ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS

This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we pro...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 35; no. 5; pp. 955 - 969
Main Author 冯跃红 王术 李新
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
Laboratoire de Mathématiques, Université Blaise Pascal, Clermont-Ferrand, 63000, France%College of Applied Sciences, Beijing University of Technology, Beijing 100022, China%Department of Mathematics and Computer Science, Xinyang Vocational and Technical College,Xinyang 464000, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(15)30030-8

Cover

Abstract This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
AbstractList This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in ℝ3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ‖.‖Hs-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ‖.‖Hs-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
Author 冯跃红 王术 李新
AuthorAffiliation College of Applied Sciences, Beijing University of Technology, Beijing 100022, ChinaLaboratoire de Mathdmatiques, Universitd Blaise Pascal, Clermont-Ferrand, 63000, France College of Applied Sciences, Beijing University of Technology, Beijing 100022, China Department of Mathematics and Computer Science, Xinyang Vocational and Technical College, Xinyang 464000, China
AuthorAffiliation_xml – name: College of Applied Sciences, Beijing University of Technology, Beijing 100022, China;Laboratoire de Mathématiques, Université Blaise Pascal, Clermont-Ferrand, 63000, France%College of Applied Sciences, Beijing University of Technology, Beijing 100022, China%Department of Mathematics and Computer Science, Xinyang Vocational and Technical College,Xinyang 464000, China
Author_xml – sequence: 1
  fullname: 冯跃红 王术 李新
BookMark eNqFkE1v1DAQhi1UJLaFn4BkcaKHgD_ixBEHlF1luxFOvYpToCfL6zjF1ZLQJNDy73G7hQOXnkbyvM_M-DkGR_3QOwBeY_QOI5y8V4gwEmUJIm8xO6UIURTxZ2CBWRqeEU-PwOJf5AU4nqZrFDiSxAtwk6vLatvIplzBZbHJP5eyhnINz4Rc5gKqSspmA5UUF00pzxVch_ay3EqR13Alq21dKFUuRQHPA1rUkWrkp0JFVf71SyECf6maooLrWlZwK3JV5eoleN6Z_eRePdYTcLEumtUmEvKsXOUisjRFc5S21GQdNjjbpbjjjqEUxxSTlsSxtdxw2mXIJhxnjiPsYoNaZnekSxPsCN5ZegJOD3NvTd-Z_kpfDz_HPmzU093t_m6nHUGYIRZUhCw7ZO04TNPoOv1j9N_N-FtjpO8d6wfH-l6gxkw_ONY8cB_-46yfzeyHfh6N3z9JfzzQLmj45d2oJ-tdb13rR2dn3Q7-yQlvHvd_G_qrGx9--ffwJEkIoowT-gcgwZmi
CitedBy_id crossref_primary_10_1007_s00332_017_9435_9
crossref_primary_10_1016_S0252_9602_18_30770_7
crossref_primary_10_1007_s00021_021_00560_8
Cites_doi 10.1016/j.nonrwa.2014.03.004
10.1142/S0219530512500078
10.1016/j.jmaa.2011.01.065
10.1137/100786927
10.1137/100806515
10.1142/S0219891611002421
10.1137/070686056
10.1016/j.anihpc.2012.04.002
10.1137/100812768
10.1142/S0218202514500390
10.24033/asens.2219
10.1016/j.jcp.2011.11.011
10.1002/cpa.3160340405
10.1137/120875855
10.1016/j.amc.2013.12.183
10.1137/110838406
10.3934/dcds.2009.23.415
10.1215/kjm/1250522322
10.1080/03605300701318989
10.1080/00411450008205877
10.1007/978-3-0348-8334-4
10.1007/BF00280740
10.3792/pjaa.55.337
ContentType Journal Article
Copyright 2015 Wuhan Institute of Physics and Mathematics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2015 Wuhan Institute of Physics and Mathematics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S0252-9602(15)30030-8
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
DocumentTitleAlternate ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS
EISSN 1572-9087
EndPage 969
ExternalDocumentID sxwlxb_e201505001
10_1016_S0252_9602_15_30030_8
S0252960215300308
666203582
GrantInformation_xml – fundername: Collaborative Innovation Center on Beijing Society-building and Social Governance, NSFC
  grantid: 11371042; 1132006
– fundername: BNSF
– fundername: The authors are supported by the Collaborative Innovation Center on Beijing Society-building and Social Governance,NSFC; BNSF; the key fund of the Beijing education committee of China and China Postdoctoral Science Foundation funded project
  funderid: (11371042); (1132006); the key fund of the Beijing education committee of China and China Postdoctoral Science Foundation funded project
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
23M
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABAOU
ABECU
ABFGW
ABFNM
ABFTV
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABYKQ
ACAOD
ACAZW
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADTPH
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIGVJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ARUGR
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CSCUP
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNLPD
FNPLU
FYGXN
GBLVA
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J1W
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
ROL
RSV
RT1
S..
SDC
SDF
SDG
SDH
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SSW
SSZ
T5K
T8Q
TCJ
TGP
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~G-
~L9
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AATTM
AAXKI
AAYWO
AAYXX
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABRTQ
ABWVN
ACDTI
ACLOT
ACPIV
ACRPL
ACSTC
ACVFH
ADCNI
ADNMO
AEFQL
AEIPS
AEMSY
AEUPX
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIGIU
AIIUN
AIXLP
AKBMS
AKRWK
AKYEP
ANKPU
ATHPR
AYFIA
CITATION
EFKBS
HG6
SJYHP
~HD
4A8
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c370t-7d3a9f1a19b71f8e50714312d244cc8a83f90c6819e801e4a0d5cb2f761e21bc3
IEDL.DBID .~1
ISSN 0252-9602
IngestDate Thu May 29 04:00:08 EDT 2025
Wed Oct 01 03:09:10 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:25:03 EST 2024
Wed Feb 14 10:28:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords energy estimates
plasmas
35L60
35L45
global smooth solutions
35Q60
bipolar compressible Navier-Stokes-Maxwell system
large-time behavior
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-7d3a9f1a19b71f8e50714312d244cc8a83f90c6819e801e4a0d5cb2f761e21bc3
Notes Yuehong FENG, Shu WANG, Xin LI(1.College of Applied Sciences, Beijing University of Technology, Beijing 100022, China Laboratoire de Mathematiques, Universite Blaise Pascal, Clermont-Ferrand, 63000, France;2. College of Applied Sciences, Beijing University of Technology, Beijing 100022, China;3. Department of Mathematics and Computer Science, Xinyang Vocational and Technical College, Xinyang 464000, China)
42-1227/O
bipolar compressible Navier-Stokes-Maxwell system; plasmas; global smooth solutions; energy estimates; large-time behavior
This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
PageCount 15
ParticipantIDs wanfang_journals_sxwlxb_e201505001
crossref_primary_10_1016_S0252_9602_15_30030_8
crossref_citationtrail_10_1016_S0252_9602_15_30030_8
elsevier_sciencedirect_doi_10_1016_S0252_9602_15_30030_8
chongqing_primary_666203582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Acta mathematica scientia
PublicationTitleAlternate Acta Mathematica Scientia
PublicationTitle_FL Acta Mathematica Scientia
PublicationYear 2015
Publisher Elsevier Ltd
College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
Laboratoire de Mathématiques, Université Blaise Pascal, Clermont-Ferrand, 63000, France%College of Applied Sciences, Beijing University of Technology, Beijing 100022, China%Department of Mathematics and Computer Science, Xinyang Vocational and Technical College,Xinyang 464000, China
Publisher_xml – name: Elsevier Ltd
– name: College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
– name: Laboratoire de Mathématiques, Université Blaise Pascal, Clermont-Ferrand, 63000, France%College of Applied Sciences, Beijing University of Technology, Beijing 100022, China%Department of Mathematics and Computer Science, Xinyang Vocational and Technical College,Xinyang 464000, China
References Wang, Feng, Li (bib28) 2014; 231
Chen, Jerome, Wang (bib2) 2000; 29
Duan (bib5) 2012; 10
Klainerman, Majda (bib12) 1981; 34
Chen (bib1) 1984; Vol 1
Duan, Liu, Zhu (bib6) 2012; 44
Duan (bib4) 2011; 8
Rishbeth, Garriott (bib23) 1969
Majda (bib13) 1984
Peng, Wang (bib19) 2008; 33
Germain, Masmoudi (bib9) 2014; 47
Kato (bib11) 1975; 58
Xu (bib29) 2011; 43
Feng, Wang, Kawashima (bib8) 2014; 24
Degond, Deluzet, Savelief (bib3) 2012; 231
Yang, Wang (bib30) 2011; 380
Peng (bib18) 2012; 29
Nishida T. Nonlinear hyperbolic equations and related topics in fluids dynamics. Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978: 78-02
Stein (bib24) 1970
Wang, Feng, Li (bib27) 2012; 44
Feng, Peng, Wang (bib7) 2014; 19
Markowich, Ringhofer, Schmeiser (bib16) 1990
Ueda, Kawashima (bib25) 2011; 18
Peng, Wang (bib21) 2009; 23
Ueda, Wang, Kawashima (bib26) 2012; 44
Jüngel A. Quasi-Hydrodynamic Semiconductor Equations. Birkhäuser, 2001
Matsumura, Nishida (bib14) 1979; 55
Matsumura, Nishida (bib15) 1980; 20
Peng, Wang, Gu (bib22) 2011; 43
Peng, Wang (bib20) 2008; 40
Peng (10.1016/S0252-9602(15)30030-8_bib19) 2008; 33
Feng (10.1016/S0252-9602(15)30030-8_bib7) 2014; 19
Yang (10.1016/S0252-9602(15)30030-8_bib30) 2011; 380
Peng (10.1016/S0252-9602(15)30030-8_bib18) 2012; 29
Wang (10.1016/S0252-9602(15)30030-8_bib28) 2014; 231
Xu (10.1016/S0252-9602(15)30030-8_bib29) 2011; 43
Feng (10.1016/S0252-9602(15)30030-8_bib8) 2014; 24
Majda (10.1016/S0252-9602(15)30030-8_bib13) 1984
Markowich (10.1016/S0252-9602(15)30030-8_bib16) 1990
Matsumura (10.1016/S0252-9602(15)30030-8_bib15) 1980; 20
Duan (10.1016/S0252-9602(15)30030-8_bib5) 2012; 10
Rishbeth (10.1016/S0252-9602(15)30030-8_bib23) 1969
Degond (10.1016/S0252-9602(15)30030-8_bib3) 2012; 231
Duan (10.1016/S0252-9602(15)30030-8_bib4) 2011; 8
Duan (10.1016/S0252-9602(15)30030-8_bib6) 2012; 44
10.1016/S0252-9602(15)30030-8_bib17
Peng (10.1016/S0252-9602(15)30030-8_bib21) 2009; 23
Chen (10.1016/S0252-9602(15)30030-8_bib2) 2000; 29
10.1016/S0252-9602(15)30030-8_bib10
Klainerman (10.1016/S0252-9602(15)30030-8_bib12) 1981; 34
Germain (10.1016/S0252-9602(15)30030-8_bib9) 2014; 47
Chen (10.1016/S0252-9602(15)30030-8_bib1) 1984; Vol 1
Kato (10.1016/S0252-9602(15)30030-8_bib11) 1975; 58
Wang (10.1016/S0252-9602(15)30030-8_bib27) 2012; 44
Ueda (10.1016/S0252-9602(15)30030-8_bib25) 2011; 18
Peng (10.1016/S0252-9602(15)30030-8_bib20) 2008; 40
Matsumura (10.1016/S0252-9602(15)30030-8_bib14) 1979; 55
Peng (10.1016/S0252-9602(15)30030-8_bib22) 2011; 43
Stein (10.1016/S0252-9602(15)30030-8_bib24) 1970
Ueda (10.1016/S0252-9602(15)30030-8_bib26) 2012; 44
References_xml – volume: 8
  start-page: 375
  year: 2011
  end-page: 413
  ident: bib4
  article-title: Global smooth flows for the compressible Euler-Maxwell system:relaxation case
  publication-title: J Hyperbolic Differential Equations
– volume: 24
  start-page: 2851
  year: 2014
  end-page: 2884
  ident: bib8
  article-title: Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
  publication-title: Math Mod Meth Appl Sci
– volume: 20
  start-page: 67
  year: 1980
  end-page: 104
  ident: bib15
  article-title: The initial value problem for the equation of motion of viscous and heat-conductive gases
  publication-title: J Math Kyoto Univ
– volume: 55
  start-page: 337
  year: 1979
  end-page: 342
  ident: bib14
  article-title: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids
  publication-title: Proc Japan Acad, Ser A
– volume: 34
  start-page: 481
  year: 1981
  end-page: 524
  ident: bib12
  article-title: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids
  publication-title: Comm Pure Appl Math
– year: 1970
  ident: bib24
  publication-title: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series
– volume: 43
  start-page: 2688
  year: 2011
  end-page: 2718
  ident: bib29
  article-title: Global classical solutions to the compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
– year: 1969
  ident: bib23
  publication-title: Introduction to Ionospheric Physics
– volume: 29
  start-page: 311
  year: 2000
  end-page: 331
  ident: bib2
  article-title: Compressible Euler-Maxwell equations
  publication-title: Transport Theory and Statistical Physics
– volume: 23
  start-page: 415
  year: 2009
  end-page: 433
  ident: bib21
  article-title: Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters
  publication-title: Discrete Contin Dyn Syst
– year: 1984
  ident: bib13
  publication-title: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
– volume: 380
  start-page: 343
  year: 2011
  end-page: 353
  ident: bib30
  article-title: The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
  publication-title: J Math Anal Appl
– reference: Nishida T. Nonlinear hyperbolic equations and related topics in fluids dynamics. Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978: 78-02
– year: 1990
  ident: bib16
  publication-title: Semiconductor Equations
– volume: 231
  start-page: 1917
  year: 2012
  end-page: 1946
  ident: bib3
  article-title: Numerical approximation of the Euler-Maxwell model in the quasineutral limit
  publication-title: J Comput Phys
– volume: 10
  start-page: 133
  year: 2012
  end-page: 197
  ident: bib5
  article-title: Green's function and large time behavior of the Navier-Stokes-Maxwell system
  publication-title: Anal Appl
– volume: 44
  start-page: 3429
  year: 2012
  end-page: 3457
  ident: bib27
  article-title: The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasm
  publication-title: SIAM J Math Anal
– volume: 18
  start-page: 215
  year: 2011
  end-page: 268
  ident: bib25
  article-title: Decay property of regularity-loss type for the Euler-Maxwell system
  publication-title: Methods Appl Anal
– volume: 44
  start-page: 102
  year: 2012
  end-page: 133
  ident: bib6
  article-title: The Cauchy problem on the compressible two-fluids Euler-Maxwell equations
  publication-title: SIAM J Math Anal
– volume: 47
  start-page: 469
  year: 2014
  end-page: 503
  ident: bib9
  article-title: Global existence for the Euler-Maxwell system
  publication-title: Ann Sci Ecole Norm S
– volume: 29
  start-page: 737
  year: 2012
  end-page: 759
  ident: bib18
  article-title: Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations
  publication-title: Ann I H Poincare-AN
– reference: Jüngel A. Quasi-Hydrodynamic Semiconductor Equations. Birkhäuser, 2001
– volume: 40
  start-page: 540
  year: 2008
  end-page: 565
  ident: bib20
  article-title: Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
– volume: 43
  start-page: 944
  year: 2011
  end-page: 970
  ident: bib22
  article-title: Relaxation limit and global existence of smooth solution of compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
– volume: 19
  start-page: 105
  year: 2014
  end-page: 116
  ident: bib7
  article-title: Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations
  publication-title: Nonlinear Anal Real
– volume: 231
  start-page: 299
  year: 2014
  end-page: 306
  ident: bib28
  article-title: The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas
  publication-title: Appl Math Comput
– volume: 58
  start-page: 181
  year: 1975
  end-page: 205
  ident: bib11
  article-title: The Cauchy problem for quasi-linear symmetric hyperbolic systems
  publication-title: Arch Ration Mech Anal
– volume: Vol 1
  year: 1984
  ident: bib1
  publication-title: Introduction to Plasma Physics and Controlled Fusion
– volume: 33
  start-page: 349
  year: 2008
  end-page: 376
  ident: bib19
  article-title: Convergence of compressible Euler-Maxwell equations to incompressible Euler equations
  publication-title: Comm Part Diff Equations
– volume: 44
  start-page: 2002
  year: 2012
  end-page: 2017
  ident: bib26
  article-title: Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system
  publication-title: SIAM J Math Anal
– volume: 19
  start-page: 105
  year: 2014
  ident: 10.1016/S0252-9602(15)30030-8_bib7
  article-title: Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations
  publication-title: Nonlinear Anal Real
  doi: 10.1016/j.nonrwa.2014.03.004
– volume: 10
  start-page: 133
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib5
  article-title: Green's function and large time behavior of the Navier-Stokes-Maxwell system
  publication-title: Anal Appl
  doi: 10.1142/S0219530512500078
– year: 1969
  ident: 10.1016/S0252-9602(15)30030-8_bib23
– ident: 10.1016/S0252-9602(15)30030-8_bib17
– volume: 380
  start-page: 343
  year: 2011
  ident: 10.1016/S0252-9602(15)30030-8_bib30
  article-title: The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.01.065
– year: 1990
  ident: 10.1016/S0252-9602(15)30030-8_bib16
– volume: Vol 1
  year: 1984
  ident: 10.1016/S0252-9602(15)30030-8_bib1
– volume: 43
  start-page: 944
  year: 2011
  ident: 10.1016/S0252-9602(15)30030-8_bib22
  article-title: Relaxation limit and global existence of smooth solution of compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
  doi: 10.1137/100786927
– volume: 44
  start-page: 2002
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib26
  article-title: Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system
  publication-title: SIAM J Math Anal
  doi: 10.1137/100806515
– volume: 8
  start-page: 375
  year: 2011
  ident: 10.1016/S0252-9602(15)30030-8_bib4
  article-title: Global smooth flows for the compressible Euler-Maxwell system:relaxation case
  publication-title: J Hyperbolic Differential Equations
  doi: 10.1142/S0219891611002421
– volume: 40
  start-page: 540
  year: 2008
  ident: 10.1016/S0252-9602(15)30030-8_bib20
  article-title: Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
  doi: 10.1137/070686056
– volume: 29
  start-page: 737
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib18
  article-title: Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations
  publication-title: Ann I H Poincare-AN
  doi: 10.1016/j.anihpc.2012.04.002
– year: 1984
  ident: 10.1016/S0252-9602(15)30030-8_bib13
– volume: 43
  start-page: 2688
  year: 2011
  ident: 10.1016/S0252-9602(15)30030-8_bib29
  article-title: Global classical solutions to the compressible Euler-Maxwell equations
  publication-title: SIAM J Math Anal
  doi: 10.1137/100812768
– volume: 24
  start-page: 2851
  year: 2014
  ident: 10.1016/S0252-9602(15)30030-8_bib8
  article-title: Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system
  publication-title: Math Mod Meth Appl Sci
  doi: 10.1142/S0218202514500390
– volume: 47
  start-page: 469
  issue: 3
  year: 2014
  ident: 10.1016/S0252-9602(15)30030-8_bib9
  article-title: Global existence for the Euler-Maxwell system
  publication-title: Ann Sci Ecole Norm S
  doi: 10.24033/asens.2219
– volume: 231
  start-page: 1917
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib3
  article-title: Numerical approximation of the Euler-Maxwell model in the quasineutral limit
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2011.11.011
– volume: 34
  start-page: 481
  year: 1981
  ident: 10.1016/S0252-9602(15)30030-8_bib12
  article-title: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids
  publication-title: Comm Pure Appl Math
  doi: 10.1002/cpa.3160340405
– volume: 44
  start-page: 3429
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib27
  article-title: The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasm
  publication-title: SIAM J Math Anal
  doi: 10.1137/120875855
– volume: 231
  start-page: 299
  year: 2014
  ident: 10.1016/S0252-9602(15)30030-8_bib28
  article-title: The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.12.183
– volume: 44
  start-page: 102
  year: 2012
  ident: 10.1016/S0252-9602(15)30030-8_bib6
  article-title: The Cauchy problem on the compressible two-fluids Euler-Maxwell equations
  publication-title: SIAM J Math Anal
  doi: 10.1137/110838406
– volume: 23
  start-page: 415
  year: 2009
  ident: 10.1016/S0252-9602(15)30030-8_bib21
  article-title: Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters
  publication-title: Discrete Contin Dyn Syst
  doi: 10.3934/dcds.2009.23.415
– volume: 20
  start-page: 67
  year: 1980
  ident: 10.1016/S0252-9602(15)30030-8_bib15
  article-title: The initial value problem for the equation of motion of viscous and heat-conductive gases
  publication-title: J Math Kyoto Univ
  doi: 10.1215/kjm/1250522322
– volume: 18
  start-page: 215
  year: 2011
  ident: 10.1016/S0252-9602(15)30030-8_bib25
  article-title: Decay property of regularity-loss type for the Euler-Maxwell system
  publication-title: Methods Appl Anal
– volume: 33
  start-page: 349
  year: 2008
  ident: 10.1016/S0252-9602(15)30030-8_bib19
  article-title: Convergence of compressible Euler-Maxwell equations to incompressible Euler equations
  publication-title: Comm Part Diff Equations
  doi: 10.1080/03605300701318989
– volume: 29
  start-page: 311
  year: 2000
  ident: 10.1016/S0252-9602(15)30030-8_bib2
  article-title: Compressible Euler-Maxwell equations
  publication-title: Transport Theory and Statistical Physics
  doi: 10.1080/00411450008205877
– ident: 10.1016/S0252-9602(15)30030-8_bib10
  doi: 10.1007/978-3-0348-8334-4
– volume: 58
  start-page: 181
  year: 1975
  ident: 10.1016/S0252-9602(15)30030-8_bib11
  article-title: The Cauchy problem for quasi-linear symmetric hyperbolic systems
  publication-title: Arch Ration Mech Anal
  doi: 10.1007/BF00280740
– volume: 55
  start-page: 337
  year: 1979
  ident: 10.1016/S0252-9602(15)30030-8_bib14
  article-title: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids
  publication-title: Proc Japan Acad, Ser A
  doi: 10.3792/pjaa.55.337
– year: 1970
  ident: 10.1016/S0252-9602(15)30030-8_bib24
SSID ssj0016264
Score 2.0126514
Snippet This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and...
SourceID wanfang
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 955
SubjectTerms 35L45
35L60
35Q60
bipolar compressible Navier-Stokes-Maxwell system
energy estimates
global smooth solutions
large-time behavior
l系统
Navier-Stokes
plasmas
双极性
可压缩
平衡态
整体光滑解
渐近行为
等离子体
Title ASYMPTOTIC BEHAVIOR OF GLOBAL SMOOTH SOLUTIONS FOR BIPOLAR COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM FROM PLASMAS
URI http://lib.cqvip.com/qk/86464X/201505/666203582.html
https://dx.doi.org/10.1016/S0252-9602(15)30030-8
https://d.wanfangdata.com.cn/periodical/sxwlxb-e201505001
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: .~1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1572-9087
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016264
  issn: 0252-9602
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWqokpwKFBAbFsqC3GAg7uOk2yyx1VFtYC6l1KpN8t27LJiN0mbVF0ufHtnHCeFA6rEMZY9sTxjzxtr5pmQD05PVaycYgqCAwxQCpYnjjMjLHc85Q46YLbFYjK_SL5eppdb5KSvhcG0ynD2d2e6P61Dyzis5rheLsfn4K0F4G_wWbFnXcEK9iTDVwyOfw9pHhEAdk8hBZ0Z9n6o4ukk-MaPUfrJC2E5ciz8qMqra_Ac__JVO3eqdKq8-sMTnb4guwFC0lk3y5dky5Z75HmAkzRs1maPPDsbKFnha8fneprmFbmeNb_WdVtBO-2r9GnlaMcNQpt1Bdqjg01SgLVUL2uMgSlmoPvMWb2ydKFwouy8rX7ahp2pDV4E0o4bmmLdCq0Bm69V85pcnH7-fjJn4eUFZuKMtywrYjV1kYqmOotcbhE0AtIQBYABY3KVx27KzQTQhAUPZxPFi9Ro4bJJZEWkTfyGbJdVad8SGifcQdAmOG5Hw7kCHU0KHRWiiOEv6YgcDOst645hQ0JMJTjW8I5I0mtAmkBajm9nrORDdhooUaISZZRKr0SZj8jxMKyX-ciAvFev_Mv8JHiWx4a-D-Ygw_ZvZLO5W220tALvk1Kwwv3_l39AnqKYLq_tkGy3N7f2HQChVh95Sz8iT2Zfvs0X9zEOAZY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKUQUceBQQS3lYiAMc3LWdZJM9VhXVAt29tJV6sxzHblfsJikJ6nLhtzPjOCkcUCWOseyJ5Rl7vrFmPhPy3uVTHWmnmYbgAAOUgmWx48xIyx1PuIMOmG2xmMzO4i_nyfkWOexrYTCtMpz93ZnuT-vQMg6rOa6Xy_EJeGsJ-Bt8VuRZV-6Qu3EiU4zA9n8NeR4CELvnkILeDLvflPF0InzjB5F89FJYhiQLl1V5cQWu41_Oaudal06XF3-4oqPH5GHAkPSgm-YTsmXLXfIo4EkadmuzSx7MB05W-NrxyZ6meUquDpqf67qtoJ32Zfq0crQjB6HNugL10cEoKeBami9rDIIppqD71Nl8ZelC40TZSVt9sw2b6w3eBNKOHJpi4QqtAZyvdfOMnB19Oj2csfD0AjNRyluWFpGeOqHFNE-FyyyiRoAasgA0YEyms8hNuZkAnLDg4myseZGYXLp0IqwUuYmek-2yKu0LQqOYO4jaJMf9aDjXcZxOilwUsojgL8mI7A3rreqOYkNBUCU5FvGOSNxrQJnAWo6PZ6zUTXoaKFGhEpVIlFeiykZkfxjWy7xlQNarV_1lfwpcy21D3wVzUGH_N6rZXK82ubISL5QSsMKX_y__Lbk3O50fq-PPi6975D6K7JLcXpHt9vsP-xpQUZu_8Vb_Gxt-Ays
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASYMPTOTIC+BEHAVIOR+OF+GLOBAL+SMOOTH+SOLUTIONS+FOR+BIPOLAR+COMPRESSIBLE+NAVIER-STOKES-MAXWELL+SYSTEM+FROM+PLASMAS&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%89%A9%E7%90%86%E5%AD%A6%E6%8A%A5%EF%BC%9AB%E8%BE%91%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%86%AF%E8%B7%83%E7%BA%A2+%E7%8E%8B%E6%9C%AF+%E6%9D%8E%E6%96%B0&rft.date=2015-09-01&rft.issn=0252-9602&rft.eissn=1572-9087&rft.issue=5&rft.spage=955&rft.epage=969&rft_id=info:doi/10.1016%2FS0252-9602%2815%2930030-8&rft.externalDocID=666203582
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86464X%2F86464X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsxwlxb-e%2Fsxwlxb-e.jpg