Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k -space pseudospectral method
The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k -space pseudospectral...
Saved in:
| Published in | The Journal of the Acoustical Society of America Vol. 131; no. 6; pp. 4324 - 4336 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Melville, NY
Acoustical Society of America
01.06.2012
American Institute of Physics |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0001-4966 1520-8524 1520-8524 |
| DOI | 10.1121/1.4712021 |
Cover
| Abstract | The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the
k
-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a
k
-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe. |
|---|---|
| AbstractList | The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe. The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe. The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k -space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k -space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe. |
| Author | Cox, B. T. Jaros, Jiri Treeby, Bradley E. Rendell, Alistair P. |
| Author_xml | – sequence: 1 givenname: Bradley surname: Treeby middlename: E. fullname: Treeby, Bradley E. email: bradley.treeby@anu.edu.au organization: Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia – sequence: 2 givenname: Jiri surname: Jaros fullname: Jaros, Jiri organization: Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia – sequence: 3 givenname: Alistair surname: Rendell middlename: P. fullname: Rendell, Alistair P. organization: Research School of Computer Science, College of Engineering and Computer Science, The Australian National University, Canberra ACT 0200, Australia – sequence: 4 givenname: B. surname: Cox middlename: T. fullname: Cox, B. T. organization: Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, United Kingdom |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26020679$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22712907$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU-L1TAUxYOMOG9GF34ByUZwFp1J0rRpN4IMjgojbnQdbpPb96J9TU1aHi795t55fxREV5fA75xwzrlgZ2MckbHnUlxLqeSNvNZGKqHkI7aSlRJFUyl9xlZCCFnotq7P2UXOX-lZNWX7hJ0rRXwrzIr9_Bg9DmFcc_Kki5D4MswJclxGz6cUJ1jDHOLIw8g3OGOKaxwxLplv0QfguzBv-BR3mPgAOw5djmnaC5b84Av8Gy_yBA75lHHxMU_o6IOB9PMm-qfscQ9DxmfHe8m-3L39fPu-uP_07sPtm_vClUbMRe0ooW-M0V2v66bpoYFSVk4aXXV9I3thvPGtM94jqFpTREqLxqiuxFp35SV7dfClTN8XzLPdhuxwGGCfxkrqT1dCy4rQF0d06SiknVLYQvphT7UR8PIIQHYw9AlGF_IfrhZK1KYl7ubAuRRzTthbF-Z9m1RAGOhP-zCglfY4ICmu_lKcTP_Fvj6w-eT6f_g0s_09s13KX_KgsKE |
| CODEN | JASMAN |
| CitedBy_id | crossref_primary_10_1121_1_4789001 crossref_primary_10_2478_s13540_013_0003_1 crossref_primary_10_1109_TUFFC_2017_2737620 crossref_primary_10_1364_OL_39_004903 crossref_primary_10_1088_2516_1091_acd28b crossref_primary_10_1118_1_4939809 crossref_primary_10_3390_s20195563 crossref_primary_10_1109_TUFFC_2020_3021981 crossref_primary_10_1134_S106287382370507X crossref_primary_10_1016_j_jcp_2024_113527 crossref_primary_10_1016_j_softx_2023_101338 crossref_primary_10_1109_TBME_2021_3115553 crossref_primary_10_1109_TBME_2021_3120919 crossref_primary_10_1088_1361_6560_ab3704 crossref_primary_10_1002_jum_16005 crossref_primary_10_3390_ma9030205 crossref_primary_10_1121_10_0003210 crossref_primary_10_1121_10_0032458 crossref_primary_10_1063_5_0081565 crossref_primary_10_1016_j_ultsonch_2024_106848 crossref_primary_10_1038_s41598_018_25904_9 crossref_primary_10_1109_TUFFC_2019_2894755 crossref_primary_10_3390_math12071106 crossref_primary_10_1088_1361_6463_ac5bcd crossref_primary_10_1080_02656736_2021_1959658 crossref_primary_10_1121_10_0004302 crossref_primary_10_1121_1_4894790 crossref_primary_10_3788_PI_2024_R06 crossref_primary_10_1080_10407782_2020_1714325 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_1121_10_0024725 crossref_primary_10_1117_1_JBO_29_S1_S11509 crossref_primary_10_1016_j_ultras_2024_107392 crossref_primary_10_1109_TUFFC_2024_3523037 crossref_primary_10_1088_1361_6560_aacc33 crossref_primary_10_1016_j_apacoust_2022_108977 crossref_primary_10_1051_e3sconf_202128007016 crossref_primary_10_1088_1742_6596_2822_1_012020 crossref_primary_10_1121_10_0025391 crossref_primary_10_1109_TBME_2019_2912146 crossref_primary_10_1177_14759217211036881 crossref_primary_10_3109_02656736_2013_790092 crossref_primary_10_1002_jum_16114 crossref_primary_10_1109_OJUFFC_2023_3338570 crossref_primary_10_1117_1_JMI_3_4_046005 crossref_primary_10_1371_journal_pbio_3002884 crossref_primary_10_1002_adma_202310110 crossref_primary_10_3934_mbe_2022476 crossref_primary_10_1103_PhysRevE_110_065002 crossref_primary_10_1259_bjr_20200755 crossref_primary_10_1177_1475921718762154 crossref_primary_10_7498_aps_72_20230323 crossref_primary_10_1121_1_4944576 crossref_primary_10_3934_eect_2020074 crossref_primary_10_1088_1361_6420_ac3b64 crossref_primary_10_1016_j_jcp_2018_04_010 crossref_primary_10_1121_10_0020151 crossref_primary_10_1109_TUFFC_2015_2499776 crossref_primary_10_1109_TMI_2015_2396632 crossref_primary_10_1118_1_4951729 crossref_primary_10_1007_s11075_020_00972_z crossref_primary_10_1016_j_apm_2016_10_026 crossref_primary_10_1038_s41598_024_51623_5 crossref_primary_10_1016_j_ultrasmedbio_2022_02_017 crossref_primary_10_1103_PhysRevApplied_12_014016 crossref_primary_10_1109_TUFFC_2013_2812 crossref_primary_10_3390_app13116523 crossref_primary_10_1121_1_4932166 crossref_primary_10_3389_fphy_2022_1071063 crossref_primary_10_2139_ssrn_3987063 crossref_primary_10_1093_gji_ggy449 crossref_primary_10_1021_acsnano_1c03087 crossref_primary_10_1121_10_0023952 crossref_primary_10_1121_10_0002177 crossref_primary_10_1134_S1063771014040071 crossref_primary_10_1177_1094342019846290 crossref_primary_10_1121_10_0017836 crossref_primary_10_1109_TUFFC_2017_2653063 crossref_primary_10_1016_j_wavemoti_2016_03_004 crossref_primary_10_1088_1361_6463_aae96d crossref_primary_10_1016_j_ultsonch_2020_105312 crossref_primary_10_1016_j_brs_2021_01_002 crossref_primary_10_1088_1742_6596_2822_1_012014 crossref_primary_10_1016_j_ultrasmedbio_2024_12_016 crossref_primary_10_1063_1_5091108 crossref_primary_10_1109_TUFFC_2022_3198522 crossref_primary_10_1121_10_0008941 crossref_primary_10_1016_j_cmpb_2024_108458 crossref_primary_10_1109_TUFFC_2016_2600862 crossref_primary_10_1007_s12008_017_0409_9 crossref_primary_10_1109_TUFFC_2015_007034 crossref_primary_10_1109_COMST_2017_2705740 crossref_primary_10_1109_TUFFC_2019_2948305 crossref_primary_10_1121_10_0011743 crossref_primary_10_1121_1_4962555 crossref_primary_10_1016_j_jcp_2023_112522 crossref_primary_10_1038_s41378_023_00513_3 crossref_primary_10_1038_s41598_021_81964_4 crossref_primary_10_1088_0031_9155_58_19_6663 crossref_primary_10_1016_j_ultrasmedbio_2016_03_029 crossref_primary_10_1371_journal_pone_0267268 crossref_primary_10_1016_j_apacoust_2024_110144 crossref_primary_10_1016_j_apm_2017_03_057 crossref_primary_10_1121_1_5050519 crossref_primary_10_1007_s00245_017_9471_8 crossref_primary_10_1109_TRPMS_2022_3177236 crossref_primary_10_1364_OPTICA_2_000307 crossref_primary_10_1109_TUFFC_2014_2935 crossref_primary_10_1016_j_ultras_2025_107641 crossref_primary_10_7567_1347_4065_ab19b7 crossref_primary_10_1080_02656736_2020_1834626 crossref_primary_10_1142_S0219199720500698 crossref_primary_10_1016_j_jcp_2021_110430 crossref_primary_10_1016_j_apacoust_2022_108700 crossref_primary_10_1088_1361_6560_ad506f crossref_primary_10_1109_TUFFC_2019_2943626 crossref_primary_10_1016_j_jcp_2021_110797 crossref_primary_10_1109_TUFFC_2015_007169 crossref_primary_10_1121_10_0016886 crossref_primary_10_1121_10_0017974 crossref_primary_10_1088_1741_2552_aa843e crossref_primary_10_1109_TBME_2016_2619741 crossref_primary_10_31857_S0367676524010235 crossref_primary_10_1103_PhysRevApplied_21_014011 crossref_primary_10_1016_j_ultras_2016_03_015 crossref_primary_10_1109_TUFFC_2023_3292595 crossref_primary_10_1103_PhysRevApplied_14_054070 crossref_primary_10_1121_10_0005655 crossref_primary_10_1088_1361_6560_ac5296 crossref_primary_10_1109_TMRB_2023_3310201 crossref_primary_10_1117_1_JBO_20_4_046013 crossref_primary_10_3390_app8040609 crossref_primary_10_3109_02656736_2014_1002817 crossref_primary_10_1109_TBCAS_2021_3135859 crossref_primary_10_3390_a16020124 crossref_primary_10_1088_0031_9155_60_19_7695 crossref_primary_10_1109_TUFFC_2017_2719962 crossref_primary_10_1109_TUFFC_2024_3451289 crossref_primary_10_3390_ma12203433 crossref_primary_10_1177_1094342015581024 crossref_primary_10_1088_1361_6560_aace07 crossref_primary_10_1088_1361_6560_ac7d90 crossref_primary_10_1109_TBME_2021_3126734 crossref_primary_10_1109_TBME_2023_3266952 crossref_primary_10_1109_TUFFC_2017_2681695 crossref_primary_10_1002_mp_13961 crossref_primary_10_1016_j_ultras_2023_107026 crossref_primary_10_1121_1_5048413 crossref_primary_10_1109_TUFFC_2021_3112544 crossref_primary_10_1016_j_jcp_2019_04_025 crossref_primary_10_1063_1_4873678 crossref_primary_10_3390_s23249702 crossref_primary_10_1121_10_0028134 crossref_primary_10_1002_ird3_112 crossref_primary_10_1088_0031_9155_59_12_3139 crossref_primary_10_1121_1_4928396 crossref_primary_10_1109_TUFFC_2021_3063055 crossref_primary_10_1016_j_ast_2024_109629 crossref_primary_10_1111_sapm_12771 crossref_primary_10_1088_0031_9155_58_18_6263 crossref_primary_10_1016_j_ultras_2017_10_006 crossref_primary_10_1016_j_ymssp_2021_108654 crossref_primary_10_1142_S2591728520500218 crossref_primary_10_1016_j_pacs_2023_100452 crossref_primary_10_1109_TUFFC_2018_2878464 crossref_primary_10_1364_OE_513538 crossref_primary_10_1051_e3sconf_202020101005 crossref_primary_10_1002_jbio_201400143 crossref_primary_10_1038_s41598_019_56369_z crossref_primary_10_1121_1_4928036 crossref_primary_10_1109_TUFFC_2019_2941795 crossref_primary_10_1121_10_0019306 crossref_primary_10_1121_1_5032196 crossref_primary_10_1016_j_jcp_2018_02_005 crossref_primary_10_1016_j_ultrasmedbio_2021_03_010 crossref_primary_10_1002_mp_13183 crossref_primary_10_1080_02656736_2021_2012603 crossref_primary_10_1016_j_ultrasmedbio_2019_09_010 crossref_primary_10_1121_10_0002877 crossref_primary_10_1016_j_ultras_2021_106504 crossref_primary_10_1109_TUFFC_2023_3313549 crossref_primary_10_1109_TUFFC_2025_3534660 crossref_primary_10_1016_j_ultras_2021_106626 crossref_primary_10_1016_j_jconrel_2019_03_030 crossref_primary_10_1109_TUFFC_2021_3128227 crossref_primary_10_1109_TUFFC_2018_2828316 crossref_primary_10_1121_10_0036215 crossref_primary_10_1364_BOE_6_001502 crossref_primary_10_1016_j_jmbbm_2019_103502 crossref_primary_10_1016_j_ultras_2023_106936 crossref_primary_10_1080_10407790_2023_2228022 crossref_primary_10_1007_s00339_023_06586_1 crossref_primary_10_1109_TUFFC_2021_3131752 crossref_primary_10_1038_s41598_019_52443_8 crossref_primary_10_1016_j_jde_2016_06_025 crossref_primary_10_1109_TUFFC_2022_3169082 crossref_primary_10_1007_s10396_023_01378_9 crossref_primary_10_1088_1361_6560_aa58c9 crossref_primary_10_1109_TCI_2017_2706029 crossref_primary_10_1121_10_0015402 crossref_primary_10_1002_jum_16611 crossref_primary_10_1177_01617346221147820 crossref_primary_10_1016_j_apacoust_2021_108367 crossref_primary_10_7779_JKSNT_2016_36_1_27 crossref_primary_10_1109_TBME_2018_2870064 crossref_primary_10_1109_TUFFC_2017_2784810 crossref_primary_10_1016_j_cmpb_2022_106774 crossref_primary_10_1002_mp_12704 crossref_primary_10_1016_j_zemedi_2023_01_003 crossref_primary_10_1063_5_0239956 crossref_primary_10_1016_j_ultrasmedbio_2018_08_021 crossref_primary_10_1109_TUFFC_2017_2687470 crossref_primary_10_1121_10_0011695 crossref_primary_10_3390_app10217655 crossref_primary_10_1109_TMI_2021_3115790 crossref_primary_10_1088_1361_6560_aabeff crossref_primary_10_1002_mp_17270 crossref_primary_10_1190_geo2019_0151_1 crossref_primary_10_1007_s00542_016_3150_6 crossref_primary_10_1109_TUFFC_2020_3018424 crossref_primary_10_1117_1_JBO_23_11_116501 crossref_primary_10_1103_PhysRevX_8_041002 crossref_primary_10_1088_1361_6560_ac215e crossref_primary_10_3390_app13127317 crossref_primary_10_1109_TUFFC_2024_3466119 crossref_primary_10_1155_2020_3965980 crossref_primary_10_1016_j_apacoust_2022_109060 crossref_primary_10_1109_TUFFC_2023_3315011 crossref_primary_10_1364_OE_23_020617 crossref_primary_10_3390_s150614788 crossref_primary_10_1109_TBME_2017_2732684 crossref_primary_10_3788_CJL230708 crossref_primary_10_3390_s19040863 crossref_primary_10_1109_TBME_2014_2373397 crossref_primary_10_1038_s41551_024_01300_9 crossref_primary_10_1007_s10704_022_00650_2 crossref_primary_10_1016_S1452_3981_23_13259_7 crossref_primary_10_1088_1361_6560_ab6071 crossref_primary_10_3389_fbioe_2022_1034194 crossref_primary_10_1121_1_4976688 crossref_primary_10_1121_1_4976689 crossref_primary_10_1109_TUFFC_2018_2881358 crossref_primary_10_1137_20M1338460 crossref_primary_10_1109_TUFFC_2021_3051729 crossref_primary_10_1088_1361_6501_abc866 crossref_primary_10_1109_JBHI_2024_3389708 crossref_primary_10_1002_mp_16090 crossref_primary_10_1121_10_0001690 crossref_primary_10_1016_j_apacoust_2017_10_027 crossref_primary_10_1109_TRPMS_2020_3015109 crossref_primary_10_1109_TUFFC_2019_2892753 crossref_primary_10_2478_ama_2021_0022 crossref_primary_10_3390_a15110399 crossref_primary_10_3390_electronics11182836 crossref_primary_10_1088_0266_5611_32_11_115012 crossref_primary_10_1121_10_0001454 crossref_primary_10_1121_1_4976339 crossref_primary_10_1109_TUFFC_2024_3355390 crossref_primary_10_1002_mp_12044 crossref_primary_10_1109_TUFFC_2022_3213021 crossref_primary_10_3788_IRLA20210774 crossref_primary_10_1051_e3sconf_202128008004 crossref_primary_10_1088_0960_1317_24_8_085007 crossref_primary_10_1109_TUFFC_2018_2861895 crossref_primary_10_1121_1_4998585 crossref_primary_10_1121_1_4812869 crossref_primary_10_1121_10_0013426 crossref_primary_10_1121_1_4812863 crossref_primary_10_1109_TMI_2014_2383835 crossref_primary_10_1017_hpl_2023_18 |
| Cites_doi | 10.1121/1.393541 10.1121/1.410434 10.1109/TUFFC.2011.1910 10.1121/1.2717409 10.1121/1.3641457 10.1134/S1063771006060017 10.1121/1.391778 10.1016/j.wavemoti.2011.07.002 10.1121/1.3268599 10.1121/1.1907007 10.1006/jcph.1996.0181 10.1121/1.401863 10.1121/1.423720 10.1121/1.1360239 10.1121/1.3614550 10.1121/1.400179 10.1121/1.3583537 10.1121/1.414983 10.1121/1.390585 10.1109/TUFFC.2009.1066 10.1109/58.911717 10.1121/1.400317 10.1121/1.423849 10.1121/1.2767420 10.1121/1.1694991 10.1121/1.3377056 10.1121/1.1344157 10.1121/1.1646399 10.1088/0031-9155/57/4/901 10.1117/1.3360308 10.1121/1.1421344 10.1121/1.3077220 10.1121/1.400497 |
| ContentType | Journal Article |
| Copyright | 2012 Acoustical Society of America 2015 INIST-CNRS |
| Copyright_xml | – notice: 2012 Acoustical Society of America – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW NPM 7X8 |
| DOI | 10.1121/1.4712021 |
| DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1520-8524 |
| EndPage | 4336 |
| ExternalDocumentID | 22712907 26020679 10_1121_1_4712021 jasa |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -~X .DC .GJ 123 186 29L 3O- 4.4 41~ 5-Q 53G 5RE 5VS 6TJ 85S AAAAW AAEUA AAPUP AAYIH ABDNZ ABEFF ABEFU ABJNI ABNAN ABPPZ ABTAH ABZEH ACBNA ACBRY ACCUC ACGFO ACGFS ACNCT ACXMS ACYGS ADCTM AEGXH AENEX AETEA AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AGVCI AHPGS AHSDT AI. AIAGR AIDUJ AIZTS ALMA_UNASSIGNED_HOLDINGS AQWKA BAUXJ CS3 D0L DU5 EBS EJD ESX F5P G8K H~9 M71 M73 MVM NEJ NHB OHT OK1 P2P RAZ RIP RNS ROL RQS S10 SC5 SJN TN5 TWZ UCJ UHB UPT UQL VH1 VOH VQA WH7 XFK XJT XOL XSW YQT ZCG ZXP ZY4 ~02 ~G0 AAGWI AAYXX ABJGX ADMLS CITATION ABDPE ADXHL AEILP IQODW NPM 7X8 |
| ID | FETCH-LOGICAL-c370t-6c120d8774bf4688fa8a315c1745bf81f07d7d9c7ddea264227058e772b3e64b3 |
| ISSN | 0001-4966 1520-8524 |
| IngestDate | Thu Sep 04 18:08:01 EDT 2025 Thu Apr 03 07:02:22 EDT 2025 Mon Jul 21 09:13:22 EDT 2025 Thu Apr 24 22:50:00 EDT 2025 Wed Oct 01 03:31:53 EDT 2025 Fri Jun 21 00:19:02 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Spectral method Power law Modeling Non linear acoustics |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c370t-6c120d8774bf4688fa8a315c1745bf81f07d7d9c7ddea264227058e772b3e64b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22712907 |
| PQID | 1021450415 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1021450415 pubmed_primary_22712907 pascalfrancis_primary_26020679 crossref_citationtrail_10_1121_1_4712021 crossref_primary_10_1121_1_4712021 scitation_primary_10_1121_1_4712021Modeling_nonlinear_u |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-01 |
| PublicationDateYYYYMMDD | 2012-06-01 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Melville, NY |
| PublicationPlace_xml | – name: Melville, NY – name: United States |
| PublicationTitle | The Journal of the Acoustical Society of America |
| PublicationTitleAlternate | J Acoust Soc Am |
| PublicationYear | 2012 |
| Publisher | Acoustical Society of America American Institute of Physics |
| Publisher_xml | – name: Acoustical Society of America – name: American Institute of Physics |
| References | Tavakkoli, J.; Cathignol, D.; Souchon, R.; Sapozhnikov, O. 1998; 104 Averyanov, M.; Khokhlova, V.; Sapozhnikov, O.; Blanc-Benon, P.; Cleveland, R. 2006; 52 Aanonsen, S.; Barkve, T.; Tjotta, J.; Tjotta, S. 1984; 75 Treeby, B.; Cox, B. 2010; 127 Cleveland, R.; Hamilton, M.; Blackstock, D. 1996; 99 Sparrow, V.; Raspet, R. 1991; 90 Wojcik, J. 1998; 104 Nachman, A.; Smith, J.; Waag, R. 1990; 88 Coulouvrat, F. 2012; 49 Hamilton, M.; Blackstock, D. 1990; 88 Mast, T.; Souriau, L.; Liu, D.-L.; Tabei, M.; Nachman, A.; Waag, R. 2001; 48 Jensen, J. 1991; 89 Treeby, B.; Cox, B. 2011; 129 Jongen, H.; Thijssen, J.; van den Aarssen, M.; Verhoef, W. 1986; 79 Treeby, B.; Cox, B. 2010; 15 Szabo, T. 1994; 96 Cox, B.; Kara, S.; Arridge, S.; Beard, P. 2007; 121 Taraldsen, G. 2001; 109 Jing, Y.; Cleveland, R. 2007; 122 Pinton, G.; Dahl, J.; Rosenzweig, S.; Trahey, G. 2009; 56 Jing, Y.; Shen, D.; Clement, G. 2011; 58 Berenger, J.-P. 1996; 127 Hallaj, I.; Cleveland, R.; Hynynen, K. 2001; 109 Tabei, M.; Mast, T.; Waag, R. 2002; 111 Verweij, M.; Huijssen, J. 2009; 125 Chen, W.; Holm, S. 2004; 115 Nasholm, S.; Holm, S. 2011; 130 Prieur, F.; Holm, S. 2011; 130 Mendousse, J. 1953; 25 Blackstock, D. 1985; 77 Jing, Y.; Meral, F.; Clement, G. 2012; 57 McGough, R. 2004; 115 Huijssen, J.; Verweij, M. 2010; 127 (2023071906202102000_c43) 1953; 25 (2023071906202102000_c38) 1996; 127 (2023071906202102000_c8) 2001; 109 (2023071906202102000_c41) 2001 (2023071906202102000_c21) 2002 2023071906202102000_c13 (2023071906202102000_c39) 2007; 121 (2023071906202102000_c42) 2012; 57 (2023071906202102000_c31) 2011; 130 Crocker (2023071906202102000_c30) 1998 (2023071906202102000_c34) 1990; 88 (2023071906202102000_c14) 2006; 52 (2023071906202102000_c11) 2007; 122 (2023071906202102000_c16) 1993 Hamilton (2023071906202102000_c7) 2008 (2023071906202102000_c22) 2010; 127 (2023071906202102000_c12) 2009; 125 Chen (2023071906202102000_c45) 2012 (2023071906202102000_c19) 1998; 104 (2023071906202102000_c26) 1996; 99 (2023071906202102000_c1) 2004 (2023071906202102000_c37) 2001; 48 (2023071906202102000_c10) 2001; 109 (2023071906202102000_c6) 2002; 111 (2023071906202102000_c17) 1994; 96 (2023071906202102000_c33) 1984; 75 (2023071906202102000_c2) 2009; 56 Batchelor (2023071906202102000_c28) 1956 (2023071906202102000_c18) 1998; 104 (2023071906202102000_c4) 1991; 90 (2023071906202102000_c32) 2011; 58 (2023071906202102000_c27) 2011; 130 (2023071906202102000_c40) 2010; 15 (2023071906202102000_c9) 2012; 49 (2023071906202102000_c23) 2011; 129 (2023071906202102000_c5) 1991; 89 (2023071906202102000_c15) 1985; 77 (2023071906202102000_c24) 1986; 79 (2023071906202102000_c36) 2011 (2023071906202102000_c44) 2004; 115 (2023071906202102000_c20) 2004; 115 (2023071906202102000_c3) 2010; 127 (2023071906202102000_c25) 1990; 88 |
| References_xml | – volume: 79 start-page: 535-540 year: 1986 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393541 – volume: 96 start-page: 491-500 year: 1994 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.410434 – volume: 58 start-page: 1097-1101 year: 2011 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1910 – volume: 121 start-page: 3453-3464 year: 2007 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2717409 – volume: 130 start-page: 3038-3045 year: 2011 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3641457 – volume: 52 start-page: 623-632 year: 2006 publication-title: Acoust. Phys. doi: 10.1134/S1063771006060017 – volume: 77 start-page: 2050-2053 year: 1985 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.391778 – volume: 49 start-page: 50-63 year: 2012 publication-title: Wave Motion doi: 10.1016/j.wavemoti.2011.07.002 – volume: 127 start-page: 33-44 year: 2010 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3268599 – volume: 25 start-page: 51-54 year: 1953 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907007 – volume: 127 start-page: 363-379 year: 1996 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0181 – volume: 90 start-page: 2683-2691 year: 1991 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.401863 – volume: 104 start-page: 2061-2072 year: 1998 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423720 – volume: 109 start-page: 2245-2253 year: 2001 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1360239 – volume: 130 start-page: 1125-1132 year: 2011 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3614550 – volume: 88 start-page: 2025-2026 year: 1990 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400179 – volume: 129 start-page: 3652-3660 year: 2011 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3583537 – volume: 99 start-page: 3312-3318 year: 1996 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.414983 – volume: 75 start-page: 749-768 year: 1984 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.390585 – volume: 56 start-page: 474-488 year: 2009 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2009.1066 – volume: 48 start-page: 341-354 year: 2001 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.911717 – volume: 88 start-page: 1584-1595 year: 1990 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400317 – volume: 104 start-page: 2654 year: 1998 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423849 – volume: 122 start-page: 1352-1364 year: 2007 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2767420 – volume: 115 start-page: 1934-1941 year: 2004 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1694991 – volume: 127 start-page: 2741-2748 year: 2010 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3377056 – volume: 109 start-page: 1329-1333 year: 2001 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1344157 – volume: 115 start-page: 1424-1430 year: 2004 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1646399 – volume: 57 start-page: 901-917 year: 2012 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/4/901 – volume: 15 start-page: 021314 year: 2010 publication-title: J. Biomed. Opt. doi: 10.1117/1.3360308 – volume: 111 start-page: 53-63 year: 2002 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1421344 – volume: 125 start-page: 1868-1878 year: 2009 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3077220 – volume: 89 start-page: 182-190 year: 1991 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400497 – start-page: 89 volume-title: Advances in Nonlinear Acoustics: Proceedings of the 13th International Symposium on Nonlinear Acoustics year: 1993 ident: 2023071906202102000_c16 article-title: Time domain nonlinear wave equations for lossy media – volume: 56 start-page: 474 year: 2009 ident: 2023071906202102000_c2 article-title: A heterogeneous nonlinear attenuating full-wave model of ultrasound publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2009.1066 – volume: 48 start-page: 341 year: 2001 ident: 2023071906202102000_c37 article-title: A k-space method for large-scale models of wave propagation in tissue publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.911717 – volume: 15 start-page: 021314 year: 2010 ident: 2023071906202102000_c40 article-title: k-Wave: matlab toolbox for the simulation and reconstruction of photoacoustic wave fields publication-title: J. Biomed. Opt. doi: 10.1117/1.3360308 – volume: 127 start-page: 363 year: 1996 ident: 2023071906202102000_c38 article-title: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0181 – year: 2002 ident: 2023071906202102000_c21 article-title: Fractional Laplacian, Levy stable distribution, and time-space models for linear and nonlinear frequency-dependent lossy media – start-page: 4 volume-title: Diagnostic Ultrasound Imaging year: 2004 ident: 2023071906202102000_c1 – volume: 90 start-page: 2683 year: 1991 ident: 2023071906202102000_c4 article-title: A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.401863 – volume: 99 start-page: 3312 year: 1996 ident: 2023071906202102000_c26 article-title: Time-domain modeling of finite-amplitude sound in relaxing fluids publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.414983 – volume: 130 start-page: 3038 year: 2011 ident: 2023071906202102000_c27 article-title: Linking multiple relaxation, power-law attenuation, and fractional wave equations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3641457 – volume: 89 start-page: 182 year: 1991 ident: 2023071906202102000_c5 article-title: A model for the propagation and scattering of ultrasound in tissue publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400497 – volume: 122 start-page: 1352 year: 2007 ident: 2023071906202102000_c11 article-title: Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2767420 – volume: 88 start-page: 1584 year: 1990 ident: 2023071906202102000_c25 article-title: An equation for acoustic propagation in inhomogeneous media with relaxation losses publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400317 – volume: 109 start-page: 2245 year: 2001 ident: 2023071906202102000_c10 article-title: Simulations of the thermo-acoustic lens effect during focused ultrasound surgery publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1360239 – volume: 109 start-page: 1329 year: 2001 ident: 2023071906202102000_c8 article-title: A generalized Westervelt equation for nonlinear medical ultrasound publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1344157 – volume: 58 start-page: 1097 year: 2011 ident: 2023071906202102000_c32 article-title: Verification of the Westervelt equation for focused transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2011.1910 – volume: 25 start-page: 51 year: 1953 ident: 2023071906202102000_c43 article-title: Nonlinear dissipative distortion of progressive sound waves at moderate amplitudes publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907007 – volume: 57 start-page: 901 year: 2012 ident: 2023071906202102000_c42 article-title: Time-reversal transcranial ultrasound beam focusing using a k-space method publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/4/901 – start-page: 21 volume-title: Handbook of Acoustics year: 1998 ident: 2023071906202102000_c30 article-title: “Mathematical theory of wave propagation,” – volume: 130 start-page: 1125 year: 2011 ident: 2023071906202102000_c31 article-title: Nonlinear acoustic wave equations with fractional loss operators publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3614550 – volume: 75 start-page: 749 year: 1984 ident: 2023071906202102000_c33 article-title: Distortion and harmonic generation in the nearfield of a finite amplitude sound beam publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.390585 – volume: 125 start-page: 1868 year: 2009 ident: 2023071906202102000_c12 article-title: A filtered convolution method for the computation of acoustic wave fields in very large spatiotemporal domains publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3077220 – volume: 115 start-page: 1934 year: 2004 ident: 2023071906202102000_c44 article-title: Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1694991 – start-page: 250 volume-title: Surveys in Mechanics year: 1956 ident: 2023071906202102000_c28 article-title: “Viscosity effects in sound waves of finite amplitudes,” – volume: 104 start-page: 2061 year: 1998 ident: 2023071906202102000_c18 article-title: Modeling of pulsed finite-amplitude focused sound beams in time domain publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423720 – volume: 121 start-page: 3453 year: 2007 ident: 2023071906202102000_c39 article-title: k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2717409 – volume: 96 start-page: 491 year: 1994 ident: 2023071906202102000_c17 article-title: Time domain wave equations for lossy media obeying a frequency power law publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.410434 – volume: 129 start-page: 3652 year: 2011 ident: 2023071906202102000_c23 article-title: A k-space Greens function solution for acoustic initial value problems in homogeneous media with power law absorption publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3583537 – volume: 104 start-page: 2654 year: 1998 ident: 2023071906202102000_c19 article-title: Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.423849 – volume: 49 start-page: 50 year: 2012 ident: 2023071906202102000_c9 article-title: New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere publication-title: Wave Motion doi: 10.1016/j.wavemoti.2011.07.002 – volume: 127 start-page: 33 year: 2010 ident: 2023071906202102000_c3 article-title: An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3268599 – volume: 115 start-page: 1424 year: 2004 ident: 2023071906202102000_c20 article-title: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1646399 – start-page: 202 volume-title: Chebyshev and Fourier Spectral Methods year: 2001 ident: 2023071906202102000_c41 – volume: 52 start-page: 623 year: 2006 ident: 2023071906202102000_c14 article-title: Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media publication-title: Acoust. Phys. doi: 10.1134/S1063771006060017 – start-page: 363 volume-title: Medical Image Computing and Computer-Assisted Intervention, Part I year: 2011 ident: 2023071906202102000_c36 article-title: “Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method,” – start-page: 1 volume-title: Nonlinear Acoustics year: 2008 ident: 2023071906202102000_c7 – ident: 2023071906202102000_c13 article-title: A k-space method for nonlinear wave propagation – volume: 77 start-page: 2050 year: 1985 ident: 2023071906202102000_c15 article-title: Generalized Burgers equation for plane waves publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.391778 – volume: 127 start-page: 2741 year: 2010 ident: 2023071906202102000_c22 article-title: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3377056 – volume: 111 start-page: 53 year: 2002 ident: 2023071906202102000_c6 article-title: “A k-space method for coupled first-order acoustic propagation equations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1421344 – volume: 79 start-page: 535 year: 1986 ident: 2023071906202102000_c24 article-title: A general model for the absorption of ultrasound by biological tissues and experimental verification publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393541 – start-page: 43 volume-title: 10th Australasian Symposium on Parallel and Distributed Computing year: 2012 ident: 2023071906202102000_c45 article-title: Use of multiple GPUs on shared memory multiprocessors for ultrasound propagation simulations – volume: 88 start-page: 2025 year: 1990 ident: 2023071906202102000_c34 article-title: On the linearity of the momentum equation for progressive plane waves of finite amplitude publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400179 |
| SSID | ssj0005839 |
| Score | 2.5567455 |
| Snippet | The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a... |
| SourceID | proquest pubmed pascalfrancis crossref scitation |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4324 |
| SubjectTerms | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Nonlinear acoustics, macrosonics Physics |
| Title | Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k -space pseudospectral method |
| URI | http://dx.doi.org/10.1121/1.4712021 https://www.ncbi.nlm.nih.gov/pubmed/22712907 https://www.proquest.com/docview/1021450415 |
| Volume | 131 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1520-8524 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0005839 issn: 0001-4966 databaseCode: ADMLS dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB5KF1ER8W69LKP4IITU3DN5rLqyLCqCXdi3MDOZsHVLW5LmxTf_mz_Mc2aSSepW1H0JpWSGZM6Xc5n5zjmEvOJpmUm_SF1PMO5GcVy4IoyZGwomeZxwxkrNtvicHJ9GJ2fx2Wj0c8BaarZiKr_vzSu5ilThP5ArZsn-h2TtpPAH_Ab5whUkDNd_kjE2MtPp5CtT8IJXTrPcVrzGXklIvQJtwTs24zkSX9Ywl0LWq84YMbuwG2yU5iyRGyzqdWV0SKP3ELhz4bigc-Dj39SqKdY6MbPSGSfYeXro2vZJZsuOeDCTa90sDCuOtOxQdHzNIZHdM6iUMuU98VwfddTR1PJ6eGVogCeLamHPhnDX3pyWzJbo_i4q54sd0jZOfjt15tPhlgZyQ5IdeshfH65T5hD-ZklbSbvV3xANs9ikZVsF39qZxSV1jeUIB6Y_Ck0xlstmJUCz4k_Bkgeeyej-rUr3N16Dl34QgG3xxuRg9v7Tx6891YiFbRhmHritcAWzvrFz7vhFtza8htcvTW-VfcHPTXIdXCTD1hg4RPM75HYrajozsLxLRmp1j1zTjGJZ3yc_OnBSC07ag5MOwEkXK7oDTqrBSRGcVIOTAjhpD06qwUk5vaAGnHQXnNSA8wE5_XA0f3fstv0-XBmm3tZNJKxEwSAgEWWUgJbgjId-LCFojkXJ_NJLi7TIZAommYMjHwQpLK2C-FCEKolE-JCM4ZXUY0KZlKpkKopEUUQZ9zPpZV4pPfDFYJgUE_K6W-28W0bsybLMdVAc-Lmft4KZkJf21o2pALPvpsMdkdk7g8TDBgnZhLzoZJiDAsdTOa6XFObCZgFYKWNCHhnh9qODFPeJ0wlJrbT__BCdXHMr17x5cuWRT8mN_tt8RsbbqlHPwQHfisMW378AzAfknw |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+nonlinear+ultrasound+propagation+in+heterogeneous+media+with+power+law+absorption+using+a+k+-space+pseudospectral+method&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Treeby%2C+Bradley+E.&rft.au=Jaros%2C+Jiri&rft.au=Rendell%2C+Alistair+P.&rft.au=Cox%2C+B.+T.&rft.date=2012-06-01&rft.pub=Acoustical+Society+of+America&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=131&rft.issue=6&rft.spage=4324&rft.epage=4336&rft_id=info:doi/10.1121%2F1.4712021&rft.externalDocID=jasa |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon |