Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k -space pseudospectral method

The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k -space pseudospectral...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 131; no. 6; pp. 4324 - 4336
Main Authors Treeby, Bradley E., Jaros, Jiri, Rendell, Alistair P., Cox, B. T.
Format Journal Article
LanguageEnglish
Published Melville, NY Acoustical Society of America 01.06.2012
American Institute of Physics
Subjects
Online AccessGet full text
ISSN0001-4966
1520-8524
1520-8524
DOI10.1121/1.4712021

Cover

Abstract The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k -space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k -space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.
AbstractList The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.
The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.
The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k -space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k -space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.
Author Cox, B. T.
Jaros, Jiri
Treeby, Bradley E.
Rendell, Alistair P.
Author_xml – sequence: 1
  givenname: Bradley
  surname: Treeby
  middlename: E.
  fullname: Treeby, Bradley E.
  email: bradley.treeby@anu.edu.au
  organization: Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia
– sequence: 2
  givenname: Jiri
  surname: Jaros
  fullname: Jaros, Jiri
  organization: Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia
– sequence: 3
  givenname: Alistair
  surname: Rendell
  middlename: P.
  fullname: Rendell, Alistair P.
  organization: Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia
– sequence: 4
  givenname: B.
  surname: Cox
  middlename: T.
  fullname: Cox, B. T.
  organization: Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26020679$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22712907$$D View this record in MEDLINE/PubMed
BookMark eNp1kU-L1TAUxYOMOG9GF34ByUZwFp1J0rRpN4IMjgojbnQdbpPb96J9TU1aHi795t55fxREV5fA75xwzrlgZ2MckbHnUlxLqeSNvNZGKqHkI7aSlRJFUyl9xlZCCFnotq7P2UXOX-lZNWX7hJ0rRXwrzIr9_Bg9DmFcc_Kki5D4MswJclxGz6cUJ1jDHOLIw8g3OGOKaxwxLplv0QfguzBv-BR3mPgAOw5djmnaC5b84Av8Gy_yBA75lHHxMU_o6IOB9PMm-qfscQ9DxmfHe8m-3L39fPu-uP_07sPtm_vClUbMRe0ooW-M0V2v66bpoYFSVk4aXXV9I3thvPGtM94jqFpTREqLxqiuxFp35SV7dfClTN8XzLPdhuxwGGCfxkrqT1dCy4rQF0d06SiknVLYQvphT7UR8PIIQHYw9AlGF_IfrhZK1KYl7ubAuRRzTthbF-Z9m1RAGOhP-zCglfY4ICmu_lKcTP_Fvj6w-eT6f_g0s_09s13KX_KgsKE
CODEN JASMAN
CitedBy_id crossref_primary_10_1121_1_4789001
crossref_primary_10_2478_s13540_013_0003_1
crossref_primary_10_1109_TUFFC_2017_2737620
crossref_primary_10_1364_OL_39_004903
crossref_primary_10_1088_2516_1091_acd28b
crossref_primary_10_1118_1_4939809
crossref_primary_10_3390_s20195563
crossref_primary_10_1109_TUFFC_2020_3021981
crossref_primary_10_1134_S106287382370507X
crossref_primary_10_1016_j_jcp_2024_113527
crossref_primary_10_1016_j_softx_2023_101338
crossref_primary_10_1109_TBME_2021_3115553
crossref_primary_10_1109_TBME_2021_3120919
crossref_primary_10_1088_1361_6560_ab3704
crossref_primary_10_1002_jum_16005
crossref_primary_10_3390_ma9030205
crossref_primary_10_1121_10_0003210
crossref_primary_10_1121_10_0032458
crossref_primary_10_1063_5_0081565
crossref_primary_10_1016_j_ultsonch_2024_106848
crossref_primary_10_1038_s41598_018_25904_9
crossref_primary_10_1109_TUFFC_2019_2894755
crossref_primary_10_3390_math12071106
crossref_primary_10_1088_1361_6463_ac5bcd
crossref_primary_10_1080_02656736_2021_1959658
crossref_primary_10_1121_10_0004302
crossref_primary_10_1121_1_4894790
crossref_primary_10_3788_PI_2024_R06
crossref_primary_10_1080_10407782_2020_1714325
crossref_primary_10_1016_j_clinph_2021_12_010
crossref_primary_10_1121_10_0024725
crossref_primary_10_1117_1_JBO_29_S1_S11509
crossref_primary_10_1016_j_ultras_2024_107392
crossref_primary_10_1109_TUFFC_2024_3523037
crossref_primary_10_1088_1361_6560_aacc33
crossref_primary_10_1016_j_apacoust_2022_108977
crossref_primary_10_1051_e3sconf_202128007016
crossref_primary_10_1088_1742_6596_2822_1_012020
crossref_primary_10_1121_10_0025391
crossref_primary_10_1109_TBME_2019_2912146
crossref_primary_10_1177_14759217211036881
crossref_primary_10_3109_02656736_2013_790092
crossref_primary_10_1002_jum_16114
crossref_primary_10_1109_OJUFFC_2023_3338570
crossref_primary_10_1117_1_JMI_3_4_046005
crossref_primary_10_1371_journal_pbio_3002884
crossref_primary_10_1002_adma_202310110
crossref_primary_10_3934_mbe_2022476
crossref_primary_10_1103_PhysRevE_110_065002
crossref_primary_10_1259_bjr_20200755
crossref_primary_10_1177_1475921718762154
crossref_primary_10_7498_aps_72_20230323
crossref_primary_10_1121_1_4944576
crossref_primary_10_3934_eect_2020074
crossref_primary_10_1088_1361_6420_ac3b64
crossref_primary_10_1016_j_jcp_2018_04_010
crossref_primary_10_1121_10_0020151
crossref_primary_10_1109_TUFFC_2015_2499776
crossref_primary_10_1109_TMI_2015_2396632
crossref_primary_10_1118_1_4951729
crossref_primary_10_1007_s11075_020_00972_z
crossref_primary_10_1016_j_apm_2016_10_026
crossref_primary_10_1038_s41598_024_51623_5
crossref_primary_10_1016_j_ultrasmedbio_2022_02_017
crossref_primary_10_1103_PhysRevApplied_12_014016
crossref_primary_10_1109_TUFFC_2013_2812
crossref_primary_10_3390_app13116523
crossref_primary_10_1121_1_4932166
crossref_primary_10_3389_fphy_2022_1071063
crossref_primary_10_2139_ssrn_3987063
crossref_primary_10_1093_gji_ggy449
crossref_primary_10_1021_acsnano_1c03087
crossref_primary_10_1121_10_0023952
crossref_primary_10_1121_10_0002177
crossref_primary_10_1134_S1063771014040071
crossref_primary_10_1177_1094342019846290
crossref_primary_10_1121_10_0017836
crossref_primary_10_1109_TUFFC_2017_2653063
crossref_primary_10_1016_j_wavemoti_2016_03_004
crossref_primary_10_1088_1361_6463_aae96d
crossref_primary_10_1016_j_ultsonch_2020_105312
crossref_primary_10_1016_j_brs_2021_01_002
crossref_primary_10_1088_1742_6596_2822_1_012014
crossref_primary_10_1016_j_ultrasmedbio_2024_12_016
crossref_primary_10_1063_1_5091108
crossref_primary_10_1109_TUFFC_2022_3198522
crossref_primary_10_1121_10_0008941
crossref_primary_10_1016_j_cmpb_2024_108458
crossref_primary_10_1109_TUFFC_2016_2600862
crossref_primary_10_1007_s12008_017_0409_9
crossref_primary_10_1109_TUFFC_2015_007034
crossref_primary_10_1109_COMST_2017_2705740
crossref_primary_10_1109_TUFFC_2019_2948305
crossref_primary_10_1121_10_0011743
crossref_primary_10_1121_1_4962555
crossref_primary_10_1016_j_jcp_2023_112522
crossref_primary_10_1038_s41378_023_00513_3
crossref_primary_10_1038_s41598_021_81964_4
crossref_primary_10_1088_0031_9155_58_19_6663
crossref_primary_10_1016_j_ultrasmedbio_2016_03_029
crossref_primary_10_1371_journal_pone_0267268
crossref_primary_10_1016_j_apacoust_2024_110144
crossref_primary_10_1016_j_apm_2017_03_057
crossref_primary_10_1121_1_5050519
crossref_primary_10_1007_s00245_017_9471_8
crossref_primary_10_1109_TRPMS_2022_3177236
crossref_primary_10_1364_OPTICA_2_000307
crossref_primary_10_1109_TUFFC_2014_2935
crossref_primary_10_1016_j_ultras_2025_107641
crossref_primary_10_7567_1347_4065_ab19b7
crossref_primary_10_1080_02656736_2020_1834626
crossref_primary_10_1142_S0219199720500698
crossref_primary_10_1016_j_jcp_2021_110430
crossref_primary_10_1016_j_apacoust_2022_108700
crossref_primary_10_1088_1361_6560_ad506f
crossref_primary_10_1109_TUFFC_2019_2943626
crossref_primary_10_1016_j_jcp_2021_110797
crossref_primary_10_1109_TUFFC_2015_007169
crossref_primary_10_1121_10_0016886
crossref_primary_10_1121_10_0017974
crossref_primary_10_1088_1741_2552_aa843e
crossref_primary_10_1109_TBME_2016_2619741
crossref_primary_10_31857_S0367676524010235
crossref_primary_10_1103_PhysRevApplied_21_014011
crossref_primary_10_1016_j_ultras_2016_03_015
crossref_primary_10_1109_TUFFC_2023_3292595
crossref_primary_10_1103_PhysRevApplied_14_054070
crossref_primary_10_1121_10_0005655
crossref_primary_10_1088_1361_6560_ac5296
crossref_primary_10_1109_TMRB_2023_3310201
crossref_primary_10_1117_1_JBO_20_4_046013
crossref_primary_10_3390_app8040609
crossref_primary_10_3109_02656736_2014_1002817
crossref_primary_10_1109_TBCAS_2021_3135859
crossref_primary_10_3390_a16020124
crossref_primary_10_1088_0031_9155_60_19_7695
crossref_primary_10_1109_TUFFC_2017_2719962
crossref_primary_10_1109_TUFFC_2024_3451289
crossref_primary_10_3390_ma12203433
crossref_primary_10_1177_1094342015581024
crossref_primary_10_1088_1361_6560_aace07
crossref_primary_10_1088_1361_6560_ac7d90
crossref_primary_10_1109_TBME_2021_3126734
crossref_primary_10_1109_TBME_2023_3266952
crossref_primary_10_1109_TUFFC_2017_2681695
crossref_primary_10_1002_mp_13961
crossref_primary_10_1016_j_ultras_2023_107026
crossref_primary_10_1121_1_5048413
crossref_primary_10_1109_TUFFC_2021_3112544
crossref_primary_10_1016_j_jcp_2019_04_025
crossref_primary_10_1063_1_4873678
crossref_primary_10_3390_s23249702
crossref_primary_10_1121_10_0028134
crossref_primary_10_1002_ird3_112
crossref_primary_10_1088_0031_9155_59_12_3139
crossref_primary_10_1121_1_4928396
crossref_primary_10_1109_TUFFC_2021_3063055
crossref_primary_10_1016_j_ast_2024_109629
crossref_primary_10_1111_sapm_12771
crossref_primary_10_1088_0031_9155_58_18_6263
crossref_primary_10_1016_j_ultras_2017_10_006
crossref_primary_10_1016_j_ymssp_2021_108654
crossref_primary_10_1142_S2591728520500218
crossref_primary_10_1016_j_pacs_2023_100452
crossref_primary_10_1109_TUFFC_2018_2878464
crossref_primary_10_1364_OE_513538
crossref_primary_10_1051_e3sconf_202020101005
crossref_primary_10_1002_jbio_201400143
crossref_primary_10_1038_s41598_019_56369_z
crossref_primary_10_1121_1_4928036
crossref_primary_10_1109_TUFFC_2019_2941795
crossref_primary_10_1121_10_0019306
crossref_primary_10_1121_1_5032196
crossref_primary_10_1016_j_jcp_2018_02_005
crossref_primary_10_1016_j_ultrasmedbio_2021_03_010
crossref_primary_10_1002_mp_13183
crossref_primary_10_1080_02656736_2021_2012603
crossref_primary_10_1016_j_ultrasmedbio_2019_09_010
crossref_primary_10_1121_10_0002877
crossref_primary_10_1016_j_ultras_2021_106504
crossref_primary_10_1109_TUFFC_2023_3313549
crossref_primary_10_1109_TUFFC_2025_3534660
crossref_primary_10_1016_j_ultras_2021_106626
crossref_primary_10_1016_j_jconrel_2019_03_030
crossref_primary_10_1109_TUFFC_2021_3128227
crossref_primary_10_1109_TUFFC_2018_2828316
crossref_primary_10_1121_10_0036215
crossref_primary_10_1364_BOE_6_001502
crossref_primary_10_1016_j_jmbbm_2019_103502
crossref_primary_10_1016_j_ultras_2023_106936
crossref_primary_10_1080_10407790_2023_2228022
crossref_primary_10_1007_s00339_023_06586_1
crossref_primary_10_1109_TUFFC_2021_3131752
crossref_primary_10_1038_s41598_019_52443_8
crossref_primary_10_1016_j_jde_2016_06_025
crossref_primary_10_1109_TUFFC_2022_3169082
crossref_primary_10_1007_s10396_023_01378_9
crossref_primary_10_1088_1361_6560_aa58c9
crossref_primary_10_1109_TCI_2017_2706029
crossref_primary_10_1121_10_0015402
crossref_primary_10_1002_jum_16611
crossref_primary_10_1177_01617346221147820
crossref_primary_10_1016_j_apacoust_2021_108367
crossref_primary_10_7779_JKSNT_2016_36_1_27
crossref_primary_10_1109_TBME_2018_2870064
crossref_primary_10_1109_TUFFC_2017_2784810
crossref_primary_10_1016_j_cmpb_2022_106774
crossref_primary_10_1002_mp_12704
crossref_primary_10_1016_j_zemedi_2023_01_003
crossref_primary_10_1063_5_0239956
crossref_primary_10_1016_j_ultrasmedbio_2018_08_021
crossref_primary_10_1109_TUFFC_2017_2687470
crossref_primary_10_1121_10_0011695
crossref_primary_10_3390_app10217655
crossref_primary_10_1109_TMI_2021_3115790
crossref_primary_10_1088_1361_6560_aabeff
crossref_primary_10_1002_mp_17270
crossref_primary_10_1190_geo2019_0151_1
crossref_primary_10_1007_s00542_016_3150_6
crossref_primary_10_1109_TUFFC_2020_3018424
crossref_primary_10_1117_1_JBO_23_11_116501
crossref_primary_10_1103_PhysRevX_8_041002
crossref_primary_10_1088_1361_6560_ac215e
crossref_primary_10_3390_app13127317
crossref_primary_10_1109_TUFFC_2024_3466119
crossref_primary_10_1155_2020_3965980
crossref_primary_10_1016_j_apacoust_2022_109060
crossref_primary_10_1109_TUFFC_2023_3315011
crossref_primary_10_1364_OE_23_020617
crossref_primary_10_3390_s150614788
crossref_primary_10_1109_TBME_2017_2732684
crossref_primary_10_3788_CJL230708
crossref_primary_10_3390_s19040863
crossref_primary_10_1109_TBME_2014_2373397
crossref_primary_10_1038_s41551_024_01300_9
crossref_primary_10_1007_s10704_022_00650_2
crossref_primary_10_1016_S1452_3981_23_13259_7
crossref_primary_10_1088_1361_6560_ab6071
crossref_primary_10_3389_fbioe_2022_1034194
crossref_primary_10_1121_1_4976688
crossref_primary_10_1121_1_4976689
crossref_primary_10_1109_TUFFC_2018_2881358
crossref_primary_10_1137_20M1338460
crossref_primary_10_1109_TUFFC_2021_3051729
crossref_primary_10_1088_1361_6501_abc866
crossref_primary_10_1109_JBHI_2024_3389708
crossref_primary_10_1002_mp_16090
crossref_primary_10_1121_10_0001690
crossref_primary_10_1016_j_apacoust_2017_10_027
crossref_primary_10_1109_TRPMS_2020_3015109
crossref_primary_10_1109_TUFFC_2019_2892753
crossref_primary_10_2478_ama_2021_0022
crossref_primary_10_3390_a15110399
crossref_primary_10_3390_electronics11182836
crossref_primary_10_1088_0266_5611_32_11_115012
crossref_primary_10_1121_10_0001454
crossref_primary_10_1121_1_4976339
crossref_primary_10_1109_TUFFC_2024_3355390
crossref_primary_10_1002_mp_12044
crossref_primary_10_1109_TUFFC_2022_3213021
crossref_primary_10_3788_IRLA20210774
crossref_primary_10_1051_e3sconf_202128008004
crossref_primary_10_1088_0960_1317_24_8_085007
crossref_primary_10_1109_TUFFC_2018_2861895
crossref_primary_10_1121_1_4998585
crossref_primary_10_1121_1_4812869
crossref_primary_10_1121_10_0013426
crossref_primary_10_1121_1_4812863
crossref_primary_10_1109_TMI_2014_2383835
crossref_primary_10_1017_hpl_2023_18
Cites_doi 10.1121/1.393541
10.1121/1.410434
10.1109/TUFFC.2011.1910
10.1121/1.2717409
10.1121/1.3641457
10.1134/S1063771006060017
10.1121/1.391778
10.1016/j.wavemoti.2011.07.002
10.1121/1.3268599
10.1121/1.1907007
10.1006/jcph.1996.0181
10.1121/1.401863
10.1121/1.423720
10.1121/1.1360239
10.1121/1.3614550
10.1121/1.400179
10.1121/1.3583537
10.1121/1.414983
10.1121/1.390585
10.1109/TUFFC.2009.1066
10.1109/58.911717
10.1121/1.400317
10.1121/1.423849
10.1121/1.2767420
10.1121/1.1694991
10.1121/1.3377056
10.1121/1.1344157
10.1121/1.1646399
10.1088/0031-9155/57/4/901
10.1117/1.3360308
10.1121/1.1421344
10.1121/1.3077220
10.1121/1.400497
ContentType Journal Article
Copyright 2012 Acoustical Society of America
2015 INIST-CNRS
Copyright_xml – notice: 2012 Acoustical Society of America
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1121/1.4712021
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 4336
ExternalDocumentID 22712907
26020679
10_1121_1_4712021
jasa
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
ABDPE
ADXHL
AEILP
IQODW
NPM
7X8
ID FETCH-LOGICAL-c370t-6c120d8774bf4688fa8a315c1745bf81f07d7d9c7ddea264227058e772b3e64b3
ISSN 0001-4966
1520-8524
IngestDate Thu Sep 04 18:08:01 EDT 2025
Thu Apr 03 07:02:22 EDT 2025
Mon Jul 21 09:13:22 EDT 2025
Thu Apr 24 22:50:00 EDT 2025
Wed Oct 01 03:31:53 EDT 2025
Fri Jun 21 00:19:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Spectral method
Power law
Modeling
Non linear acoustics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c370t-6c120d8774bf4688fa8a315c1745bf81f07d7d9c7ddea264227058e772b3e64b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22712907
PQID 1021450415
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1021450415
pubmed_primary_22712907
pascalfrancis_primary_26020679
crossref_citationtrail_10_1121_1_4712021
crossref_primary_10_1121_1_4712021
scitation_primary_10_1121_1_4712021Modeling_nonlinear_u
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
– name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2012
Publisher Acoustical Society of America
American Institute of Physics
Publisher_xml – name: Acoustical Society of America
– name: American Institute of Physics
References Tavakkoli, J.; Cathignol, D.; Souchon, R.; Sapozhnikov, O. 1998; 104
Averyanov, M.; Khokhlova, V.; Sapozhnikov, O.; Blanc-Benon, P.; Cleveland, R. 2006; 52
Aanonsen, S.; Barkve, T.; Tjotta, J.; Tjotta, S. 1984; 75
Treeby, B.; Cox, B. 2010; 127
Cleveland, R.; Hamilton, M.; Blackstock, D. 1996; 99
Sparrow, V.; Raspet, R. 1991; 90
Wojcik, J. 1998; 104
Nachman, A.; Smith, J.; Waag, R. 1990; 88
Coulouvrat, F. 2012; 49
Hamilton, M.; Blackstock, D. 1990; 88
Mast, T.; Souriau, L.; Liu, D.-L.; Tabei, M.; Nachman, A.; Waag, R. 2001; 48
Jensen, J. 1991; 89
Treeby, B.; Cox, B. 2011; 129
Jongen, H.; Thijssen, J.; van den Aarssen, M.; Verhoef, W. 1986; 79
Treeby, B.; Cox, B. 2010; 15
Szabo, T. 1994; 96
Cox, B.; Kara, S.; Arridge, S.; Beard, P. 2007; 121
Taraldsen, G. 2001; 109
Jing, Y.; Cleveland, R. 2007; 122
Pinton, G.; Dahl, J.; Rosenzweig, S.; Trahey, G. 2009; 56
Jing, Y.; Shen, D.; Clement, G. 2011; 58
Berenger, J.-P. 1996; 127
Hallaj, I.; Cleveland, R.; Hynynen, K. 2001; 109
Tabei, M.; Mast, T.; Waag, R. 2002; 111
Verweij, M.; Huijssen, J. 2009; 125
Chen, W.; Holm, S. 2004; 115
Nasholm, S.; Holm, S. 2011; 130
Prieur, F.; Holm, S. 2011; 130
Mendousse, J. 1953; 25
Blackstock, D. 1985; 77
Jing, Y.; Meral, F.; Clement, G. 2012; 57
McGough, R. 2004; 115
Huijssen, J.; Verweij, M. 2010; 127
(2023071906202102000_c43) 1953; 25
(2023071906202102000_c38) 1996; 127
(2023071906202102000_c8) 2001; 109
(2023071906202102000_c41) 2001
(2023071906202102000_c21) 2002
2023071906202102000_c13
(2023071906202102000_c39) 2007; 121
(2023071906202102000_c42) 2012; 57
(2023071906202102000_c31) 2011; 130
Crocker (2023071906202102000_c30) 1998
(2023071906202102000_c34) 1990; 88
(2023071906202102000_c14) 2006; 52
(2023071906202102000_c11) 2007; 122
(2023071906202102000_c16) 1993
Hamilton (2023071906202102000_c7) 2008
(2023071906202102000_c22) 2010; 127
(2023071906202102000_c12) 2009; 125
Chen (2023071906202102000_c45) 2012
(2023071906202102000_c19) 1998; 104
(2023071906202102000_c26) 1996; 99
(2023071906202102000_c1) 2004
(2023071906202102000_c37) 2001; 48
(2023071906202102000_c10) 2001; 109
(2023071906202102000_c6) 2002; 111
(2023071906202102000_c17) 1994; 96
(2023071906202102000_c33) 1984; 75
(2023071906202102000_c2) 2009; 56
Batchelor (2023071906202102000_c28) 1956
(2023071906202102000_c18) 1998; 104
(2023071906202102000_c4) 1991; 90
(2023071906202102000_c32) 2011; 58
(2023071906202102000_c27) 2011; 130
(2023071906202102000_c40) 2010; 15
(2023071906202102000_c9) 2012; 49
(2023071906202102000_c23) 2011; 129
(2023071906202102000_c5) 1991; 89
(2023071906202102000_c15) 1985; 77
(2023071906202102000_c24) 1986; 79
(2023071906202102000_c36) 2011
(2023071906202102000_c44) 2004; 115
(2023071906202102000_c20) 2004; 115
(2023071906202102000_c3) 2010; 127
(2023071906202102000_c25) 1990; 88
References_xml – volume: 79
  start-page: 535-540
  year: 1986
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393541
– volume: 96
  start-page: 491-500
  year: 1994
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.410434
– volume: 58
  start-page: 1097-1101
  year: 2011
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1910
– volume: 121
  start-page: 3453-3464
  year: 2007
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2717409
– volume: 130
  start-page: 3038-3045
  year: 2011
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3641457
– volume: 52
  start-page: 623-632
  year: 2006
  publication-title: Acoust. Phys.
  doi: 10.1134/S1063771006060017
– volume: 77
  start-page: 2050-2053
  year: 1985
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.391778
– volume: 49
  start-page: 50-63
  year: 2012
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2011.07.002
– volume: 127
  start-page: 33-44
  year: 2010
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3268599
– volume: 25
  start-page: 51-54
  year: 1953
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907007
– volume: 127
  start-page: 363-379
  year: 1996
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0181
– volume: 90
  start-page: 2683-2691
  year: 1991
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.401863
– volume: 104
  start-page: 2061-2072
  year: 1998
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423720
– volume: 109
  start-page: 2245-2253
  year: 2001
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1360239
– volume: 130
  start-page: 1125-1132
  year: 2011
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3614550
– volume: 88
  start-page: 2025-2026
  year: 1990
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400179
– volume: 129
  start-page: 3652-3660
  year: 2011
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3583537
– volume: 99
  start-page: 3312-3318
  year: 1996
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414983
– volume: 75
  start-page: 749-768
  year: 1984
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.390585
– volume: 56
  start-page: 474-488
  year: 2009
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1066
– volume: 48
  start-page: 341-354
  year: 2001
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.911717
– volume: 88
  start-page: 1584-1595
  year: 1990
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400317
– volume: 104
  start-page: 2654
  year: 1998
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423849
– volume: 122
  start-page: 1352-1364
  year: 2007
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2767420
– volume: 115
  start-page: 1934-1941
  year: 2004
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1694991
– volume: 127
  start-page: 2741-2748
  year: 2010
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3377056
– volume: 109
  start-page: 1329-1333
  year: 2001
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1344157
– volume: 115
  start-page: 1424-1430
  year: 2004
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1646399
– volume: 57
  start-page: 901-917
  year: 2012
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/4/901
– volume: 15
  start-page: 021314
  year: 2010
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3360308
– volume: 111
  start-page: 53-63
  year: 2002
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1421344
– volume: 125
  start-page: 1868-1878
  year: 2009
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3077220
– volume: 89
  start-page: 182-190
  year: 1991
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400497
– start-page: 89
  volume-title: Advances in Nonlinear Acoustics: Proceedings of the 13th International Symposium on Nonlinear Acoustics
  year: 1993
  ident: 2023071906202102000_c16
  article-title: Time domain nonlinear wave equations for lossy media
– volume: 56
  start-page: 474
  year: 2009
  ident: 2023071906202102000_c2
  article-title: A heterogeneous nonlinear attenuating full-wave model of ultrasound
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1066
– volume: 48
  start-page: 341
  year: 2001
  ident: 2023071906202102000_c37
  article-title: A k-space method for large-scale models of wave propagation in tissue
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.911717
– volume: 15
  start-page: 021314
  year: 2010
  ident: 2023071906202102000_c40
  article-title: k-Wave: matlab toolbox for the simulation and reconstruction of photoacoustic wave fields
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3360308
– volume: 127
  start-page: 363
  year: 1996
  ident: 2023071906202102000_c38
  article-title: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0181
– year: 2002
  ident: 2023071906202102000_c21
  article-title: Fractional Laplacian, Levy stable distribution, and time-space models for linear and nonlinear frequency-dependent lossy media
– start-page: 4
  volume-title: Diagnostic Ultrasound Imaging
  year: 2004
  ident: 2023071906202102000_c1
– volume: 90
  start-page: 2683
  year: 1991
  ident: 2023071906202102000_c4
  article-title: A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.401863
– volume: 99
  start-page: 3312
  year: 1996
  ident: 2023071906202102000_c26
  article-title: Time-domain modeling of finite-amplitude sound in relaxing fluids
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414983
– volume: 130
  start-page: 3038
  year: 2011
  ident: 2023071906202102000_c27
  article-title: Linking multiple relaxation, power-law attenuation, and fractional wave equations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3641457
– volume: 89
  start-page: 182
  year: 1991
  ident: 2023071906202102000_c5
  article-title: A model for the propagation and scattering of ultrasound in tissue
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400497
– volume: 122
  start-page: 1352
  year: 2007
  ident: 2023071906202102000_c11
  article-title: Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2767420
– volume: 88
  start-page: 1584
  year: 1990
  ident: 2023071906202102000_c25
  article-title: An equation for acoustic propagation in inhomogeneous media with relaxation losses
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400317
– volume: 109
  start-page: 2245
  year: 2001
  ident: 2023071906202102000_c10
  article-title: Simulations of the thermo-acoustic lens effect during focused ultrasound surgery
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1360239
– volume: 109
  start-page: 1329
  year: 2001
  ident: 2023071906202102000_c8
  article-title: A generalized Westervelt equation for nonlinear medical ultrasound
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1344157
– volume: 58
  start-page: 1097
  year: 2011
  ident: 2023071906202102000_c32
  article-title: Verification of the Westervelt equation for focused transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2011.1910
– volume: 25
  start-page: 51
  year: 1953
  ident: 2023071906202102000_c43
  article-title: Nonlinear dissipative distortion of progressive sound waves at moderate amplitudes
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907007
– volume: 57
  start-page: 901
  year: 2012
  ident: 2023071906202102000_c42
  article-title: Time-reversal transcranial ultrasound beam focusing using a k-space method
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/4/901
– start-page: 21
  volume-title: Handbook of Acoustics
  year: 1998
  ident: 2023071906202102000_c30
  article-title: “Mathematical theory of wave propagation,”
– volume: 130
  start-page: 1125
  year: 2011
  ident: 2023071906202102000_c31
  article-title: Nonlinear acoustic wave equations with fractional loss operators
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3614550
– volume: 75
  start-page: 749
  year: 1984
  ident: 2023071906202102000_c33
  article-title: Distortion and harmonic generation in the nearfield of a finite amplitude sound beam
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.390585
– volume: 125
  start-page: 1868
  year: 2009
  ident: 2023071906202102000_c12
  article-title: A filtered convolution method for the computation of acoustic wave fields in very large spatiotemporal domains
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3077220
– volume: 115
  start-page: 1934
  year: 2004
  ident: 2023071906202102000_c44
  article-title: Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1694991
– start-page: 250
  volume-title: Surveys in Mechanics
  year: 1956
  ident: 2023071906202102000_c28
  article-title: “Viscosity effects in sound waves of finite amplitudes,”
– volume: 104
  start-page: 2061
  year: 1998
  ident: 2023071906202102000_c18
  article-title: Modeling of pulsed finite-amplitude focused sound beams in time domain
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423720
– volume: 121
  start-page: 3453
  year: 2007
  ident: 2023071906202102000_c39
  article-title: k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2717409
– volume: 96
  start-page: 491
  year: 1994
  ident: 2023071906202102000_c17
  article-title: Time domain wave equations for lossy media obeying a frequency power law
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.410434
– volume: 129
  start-page: 3652
  year: 2011
  ident: 2023071906202102000_c23
  article-title: A k-space Greens function solution for acoustic initial value problems in homogeneous media with power law absorption
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3583537
– volume: 104
  start-page: 2654
  year: 1998
  ident: 2023071906202102000_c19
  article-title: Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.423849
– volume: 49
  start-page: 50
  year: 2012
  ident: 2023071906202102000_c9
  article-title: New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere
  publication-title: Wave Motion
  doi: 10.1016/j.wavemoti.2011.07.002
– volume: 127
  start-page: 33
  year: 2010
  ident: 2023071906202102000_c3
  article-title: An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3268599
– volume: 115
  start-page: 1424
  year: 2004
  ident: 2023071906202102000_c20
  article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1646399
– start-page: 202
  volume-title: Chebyshev and Fourier Spectral Methods
  year: 2001
  ident: 2023071906202102000_c41
– volume: 52
  start-page: 623
  year: 2006
  ident: 2023071906202102000_c14
  article-title: Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
  publication-title: Acoust. Phys.
  doi: 10.1134/S1063771006060017
– start-page: 363
  volume-title: Medical Image Computing and Computer-Assisted Intervention, Part I
  year: 2011
  ident: 2023071906202102000_c36
  article-title: “Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method,”
– start-page: 1
  volume-title: Nonlinear Acoustics
  year: 2008
  ident: 2023071906202102000_c7
– ident: 2023071906202102000_c13
  article-title: A k-space method for nonlinear wave propagation
– volume: 77
  start-page: 2050
  year: 1985
  ident: 2023071906202102000_c15
  article-title: Generalized Burgers equation for plane waves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.391778
– volume: 127
  start-page: 2741
  year: 2010
  ident: 2023071906202102000_c22
  article-title: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3377056
– volume: 111
  start-page: 53
  year: 2002
  ident: 2023071906202102000_c6
  article-title: “A k-space method for coupled first-order acoustic propagation equations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1421344
– volume: 79
  start-page: 535
  year: 1986
  ident: 2023071906202102000_c24
  article-title: A general model for the absorption of ultrasound by biological tissues and experimental verification
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393541
– start-page: 43
  volume-title: 10th Australasian Symposium on Parallel and Distributed Computing
  year: 2012
  ident: 2023071906202102000_c45
  article-title: Use of multiple GPUs on shared memory multiprocessors for ultrasound propagation simulations
– volume: 88
  start-page: 2025
  year: 1990
  ident: 2023071906202102000_c34
  article-title: On the linearity of the momentum equation for progressive plane waves of finite amplitude
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400179
SSID ssj0005839
Score 2.5567455
Snippet The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a...
SourceID proquest
pubmed
pascalfrancis
crossref
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4324
SubjectTerms Acoustics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Nonlinear acoustics, macrosonics
Physics
Title Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k -space pseudospectral method
URI http://dx.doi.org/10.1121/1.4712021
https://www.ncbi.nlm.nih.gov/pubmed/22712907
https://www.proquest.com/docview/1021450415
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1520-8524
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0005839
  issn: 0001-4966
  databaseCode: ADMLS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB5KF1ER8W69LKP4IITU3DN5rLqyLCqCXdi3MDOZsHVLW5LmxTf_mz_Mc2aSSepW1H0JpWSGZM6Xc5n5zjmEvOJpmUm_SF1PMO5GcVy4IoyZGwomeZxwxkrNtvicHJ9GJ2fx2Wj0c8BaarZiKr_vzSu5ilThP5ArZsn-h2TtpPAH_Ab5whUkDNd_kjE2MtPp5CtT8IJXTrPcVrzGXklIvQJtwTs24zkSX9Ywl0LWq84YMbuwG2yU5iyRGyzqdWV0SKP3ELhz4bigc-Dj39SqKdY6MbPSGSfYeXro2vZJZsuOeDCTa90sDCuOtOxQdHzNIZHdM6iUMuU98VwfddTR1PJ6eGVogCeLamHPhnDX3pyWzJbo_i4q54sd0jZOfjt15tPhlgZyQ5IdeshfH65T5hD-ZklbSbvV3xANs9ikZVsF39qZxSV1jeUIB6Y_Ck0xlstmJUCz4k_Bkgeeyej-rUr3N16Dl34QgG3xxuRg9v7Tx6891YiFbRhmHritcAWzvrFz7vhFtza8htcvTW-VfcHPTXIdXCTD1hg4RPM75HYrajozsLxLRmp1j1zTjGJZ3yc_OnBSC07ag5MOwEkXK7oDTqrBSRGcVIOTAjhpD06qwUk5vaAGnHQXnNSA8wE5_XA0f3fstv0-XBmm3tZNJKxEwSAgEWWUgJbgjId-LCFojkXJ_NJLi7TIZAommYMjHwQpLK2C-FCEKolE-JCM4ZXUY0KZlKpkKopEUUQZ9zPpZV4pPfDFYJgUE_K6W-28W0bsybLMdVAc-Lmft4KZkJf21o2pALPvpsMdkdk7g8TDBgnZhLzoZJiDAsdTOa6XFObCZgFYKWNCHhnh9qODFPeJ0wlJrbT__BCdXHMr17x5cuWRT8mN_tt8RsbbqlHPwQHfisMW378AzAfknw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+nonlinear+ultrasound+propagation+in+heterogeneous+media+with+power+law+absorption+using+a+k+-space+pseudospectral+method&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Treeby%2C+Bradley+E.&rft.au=Jaros%2C+Jiri&rft.au=Rendell%2C+Alistair+P.&rft.au=Cox%2C+B.+T.&rft.date=2012-06-01&rft.pub=Acoustical+Society+of+America&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=131&rft.issue=6&rft.spage=4324&rft.epage=4336&rft_id=info:doi/10.1121%2F1.4712021&rft.externalDocID=jasa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon