Multi-channel EEG epileptic spike detection by a new method of tensor decomposition

Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 17; no. 1; pp. 16023 - 16041
Main Authors Thanh, Le Trung, Dao, Nguyen Thi Anh, Dung, Nguyen Viet, Trung, Nguyen Linh, Abed-Meraim, Karim
Format Journal Article
LanguageEnglish
Published England IOP Publishing 06.01.2020
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ab5247

Cover

Abstract Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. Approach. In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. Main results. We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. Significance. Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
AbstractList Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. Approach. In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. Main results. We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. Significance. Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.OBJECTIVEEpilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT.APPROACHIn this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT.We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy.MAIN RESULTSWe propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy.Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.SIGNIFICANCEOur method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
Author Trung, Nguyen Linh
Dao, Nguyen Thi Anh
Dung, Nguyen Viet
Thanh, Le Trung
Abed-Meraim, Karim
Author_xml – sequence: 1
  givenname: Le Trung
  surname: Thanh
  fullname: Thanh, Le Trung
  email: linhtrung@vnu.edu.vn
  organization: VNU University of Engineering and Technology Advanced Institute of Engineering and Technology (AVITECH), Vietnam National University, Hanoi, Vietnam
– sequence: 2
  givenname: Nguyen Thi Anh
  surname: Dao
  fullname: Dao, Nguyen Thi Anh
  organization: University of Technology and Logistics , Bac Ninh, Vietnam
– sequence: 3
  givenname: Nguyen Viet
  surname: Dung
  fullname: Dung, Nguyen Viet
  organization: UMR6285 CNRS ENSTA Bretagne , Brest, France
– sequence: 4
  givenname: Nguyen Linh
  orcidid: 0000-0002-3103-994X
  surname: Trung
  fullname: Trung, Nguyen Linh
  organization: Author to whom any correspondence should be addressed
– sequence: 5
  givenname: Karim
  surname: Abed-Meraim
  fullname: Abed-Meraim, Karim
  organization: University of Orléans , Orléans, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31905174$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02493777$$DView record in HAL
BookMark eNp9kUtLxDAURoMoPkb3riRLBat5tM10KTI6wogLdR3S9JaJtkltUsV_b0p1FoKuEm7OdwnnO0Db1llA6JiSC0rm80sqUpqwLGOXqsxYKrbQ_ma0vbnnZA8deP9CCKeiILtoj9OCZPF1Hz3eD00wiV4ra6HBi8Uths400AWjse_MK-AKAuhgnMXlJ1bYwgduIaxdhV2NA1jv-sho13bOm5E7RDu1ajwcfZ8z9HyzeLpeJquH27vrq1WiuSAhERpyweYAmuQlcAJlpgRlNStYXmUFTatcxL_rmolUQZmmRcUqQlhNc16CyvgMnU1716qRXW9a1X9Kp4xcXq3kOCMsLbgQ4p1G9nRiu969DeCDbI3X0DTKghu8ZJynUaDgJKIn3-hQtlBtNv9IiwCZAN0773uoNwglcuxFjuLlWIKceomR_FdEm6BGWaFXpvkveD4Fjevkixt6G43-jX8B-Ryc6w
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1016_j_artmed_2023_102750
crossref_primary_10_3389_fnins_2023_1150668
crossref_primary_10_1088_1361_6579_ace510
crossref_primary_10_1109_TNSRE_2022_3179255
crossref_primary_10_1016_j_jneumeth_2021_109182
crossref_primary_10_1016_j_patter_2023_100759
crossref_primary_10_1109_TCSII_2022_3151486
crossref_primary_10_1109_TNSRE_2023_3277867
crossref_primary_10_1007_s11071_022_08118_7
crossref_primary_10_4103_jmss_jmss_11_24
crossref_primary_10_1109_TASE_2022_3183589
crossref_primary_10_1088_1741_2552_ac9050
crossref_primary_10_1016_j_compbiomed_2023_107782
crossref_primary_10_1088_1741_2552_ac3cc4
crossref_primary_10_3390_brainsci11081066
crossref_primary_10_1109_TSP_2022_3201640
crossref_primary_10_1016_j_neunet_2024_106136
crossref_primary_10_3390_s25020494
crossref_primary_10_1109_TNSRE_2023_3336356
crossref_primary_10_1142_S0129065722500149
crossref_primary_10_1007_s11571_023_09936_0
crossref_primary_10_1109_ACCESS_2022_3167433
crossref_primary_10_1109_TCSII_2022_3192827
crossref_primary_10_1109_JBHI_2021_3102247
crossref_primary_10_1109_TCSII_2020_2992285
crossref_primary_10_1007_s10489_023_04538_z
crossref_primary_10_1109_TKDE_2022_3230874
crossref_primary_10_1109_TKDE_2021_3128770
crossref_primary_10_1142_S0129065721500192
Cites_doi 10.1137/S0895479898346995
10.1198/jasa.2011.ap10089
10.1016/j.jneumeth.2008.10.010
10.1093/bioinformatics/btm210
10.1109/ICDE.2015.7113355
10.1109/TBME.2002.805477
10.21553/rev-jec.166
10.1145/1656274.1656278
10.1109/TCSVT.2007.903317
10.1109/ISCAS.2005.1466083
10.1109/MSP.2013.2297439
10.1002/9780470747278
10.1145/3018661.3018721
10.1109/TBME.2004.839630
10.1007/s11336-017-9568-7
10.1109/TNN.2007.901277
10.1007/978-3-319-13117-7_128
10.1016/j.knosys.2013.02.014
10.1016/0013-4694(82)90038-4
10.1080/03081087.2016.1267104
10.1142/S0129065713500068
10.1016/j.neucom.2005.06.004
10.1137/07070111X
10.1109/TNN.2010.2040290
10.1016/j.jneumeth.2018.07.020
10.1016/j.patrec.2005.11.013
10.1109/TASL.2009.2036813
10.1587/nolta.1.37
10.25073/2588-1086/vnucsce.156
10.1109/TNNLS.2013.2297381
10.1097/00004691-199903000-00005
10.1109/TNNLS.2016.2545400
10.1109/EMBC.2017.8036856
10.1109/ICASSP.2012.6288042
10.1016/j.jneumeth.2015.03.018
10.1109/TSMCC.2011.2161285
10.5405/jmbe.1463
10.1371/journal.pone.0138028
10.1007/s10994-005-3561-6
10.1016/j.compbiomed.2008.04.010
10.1109/MLSP.2015.7324333
10.1109/TPAMI.2004.1261097
10.1561/2200000059
10.1109/IPDPS.2016.67
10.1186/1471-2105-10-246
10.1002/0471602396
10.1137/1.9781611972757.4
10.1002/nla.2190
10.1017/S026988891300043X
10.5772/31597
10.1109/JBHI.2018.2829877
10.4018/IJMSTR.2016040101
10.1007/978-1-4471-2227-2
10.1109/TIP.2006.884929
10.1109/JSTSP.2015.2400415
10.1109/NICS.2018.8606822
10.1016/j.clinph.2009.07.044
10.3390/s130912536
10.1016/j.neuroimage.2007.04.041
10.1002/widm.1197
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1088/1741-2552/ab5247
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Multi-channel EEG epileptic spike detection by a new method of tensor decomposition
EISSN 1741-2552
ExternalDocumentID oai:HAL:hal-02493777v1
31905174
10_1088_1741_2552_ab5247
jneab5247
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Vietnam National Foundation for Science and Technology Development (NAFOSTED)
  grantid: 102.04-2019.14
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
02O
1WK
1XC
AALHV
ACARI
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
ID FETCH-LOGICAL-c370t-7ce6728eec06be30eb5a712f2926d5914d67560cf274aeb449d2d002f163bea53
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Tue Oct 14 20:56:57 EDT 2025
Thu Sep 04 16:35:41 EDT 2025
Mon Jul 21 06:05:30 EDT 2025
Wed Oct 01 02:41:31 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Aug 21 03:33:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-7ce6728eec06be30eb5a712f2926d5914d67560cf274aeb449d2d002f163bea53
Notes JNE-102922.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3103-994X
0000-0002-0036-5160
0000-0003-2652-1923
0000-0002-8950-8868
PMID 31905174
PQID 2334247730
PQPubID 23479
PageCount 19
ParticipantIDs iop_journals_10_1088_1741_2552_ab5247
hal_primary_oai_HAL_hal_02493777v1
pubmed_primary_31905174
proquest_miscellaneous_2334247730
crossref_primary_10_1088_1741_2552_ab5247
crossref_citationtrail_10_1088_1741_2552_ab5247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-06
PublicationDateYYYYMMDD 2020-01-06
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-06
  day: 06
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
Berg A T (1) 2010
47
48
Harshman R A (51) 1970; 16
49
Duda R O (60) 2012
50
52
10
Ye J (33) 2005
54
11
55
12
13
57
14
15
59
16
17
18
19
2
3
4
5
6
7
8
9
61
62
63
20
64
21
65
22
66
23
67
24
25
26
27
28
29
Sheehan B N (53) 2007
Thanh L T (46) 2019
Oh J (56) 2017
30
31
32
34
35
36
Tax D (58) 2001
37
38
39
40
41
42
43
References_xml – ident: 52
  doi: 10.1137/S0895479898346995
– ident: 27
  doi: 10.1198/jasa.2011.ap10089
– ident: 64
  doi: 10.1016/j.jneumeth.2008.10.010
– ident: 11
  doi: 10.1093/bioinformatics/btm210
– ident: 54
  doi: 10.1109/ICDE.2015.7113355
– ident: 7
  doi: 10.1109/TBME.2002.805477
– year: 2001
  ident: 58
– ident: 9
  doi: 10.21553/rev-jec.166
– ident: 67
  doi: 10.1145/1656274.1656278
– ident: 37
  doi: 10.1109/TCSVT.2007.903317
– ident: 24
  doi: 10.1109/ISCAS.2005.1466083
– ident: 61
  doi: 10.1109/MSP.2013.2297439
– ident: 44
  doi: 10.1002/9780470747278
– start-page: 761
  year: 2017
  ident: 56
  publication-title: Proc. 10th ACM Int. Conf. on Web Search and Data Mining
  doi: 10.1145/3018661.3018721
– ident: 8
  doi: 10.1109/TBME.2004.839630
– ident: 35
  doi: 10.1007/s11336-017-9568-7
– ident: 39
  doi: 10.1109/TNN.2007.901277
– ident: 14
  doi: 10.1007/978-3-319-13117-7_128
– start-page: 355
  year: 2007
  ident: 53
  publication-title: SIAM Int. Con. on Data Mining
– ident: 6
  doi: 10.1016/j.knosys.2013.02.014
– ident: 2
  doi: 10.1016/0013-4694(82)90038-4
– ident: 22
  doi: 10.1080/03081087.2016.1267104
– ident: 49
  doi: 10.1142/S0129065713500068
– ident: 26
  doi: 10.1016/j.neucom.2005.06.004
– ident: 50
  doi: 10.1137/07070111X
– ident: 30
  doi: 10.1109/TNN.2010.2040290
– year: 2012
  ident: 60
  publication-title: Pattern Classification
– ident: 66
  doi: 10.1016/j.jneumeth.2018.07.020
– ident: 29
  doi: 10.1016/j.patrec.2005.11.013
– ident: 40
  doi: 10.1109/TASL.2009.2036813
– ident: 45
  doi: 10.1587/nolta.1.37
– ident: 63
  doi: 10.25073/2588-1086/vnucsce.156
– year: 2010
  ident: 1
  publication-title: Atlas of Epilepsies
– year: 2019
  ident: 46
  publication-title: Technical Reports
– start-page: 1569
  issn: 1049-5258
  year: 2005
  ident: 33
  publication-title: Advances in Neural Information Processing Systems
– ident: 41
  doi: 10.1109/TNNLS.2013.2297381
– ident: 3
  doi: 10.1097/00004691-199903000-00005
– ident: 36
  doi: 10.1109/TNNLS.2016.2545400
– ident: 48
  doi: 10.1109/EMBC.2017.8036856
– ident: 31
  doi: 10.1109/ICASSP.2012.6288042
– ident: 17
  doi: 10.1016/j.jneumeth.2015.03.018
– ident: 57
  doi: 10.1109/TSMCC.2011.2161285
– ident: 5
  doi: 10.5405/jmbe.1463
– ident: 32
  doi: 10.1371/journal.pone.0138028
– ident: 28
  doi: 10.1007/s10994-005-3561-6
– ident: 10
  doi: 10.1016/j.compbiomed.2008.04.010
– ident: 15
  doi: 10.1109/MLSP.2015.7324333
– ident: 25
  doi: 10.1109/TPAMI.2004.1261097
– ident: 21
  doi: 10.1561/2200000059
– ident: 55
  doi: 10.1109/IPDPS.2016.67
– ident: 34
  doi: 10.1186/1471-2105-10-246
– ident: 65
  doi: 10.1002/0471602396
– ident: 23
  doi: 10.1137/1.9781611972757.4
– ident: 47
  doi: 10.1002/nla.2190
– ident: 59
  doi: 10.1017/S026988891300043X
– ident: 4
  doi: 10.5772/31597
– ident: 16
  doi: 10.1109/JBHI.2018.2829877
– ident: 18
  doi: 10.4018/IJMSTR.2016040101
– ident: 20
  doi: 10.1007/978-1-4471-2227-2
– ident: 38
  doi: 10.1109/TIP.2006.884929
– ident: 42
  doi: 10.1109/JSTSP.2015.2400415
– ident: 43
  doi: 10.1109/NICS.2018.8606822
– ident: 13
  doi: 10.1016/j.clinph.2009.07.044
– ident: 62
  doi: 10.3390/s130912536
– ident: 12
  doi: 10.1016/j.neuroimage.2007.04.041
– ident: 19
  doi: 10.1002/widm.1197
– volume: 16
  start-page: 1
  year: 1970
  ident: 51
  publication-title: UCLA Working Papers in Phonetics
SSID ssj0031790
Score 2.4817054
Snippet Objective. Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from...
Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from...
SourceID hal
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16023
SubjectTerms Action Potentials - physiology
Adolescent
Adult
Aged
Brain - physiopathology
Child
Child, Preschool
electroencephalography (EEG)
Electroencephalography - methods
Engineering Sciences
Epilepsy - diagnosis
Epilepsy - physiopathology
epileptic spikes
feature extraction
feature selection
Female
Humans
Male
multilinear low-rank approximation
nonegative Tucker decomposition
Signal and Image processing
Signal Processing, Computer-Assisted
tensor decomposition
Young Adult
Title Multi-channel EEG epileptic spike detection by a new method of tensor decomposition
URI https://iopscience.iop.org/article/10.1088/1741-2552/ab5247
https://www.ncbi.nlm.nih.gov/pubmed/31905174
https://www.proquest.com/docview/2334247730
https://hal.science/hal-02493777
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB9uzxdf1PP8WPUkigo-ZLdN2qTFp-XYcxG_QA_uQQhJmqDc2S63XeHur3eSdBcUPcS3UqZJO0mmv8n8ZgLwjDXGmkpa2gipaUDQVNd5RYUtTYbugDAxovvuvVgcF29OypMdeLXNhemWg-mf4GUqFJxUOBDiqili6JwiEmZTbUpWyBFc4xUC45C99-HjxgzzUHoqZUMGaZENMco_tfDLP2n0NTAiR9j730Fn_Pkc3YQvm9dOnJPTybo3E3v5W0XH__yuW3BjAKVklkT3YMe1t2F_1qJD_v2CvCCRJhr33_fhU0zZpSFhuHVnZD5_TdwSTQuaHktWy2-njjSujwSvlpgLogkCd5IOqiadJ4Ex352jTCCzD4yxO3B8NP98uKDDyQzUcpn1VFonJKucs5kwjmfOlFrmzLOaiaas8wJHHlVuPfq82pmiqBvWoO31iP6M0yW_C7tt17r7QFzNy0JnXnsENp6L2hdWI64pde0bzdgYppuxUXYoWx5OzzhTMXxeVSroTQW9qaS3MbzcPrFMJTuukH2Kw70VC7W2F7O3KtwLtRS5lPJHPobnOGZqWNyrKxp7spkvChdpiLzo1nXrlWKcFyiA1nQM99JE2vaJNjCWC3_wj708hOss-PxhG0g8gt3-fO0OEBj15nFcAD8BOFoA_w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA7OCuKLt_UyXqOo4ENm2qRN2sdBZxx1XRd0Yd9ikiYou7ZlpyOsv96Tywwougi-lXKStCfJyZfknO8g9JQ22uhKGNJwoYhH0ETVeUW4KXUG2wGuw43u-32-PCzeHpVHKc9piIXp-mT6J_AYiYKjCpNDXDUFDJ0TQMJ0qnRJCzHtGzdCFwNPiY_g-3CwMcXM00_FiEhfgmfpnvJPtfyyLo2-eK_IEXzB34FnWIAWV9HnzadHv5PjyXrQE_PjN1bH__i3a-hKAqd4FsWvowu2vYF2Zy1szL-d4ec4uIuGc_hd9DGE7hIfONzaEzyfv8a2BxMDJsjgVf_12OLGDsHRq8X6DCsMAB7HhNW4c9h7znenIOOd2pPn2E10uJh_erkkKUMDMUxkAxHGckEra03GtWWZ1aUSOXW0prwp67yAEQBqNw72vsrqoqgb2oANdoACtVUlu4V22q61dxC2NSsLlTnlAOA4xmtXGAX4plS1axSlYzTd9I80ib7cZ9E4keEavaqk1530upNRd2P0Yluij9Qd58g-gS7finnO7eVsT_p3nlORCSG-52P0DPpNpkm-Oqeyx5sxI2Gy-hsY1dpuvZKUsQIEwKqO0e04mLZtgi0MtOF3_7GVR-jSwauF3Huz_-4eukz9MYA_GeL30c5wurYPACsN-mGYDz8BzfsGYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-channel+EEG+epileptic+spike+detection+by+a+new+method+of+tensor+decomposition&rft.jtitle=Journal+of+neural+engineering&rft.au=Thanh%2C+Le+Trung&rft.au=Dao%2C+Nguyen+Thi+Anh&rft.au=Dung%2C+Nguyen+Viet&rft.au=Trung%2C+Nguyen+Linh&rft.date=2020-01-06&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=17&rft.issue=1&rft.spage=016023&rft_id=info:doi/10.1088%2F1741-2552%2Fab5247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon