop publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00217-5 – volume: 33 start-page: 1307 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0062 article-title: Heat transfer and pressure drop during condensation of the low GWP refrigerant R1234yf publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.020 – volume: 71 start-page: 187 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0033 article-title: Prediction of pressure drop using artificial neural network for non-Newtonian liquid flow through piping components publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2010.02.001 – volume: 36 start-page: 1657 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0072 article-title: Condensation heat transfer and pressure drop characteristics of CO2 in a microchannel publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2013.05.008 – year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0027 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0061 – year: 1993 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0047 article-title: Experimental evaluation of internal condensation of refrigerants R-134a and R-12 – volume: 27 start-page: 2043 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0002 article-title: Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios publication-title: Int. J. Multiph. Flow. doi: 10.1016/S0301-9322(01)00054-4 – start-page: 114 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0003 article-title: Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid publication-title: J. Heat Transf. (Transactions ASME (American Soc. Mech. Eng. Ser. C) – volume: 35 start-page: 442 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0066 article-title: Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2010.11.006 – volume: 26 start-page: 117 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0007 article-title: Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(02)00013-0 – volume: 15 start-page: 889 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0025 article-title: An improved and extended general correlation for heat transfer during condensation in plain tubes publication-title: Hvac&R Res. doi: 10.1080/10789669.2009.10390871 – year: 1994 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0006 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0050 – volume: 40 start-page: 139 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0089 article-title: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization publication-title: Mach. Learn. doi: 10.1023/A:1007607513941 – year: 1960 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0087 – volume: 56 start-page: 238 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0026 article-title: Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.09.032 – volume: 51 start-page: 12 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0073 article-title: Experimental two-phase heat transfer coefficient and frictional pressure drop inside mini-channels during condensation with R1234yf and R134a publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.11.014 – volume: 26 start-page: 830 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0082 article-title: Condensation heat transfer of R-22 and R-410A in flat aluminum multi-channel tubes with or without micro-fins publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(03)00049-5 – year: 1995 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0070 article-title: Condensation in extruded aluminum tubes publication-title: Penn State – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0078 – year: 1993 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0048 article-title: Initial Condensation Comparison of R-22 With R-134a and R-321R-125 – volume: 55 start-page: 958 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0018 article-title: Theoretical model for annular flow condensation in rectangular micro-channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.10.014 – volume: 33 start-page: 158 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0063 article-title: Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.09.008 – volume: 34 start-page: 2063 year: 1991 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0037 article-title: A neural network methodology for heat transfer data analysis publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(91)90217-3 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0093 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 23 start-page: 87 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0019 article-title: Effect of gravity during condensation of R134a in a circular minichannel publication-title: Microgravity Sci. Technol. doi: 10.1007/s12217-011-9275-4 – volume: 46 start-page: 4453 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0081 article-title: Local condensation heat transfer rates in fine passages publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00287-4 – start-page: 785 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0095 article-title: Xgboost: a scalable tree boosting system – volume: 35 start-page: 706 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0065 article-title: Condensation heat transfer characteristics of R-22, R-134a and R-410A in a single circular microtube publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2011.01.005 – start-page: 148 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0090 article-title: Experiments with a new boosting algorithm, in: Icml publication-title: Citeseer – volume: 44 start-page: 1671 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0032 article-title: Dynamic prediction and control of heat exchangers using artificial neural networks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00228-3 – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0052 – volume: 55 start-page: 187 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0067 article-title: Condensation heat transfer in square, triangular, and semi-circular mini-channels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.09.002 – start-page: 93 year: 1977 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0103 article-title: Spurious correlation: a causal interpretation – volume: 64 start-page: 976 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0069 article-title: Condensation heat transfer characteristics of R-134a flowing inside the multiport minichannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.04.020 – volume: 55 start-page: 984 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0077 article-title: Flow condensation in parallel micro-channels–part 2: heat transfer results and correlation technique publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.10.012 – start-page: 108 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0023 article-title: Review of computational studies on boiling and condensation publication-title: Int. J. Heat Mass Transf. – ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0053 doi: 10.1115/1.2345427 – volume: 60 start-page: 245 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0012 article-title: Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube publication-title: Trans. Jpn. Soc. Mech. Eng. – volume: 120 start-page: 193 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0013 article-title: Condensation in smooth horizontal tubes publication-title: J. Heat Transf. doi: 10.1115/1.2830043 – volume: 37 start-page: 1250 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0029 article-title: On-line building energy prediction using adaptive artificial neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.02.005 – volume: 147 start-page: 77 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0036 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.038 – volume: 25 start-page: 3176 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0030 article-title: Application of neural network for the modeling and control of evaporative condenser cooling load publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.04.006 – volume: 214 start-page: 242 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0086 article-title: Neural networks: An overview of early research, current frameworks and new challenges publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.014 – start-page: 100 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0097 – volume: 33 start-page: 1169 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0060 article-title: Measurement and modeling of condensation heat transfer in non-circular microchannels publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.12.033 – year: 2004 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0083 article-title: Condensation of CO2 at low temperatures – volume: 131 start-page: 329 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0044 article-title: ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.073 – volume: 13 start-page: 281 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0099 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 102 start-page: 86 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0075 article-title: Condensation heat transfer characteristics of R134a flowing inside mini circular and flattened tubes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.095 – volume: 35 start-page: 927 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0068 article-title: Experimental study on condensation heat transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32 and R410A publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.01.002 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0084 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 485 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0001 article-title: Small circular-and rectangular-channel boiling with two refrigerants publication-title: Int. J. Multiph. Flow. doi: 10.1016/0301-9322(96)00002-X – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0092 article-title: Exploring the clinical features of narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network database with machine learning publication-title: Sci. Rep. – volume: 84 start-page: 11 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0041 article-title: Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.03.014 – volume: 35 start-page: 270 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0064 article-title: In-tube condensation heat transfer of CO2 at low temperatures in a horizontal smooth tube publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2011.10.015 – volume: 120 start-page: 410 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0014 article-title: A new equivalent Reynolds number model for condensation in smooth tubes publication-title: J. Heat Transf. doi: 10.1115/1.2824265 – volume: 65 start-page: 62 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0020 article-title: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.05.044 – volume: 130 start-page: 21501 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0024 article-title: Direct numerical simulation of condensing stratified flow publication-title: J. Heat Transfer doi: 10.1115/1.2789723 – volume: 67 start-page: 646 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0042 article-title: Modelling and multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low concentration TiO2-water nanofluids in the turbulent flow regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.08.013 – volume: 54 start-page: 1963 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0017 article-title: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.01.005 – volume: 104 start-page: 718 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0074 article-title: Condensation heat transfer of low GWP ORC working fluids in a horizontal smooth tube publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.090 – volume: 26 start-page: 425 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0016 article-title: An experimental study on condensation of refrigerant R134a in a multi-port extruded tube publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(02)00155-X – volume: 69 start-page: 464 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0022 article-title: Numerical simulation of condensation for R410A at varying saturation temperatures in mini/micro tubes publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2015.1081029 – start-page: 633 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0051 article-title: An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels – volume: 76 start-page: 60 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0021 article-title: Simulation of condensation flow in a rectangular microchannel publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2013.12.004 – start-page: 131 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0055 article-title: Condensation heat transfer of carbon dioxide inside horizontal smooth and microfin tubes at low temperatures publication-title: J. Heat Transf. – volume: 42 start-page: 993 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0080 article-title: Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(98)00217-8 – volume: 56 start-page: 145 year: 1960 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0009 article-title: Condensation inside horizontal tubes publication-title: Chem. Engg. Prog. Symp. Ser. – volume: 3 start-page: 309 year: 1974 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0010 article-title: A dimensionless correlation for heat transfer in forced convection condensation publication-title: Proc. Sixth Int. Heat Transf. Conf. doi: 10.1615/IHTC5.1220 – volume: 5 start-page: 195 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2020.120351_bib0034 article-title: Simulation of heat exchanger performance by artificial neural networks publication-title: HVAC&R Res. doi: 10.1080/10789669.1999.10391233 |
| SSID | ssj0017046 |
| Score | 2.6483755 |
| Snippet | •A large database for flow condensation heat transfer in mini/micro-channels is amassed.•Four machine learning algorithms are developed: ANN, AdaBoost, Random... Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for designing a compact heat rejection device. However,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120351 |
| SubjectTerms | Algorithms Computational fluid dynamics Condensation Condensers (liquefiers) Data points Fluid flow Gradient boosted trees Heat transfer Heat transfer coefficients Machine learning Mathematical models Microchannels Model accuracy Neural networks Optimization Reynolds number Working fluids |
| Title | Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120351 https://www.proquest.com/docview/2456877824 |
| Volume | 162 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iKF7EJ77JwYOXupsm2yYnkUVZXfQgit5CmqbapdtddiuCB8F_7kwfiooHwVPpM0Nm-s2E-WZCyAFLjJOBYZ50kfGE8I2njOp4XEnHjVHgMrHA-fIq6N2Ki_vO_QzpNrUwSKussb_C9BKt6yutejZb4zTFGl80LoapNA5xP1aUCxHiLgZHrx80Dxa2q2IdRGN8eoEcfnK80gEi3hDC1KIMEx12CPWx5QIm2H5zVd9Au_REZ8tkqQ4h6Ukl5QqZcfkqmS-pnHa6Rt4uS36ko_WGEA_UZA-jSVo8Dqe0GNHxBHMzBU2y0TOF1TAAT8XooSglbUSEW65sLwFeiaY5xR4krSHS9zwsFs5dRsFms_QFR3iq6B0gFTJO18nt2elNt-fVGy14loftwgOnHUfSdmTQTixTVjoVA1Ranwcxc8wKZ2DVKBm3IomsUNzGkW-59QMuopgZvkFm81HuNgkNk1BFEEeBZiCyiYR0YSxCYdpGMeEzu0WOmznVtu5CjpthZLqhmw30T61o1IqutLJF1McXxlVHjj-8223UqL9YmQYH8oev7DYWoOs_fqoxgQxGKH2x_S-D7JBFPKuYM7tktpg8uT2If4povzTwfTJ3ct7vXeGxf33XfweALQ4K |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RrVq4oNKHgC6tDxx6SXcdexP7hKoVaNuynEDiZjmOQ4Oy2dVuEBIHJP45M3lQAeoBqdc4sUeeyTdjzTdjgH2eWa8iywPlExtIGdpAWz0KhFZeWKvRZVKB8_QkmpzJX-ej8zUYd7UwRKtssb_B9Bqt2yeDdjcHizynGl8yLk6pNIFxf_wKXstRGNMJ7PvtA8-Dx8OmWofgmF5_C9_-krzyS4K8GcapVR0nemoRGlLPBcqw_ctXPUHt2hUdvYPNNoZkPxoxt2DNl-_hTc3ldKsPcDetCZKetTdCXDBbXMyXefVntmLVnC2WlJypWFbMrxkehxF5GkoPIylZJyIO-bq_BLollpeMmpAMZsTfC6hauPQFQ6Mt8hta4arhd6BURDn9CGdHh6fjSdDetBA4EQ-rAL12mig3UtEwc1w75XWKWOlCEaXccye9xWOj4sLJLHFSC5cmoRMujIRMUm7FJ-iV89JvA4uzWCcYSKFqMLRJpPJxKmNph1ZzGXK3AwfdnhrXtiGn2zAK0_HNLs1zrRjSimm0sgP6YYZF05LjBd-OOzWaR2Zm0IO8YJZ-ZwGm_eVXhjLIaIUqlLv_ZZGvsD45nR6b458nvz_DBo00NJo-9Krlld_DYKhKvtTGfg8rdA38 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+predict+flow+condensation+heat+transfer+coefficient+in+mini%2Fmicro-channel+utilizing+universal+data&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhou%2C+Liwei&rft.au=Garg%2C+Deepak&rft.au=Qiu%2C+Yue&rft.au=Kim%2C+Sung-Min&rft.date=2020-12-01&rft.issn=0017-9310&rft.volume=162&rft.spage=120351&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.120351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2020_120351 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |