Multi-channel EEG epileptic spike detection by a new method of tensor decomposition
Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see wh...
Saved in:
| Published in | Journal of neural engineering Vol. 17; no. 1; pp. 16023 - 16041 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
06.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/ab5247 |
Cover
| Abstract | Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. Approach. In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. Main results. We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. Significance. Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets. |
|---|---|
| AbstractList | Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.
In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT.
We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy.
Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets. Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. Approach. In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. Main results. We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. Significance. Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.OBJECTIVEEpilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT.APPROACHIn this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT.We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy.MAIN RESULTSWe propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy.Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.SIGNIFICANCEOur method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets. |
| Author | Trung, Nguyen Linh Dao, Nguyen Thi Anh Dung, Nguyen Viet Thanh, Le Trung Abed-Meraim, Karim |
| Author_xml | – sequence: 1 givenname: Le Trung surname: Thanh fullname: Thanh, Le Trung email: linhtrung@vnu.edu.vn organization: VNU University of Engineering and Technology Advanced Institute of Engineering and Technology (AVITECH), Vietnam National University, Hanoi, Vietnam – sequence: 2 givenname: Nguyen Thi Anh surname: Dao fullname: Dao, Nguyen Thi Anh organization: University of Technology and Logistics , Bac Ninh, Vietnam – sequence: 3 givenname: Nguyen Viet surname: Dung fullname: Dung, Nguyen Viet organization: UMR6285 CNRS ENSTA Bretagne , Brest, France – sequence: 4 givenname: Nguyen Linh orcidid: 0000-0002-3103-994X surname: Trung fullname: Trung, Nguyen Linh organization: Author to whom any correspondence should be addressed – sequence: 5 givenname: Karim surname: Abed-Meraim fullname: Abed-Meraim, Karim organization: University of Orléans , Orléans, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31905174$$D View this record in MEDLINE/PubMed https://hal.science/hal-02493777$$DView record in HAL |
| BookMark | eNp9kUtLxDAURoMoPkb3riRLBat5tM10KTI6wogLdR3S9JaJtkltUsV_b0p1FoKuEm7OdwnnO0Db1llA6JiSC0rm80sqUpqwLGOXqsxYKrbQ_ma0vbnnZA8deP9CCKeiILtoj9OCZPF1Hz3eD00wiV4ra6HBi8Uths400AWjse_MK-AKAuhgnMXlJ1bYwgduIaxdhV2NA1jv-sho13bOm5E7RDu1ajwcfZ8z9HyzeLpeJquH27vrq1WiuSAhERpyweYAmuQlcAJlpgRlNStYXmUFTatcxL_rmolUQZmmRcUqQlhNc16CyvgMnU1716qRXW9a1X9Kp4xcXq3kOCMsLbgQ4p1G9nRiu969DeCDbI3X0DTKghu8ZJynUaDgJKIn3-hQtlBtNv9IiwCZAN0773uoNwglcuxFjuLlWIKceomR_FdEm6BGWaFXpvkveD4Fjevkixt6G43-jX8B-Ryc6w |
| CODEN | JNEIEZ |
| CitedBy_id | crossref_primary_10_1016_j_artmed_2023_102750 crossref_primary_10_3389_fnins_2023_1150668 crossref_primary_10_1088_1361_6579_ace510 crossref_primary_10_1109_TNSRE_2022_3179255 crossref_primary_10_1016_j_jneumeth_2021_109182 crossref_primary_10_1016_j_patter_2023_100759 crossref_primary_10_1109_TCSII_2022_3151486 crossref_primary_10_1109_TNSRE_2023_3277867 crossref_primary_10_1007_s11071_022_08118_7 crossref_primary_10_4103_jmss_jmss_11_24 crossref_primary_10_1109_TASE_2022_3183589 crossref_primary_10_1088_1741_2552_ac9050 crossref_primary_10_1016_j_compbiomed_2023_107782 crossref_primary_10_1088_1741_2552_ac3cc4 crossref_primary_10_3390_brainsci11081066 crossref_primary_10_1109_TSP_2022_3201640 crossref_primary_10_1016_j_neunet_2024_106136 crossref_primary_10_3390_s25020494 crossref_primary_10_1109_TNSRE_2023_3336356 crossref_primary_10_1142_S0129065722500149 crossref_primary_10_1007_s11571_023_09936_0 crossref_primary_10_1109_ACCESS_2022_3167433 crossref_primary_10_1109_TCSII_2022_3192827 crossref_primary_10_1109_JBHI_2021_3102247 crossref_primary_10_1109_TCSII_2020_2992285 crossref_primary_10_1007_s10489_023_04538_z crossref_primary_10_1109_TKDE_2022_3230874 crossref_primary_10_1109_TKDE_2021_3128770 crossref_primary_10_1142_S0129065721500192 |
| Cites_doi | 10.1137/S0895479898346995 10.1198/jasa.2011.ap10089 10.1016/j.jneumeth.2008.10.010 10.1093/bioinformatics/btm210 10.1109/ICDE.2015.7113355 10.1109/TBME.2002.805477 10.21553/rev-jec.166 10.1145/1656274.1656278 10.1109/TCSVT.2007.903317 10.1109/ISCAS.2005.1466083 10.1109/MSP.2013.2297439 10.1002/9780470747278 10.1145/3018661.3018721 10.1109/TBME.2004.839630 10.1007/s11336-017-9568-7 10.1109/TNN.2007.901277 10.1007/978-3-319-13117-7_128 10.1016/j.knosys.2013.02.014 10.1016/0013-4694(82)90038-4 10.1080/03081087.2016.1267104 10.1142/S0129065713500068 10.1016/j.neucom.2005.06.004 10.1137/07070111X 10.1109/TNN.2010.2040290 10.1016/j.jneumeth.2018.07.020 10.1016/j.patrec.2005.11.013 10.1109/TASL.2009.2036813 10.1587/nolta.1.37 10.25073/2588-1086/vnucsce.156 10.1109/TNNLS.2013.2297381 10.1097/00004691-199903000-00005 10.1109/TNNLS.2016.2545400 10.1109/EMBC.2017.8036856 10.1109/ICASSP.2012.6288042 10.1016/j.jneumeth.2015.03.018 10.1109/TSMCC.2011.2161285 10.5405/jmbe.1463 10.1371/journal.pone.0138028 10.1007/s10994-005-3561-6 10.1016/j.compbiomed.2008.04.010 10.1109/MLSP.2015.7324333 10.1109/TPAMI.2004.1261097 10.1561/2200000059 10.1109/IPDPS.2016.67 10.1186/1471-2105-10-246 10.1002/0471602396 10.1137/1.9781611972757.4 10.1002/nla.2190 10.1017/S026988891300043X 10.5772/31597 10.1109/JBHI.2018.2829877 10.4018/IJMSTR.2016040101 10.1007/978-1-4471-2227-2 10.1109/TIP.2006.884929 10.1109/JSTSP.2015.2400415 10.1109/NICS.2018.8606822 10.1016/j.clinph.2009.07.044 10.3390/s130912536 10.1016/j.neuroimage.2007.04.041 10.1002/widm.1197 |
| ContentType | Journal Article |
| Copyright | 2020 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
| DOI | 10.1088/1741-2552/ab5247 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| DocumentTitleAlternate | Multi-channel EEG epileptic spike detection by a new method of tensor decomposition |
| EISSN | 1741-2552 |
| ExternalDocumentID | oai:HAL:hal-02493777v1 31905174 10_1088_1741_2552_ab5247 jneab5247 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED) grantid: 102.04-2019.14 |
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 02O 1WK 1XC AALHV ACARI AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 RNS S3P |
| ID | FETCH-LOGICAL-c370t-7ce6728eec06be30eb5a712f2926d5914d67560cf274aeb449d2d002f163bea53 |
| IEDL.DBID | IOP |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Tue Oct 14 20:56:57 EDT 2025 Thu Sep 04 16:35:41 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 Wed Oct 01 02:41:31 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Aug 21 03:33:55 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-7ce6728eec06be30eb5a712f2926d5914d67560cf274aeb449d2d002f163bea53 |
| Notes | JNE-102922.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3103-994X 0000-0002-0036-5160 0000-0003-2652-1923 0000-0002-8950-8868 |
| PMID | 31905174 |
| PQID | 2334247730 |
| PQPubID | 23479 |
| PageCount | 19 |
| ParticipantIDs | iop_journals_10_1088_1741_2552_ab5247 hal_primary_oai_HAL_hal_02493777v1 pubmed_primary_31905174 proquest_miscellaneous_2334247730 crossref_primary_10_1088_1741_2552_ab5247 crossref_citationtrail_10_1088_1741_2552_ab5247 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-06 |
| PublicationDateYYYYMMDD | 2020-01-06 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAbbrev | JNE |
| PublicationTitleAlternate | J. Neural Eng |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 44 45 Berg A T (1) 2010 47 48 Harshman R A (51) 1970; 16 49 Duda R O (60) 2012 50 52 10 Ye J (33) 2005 54 11 55 12 13 57 14 15 59 16 17 18 19 2 3 4 5 6 7 8 9 61 62 63 20 64 21 65 22 66 23 67 24 25 26 27 28 29 Sheehan B N (53) 2007 Thanh L T (46) 2019 Oh J (56) 2017 30 31 32 34 35 36 Tax D (58) 2001 37 38 39 40 41 42 43 |
| References_xml | – ident: 52 doi: 10.1137/S0895479898346995 – ident: 27 doi: 10.1198/jasa.2011.ap10089 – ident: 64 doi: 10.1016/j.jneumeth.2008.10.010 – ident: 11 doi: 10.1093/bioinformatics/btm210 – ident: 54 doi: 10.1109/ICDE.2015.7113355 – ident: 7 doi: 10.1109/TBME.2002.805477 – year: 2001 ident: 58 – ident: 9 doi: 10.21553/rev-jec.166 – ident: 67 doi: 10.1145/1656274.1656278 – ident: 37 doi: 10.1109/TCSVT.2007.903317 – ident: 24 doi: 10.1109/ISCAS.2005.1466083 – ident: 61 doi: 10.1109/MSP.2013.2297439 – ident: 44 doi: 10.1002/9780470747278 – start-page: 761 year: 2017 ident: 56 publication-title: Proc. 10th ACM Int. Conf. on Web Search and Data Mining doi: 10.1145/3018661.3018721 – ident: 8 doi: 10.1109/TBME.2004.839630 – ident: 35 doi: 10.1007/s11336-017-9568-7 – ident: 39 doi: 10.1109/TNN.2007.901277 – ident: 14 doi: 10.1007/978-3-319-13117-7_128 – start-page: 355 year: 2007 ident: 53 publication-title: SIAM Int. Con. on Data Mining – ident: 6 doi: 10.1016/j.knosys.2013.02.014 – ident: 2 doi: 10.1016/0013-4694(82)90038-4 – ident: 22 doi: 10.1080/03081087.2016.1267104 – ident: 49 doi: 10.1142/S0129065713500068 – ident: 26 doi: 10.1016/j.neucom.2005.06.004 – ident: 50 doi: 10.1137/07070111X – ident: 30 doi: 10.1109/TNN.2010.2040290 – year: 2012 ident: 60 publication-title: Pattern Classification – ident: 66 doi: 10.1016/j.jneumeth.2018.07.020 – ident: 29 doi: 10.1016/j.patrec.2005.11.013 – ident: 40 doi: 10.1109/TASL.2009.2036813 – ident: 45 doi: 10.1587/nolta.1.37 – ident: 63 doi: 10.25073/2588-1086/vnucsce.156 – year: 2010 ident: 1 publication-title: Atlas of Epilepsies – year: 2019 ident: 46 publication-title: Technical Reports – start-page: 1569 issn: 1049-5258 year: 2005 ident: 33 publication-title: Advances in Neural Information Processing Systems – ident: 41 doi: 10.1109/TNNLS.2013.2297381 – ident: 3 doi: 10.1097/00004691-199903000-00005 – ident: 36 doi: 10.1109/TNNLS.2016.2545400 – ident: 48 doi: 10.1109/EMBC.2017.8036856 – ident: 31 doi: 10.1109/ICASSP.2012.6288042 – ident: 17 doi: 10.1016/j.jneumeth.2015.03.018 – ident: 57 doi: 10.1109/TSMCC.2011.2161285 – ident: 5 doi: 10.5405/jmbe.1463 – ident: 32 doi: 10.1371/journal.pone.0138028 – ident: 28 doi: 10.1007/s10994-005-3561-6 – ident: 10 doi: 10.1016/j.compbiomed.2008.04.010 – ident: 15 doi: 10.1109/MLSP.2015.7324333 – ident: 25 doi: 10.1109/TPAMI.2004.1261097 – ident: 21 doi: 10.1561/2200000059 – ident: 55 doi: 10.1109/IPDPS.2016.67 – ident: 34 doi: 10.1186/1471-2105-10-246 – ident: 65 doi: 10.1002/0471602396 – ident: 23 doi: 10.1137/1.9781611972757.4 – ident: 47 doi: 10.1002/nla.2190 – ident: 59 doi: 10.1017/S026988891300043X – ident: 4 doi: 10.5772/31597 – ident: 16 doi: 10.1109/JBHI.2018.2829877 – ident: 18 doi: 10.4018/IJMSTR.2016040101 – ident: 20 doi: 10.1007/978-1-4471-2227-2 – ident: 38 doi: 10.1109/TIP.2006.884929 – ident: 42 doi: 10.1109/JSTSP.2015.2400415 – ident: 43 doi: 10.1109/NICS.2018.8606822 – ident: 13 doi: 10.1016/j.clinph.2009.07.044 – ident: 62 doi: 10.3390/s130912536 – ident: 12 doi: 10.1016/j.neuroimage.2007.04.041 – ident: 19 doi: 10.1002/widm.1197 – volume: 16 start-page: 1 year: 1970 ident: 51 publication-title: UCLA Working Papers in Phonetics |
| SSID | ssj0031790 |
| Score | 2.4817054 |
| Snippet | Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from... Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from... |
| SourceID | hal proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16023 |
| SubjectTerms | Action Potentials - physiology Adolescent Adult Aged Brain - physiopathology Child Child, Preschool electroencephalography (EEG) Electroencephalography - methods Engineering Sciences Epilepsy - diagnosis Epilepsy - physiopathology epileptic spikes feature extraction feature selection Female Humans Male multilinear low-rank approximation nonegative Tucker decomposition Signal and Image processing Signal Processing, Computer-Assisted tensor decomposition Young Adult |
| Title | Multi-channel EEG epileptic spike detection by a new method of tensor decomposition |
| URI | https://iopscience.iop.org/article/10.1088/1741-2552/ab5247 https://www.ncbi.nlm.nih.gov/pubmed/31905174 https://www.proquest.com/docview/2334247730 https://hal.science/hal-02493777 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB9uzxdf1PP8WPUkigo-ZLdN2qTFp-XYcxG_QA_uQQhJmqDc2S63XeHur3eSdBcUPcS3UqZJO0mmv8n8ZgLwjDXGmkpa2gipaUDQVNd5RYUtTYbugDAxovvuvVgcF29OypMdeLXNhemWg-mf4GUqFJxUOBDiqili6JwiEmZTbUpWyBFc4xUC45C99-HjxgzzUHoqZUMGaZENMco_tfDLP2n0NTAiR9j730Fn_Pkc3YQvm9dOnJPTybo3E3v5W0XH__yuW3BjAKVklkT3YMe1t2F_1qJD_v2CvCCRJhr33_fhU0zZpSFhuHVnZD5_TdwSTQuaHktWy2-njjSujwSvlpgLogkCd5IOqiadJ4Ex352jTCCzD4yxO3B8NP98uKDDyQzUcpn1VFonJKucs5kwjmfOlFrmzLOaiaas8wJHHlVuPfq82pmiqBvWoO31iP6M0yW_C7tt17r7QFzNy0JnXnsENp6L2hdWI64pde0bzdgYppuxUXYoWx5OzzhTMXxeVSroTQW9qaS3MbzcPrFMJTuukH2Kw70VC7W2F7O3KtwLtRS5lPJHPobnOGZqWNyrKxp7spkvChdpiLzo1nXrlWKcFyiA1nQM99JE2vaJNjCWC3_wj708hOss-PxhG0g8gt3-fO0OEBj15nFcAD8BOFoA_w |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7OCuKLt_UyXqOo4ENm2qRN2sdBZxx1XRd0Yd9ikiYou7ZlpyOsv96Tywwougi-lXKStCfJyZfknO8g9JQ22uhKGNJwoYhH0ETVeUW4KXUG2wGuw43u-32-PCzeHpVHKc9piIXp-mT6J_AYiYKjCpNDXDUFDJ0TQMJ0qnRJCzHtGzdCFwNPiY_g-3CwMcXM00_FiEhfgmfpnvJPtfyyLo2-eK_IEXzB34FnWIAWV9HnzadHv5PjyXrQE_PjN1bH__i3a-hKAqd4FsWvowu2vYF2Zy1szL-d4ec4uIuGc_hd9DGE7hIfONzaEzyfv8a2BxMDJsjgVf_12OLGDsHRq8X6DCsMAB7HhNW4c9h7znenIOOd2pPn2E10uJh_erkkKUMDMUxkAxHGckEra03GtWWZ1aUSOXW0prwp67yAEQBqNw72vsrqoqgb2oANdoACtVUlu4V22q61dxC2NSsLlTnlAOA4xmtXGAX4plS1axSlYzTd9I80ib7cZ9E4keEavaqk1530upNRd2P0Yluij9Qd58g-gS7finnO7eVsT_p3nlORCSG-52P0DPpNpkm-Oqeyx5sxI2Gy-hsY1dpuvZKUsQIEwKqO0e04mLZtgi0MtOF3_7GVR-jSwauF3Huz_-4eukz9MYA_GeL30c5wurYPACsN-mGYDz8BzfsGYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-channel+EEG+epileptic+spike+detection+by+a+new+method+of+tensor+decomposition&rft.jtitle=Journal+of+neural+engineering&rft.au=Thanh%2C+Le+Trung&rft.au=Dao%2C+Nguyen+Thi+Anh&rft.au=Dung%2C+Nguyen+Viet&rft.au=Trung%2C+Nguyen+Linh&rft.date=2020-01-06&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=17&rft.issue=1&rft.spage=016023&rft_id=info:doi/10.1088%2F1741-2552%2Fab5247&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |