Task Partitioning and Orchestration on Heterogeneous Edge Platforms: The Case of Vision Applications
Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and netwo...
Saved in:
| Published in | IEEE internet of things journal Vol. 9; no. 10; pp. 7418 - 7432 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2372-2541 2327-4662 |
| DOI | 10.1109/JIOT.2022.3153970 |
Cover
| Abstract | Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGE VISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGE VISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that EdgeVision can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines. |
|---|---|
| AbstractList | Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGEVISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGEVISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that E DGE V ISION can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines. Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGE VISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGE VISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that EdgeVision can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines. |
| Author | Dustdar, Schahram Lan, Dapeng Delbruel, Stephane Eliassen, Frank Yang, Yang Taherkordi, Amir Liu, Lei |
| Author_xml | – sequence: 1 givenname: Dapeng orcidid: 0000-0003-1104-5039 surname: Lan fullname: Lan, Dapeng email: dapengl@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 2 givenname: Amir orcidid: 0000-0003-1672-054X surname: Taherkordi fullname: Taherkordi, Amir email: amirhost@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 3 givenname: Frank orcidid: 0000-0002-7788-4137 surname: Eliassen fullname: Eliassen, Frank email: frank@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 4 givenname: Lei orcidid: 0000-0001-8173-0408 surname: Liu fullname: Liu, Lei email: tianjiaoliulei@163.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China – sequence: 5 givenname: Stephane surname: Delbruel fullname: Delbruel, Stephane email: stephane.delbruel@labri.fr organization: LaBRI, University of Bordeaux, Talence, France – sequence: 6 givenname: Schahram orcidid: 0000-0001-6872-8821 surname: Dustdar fullname: Dustdar, Schahram email: dustdar@dsg.tuwien.ac.at organization: Distributed Systems Group, Technische Universitat Wien, Vienna, Austria – sequence: 7 givenname: Yang orcidid: 0000-0003-0608-9408 surname: Yang fullname: Yang, Yang email: yangyang@shanghaitech.edu.cn organization: Shanghai Institute of Fog Computing Technology, ShanghaiTech University, Shanghai, China |
| BackLink | https://hal.science/hal-04901292$$DView record in HAL |
| BookMark | eNp9kU9rGzEQxUVIoWmSD1ByEeTUg13NaP8pN2PSOMHgQE2vQt6dteVsVhtp3ZJvX202tCWBgkCa4f2kpzef2HHrWmLsM4gpgFBf725X6ykKxKmEVKpcHLETlJhPkizD43_OH9l5CHshRMRSUNkJq9YmPPB743vbW9fadstNW_GVL3cUem-GJo9rQT15t6WW3CHw62pL_L4xfe38Y7ji6x3xuQnEXc1_2DAws65rbPnChzP2oTZNoPPX_ZR9_3a9ni8my9XN7Xy2nJQyF_0kLSQWMkVRy4KUIlRphlJuiqoAs4FNoagsEFUSC5kkEiRVYNJEVrKK5SnD8dZD25nnX6ZpdOfto_HPGoQegtJ763o9BKVfg4rQlxHamb9yZ6xezJZ66IlECUCFPyFqL0dt593TIcaj9-7g2_gjjVkmIPoXWVTBqCq9C8FT_c7FMK63LvI3TGn7l-ziCGzzX_JiJC0R_XlJ5QgJgPwN90mgzQ |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_3389_fenrg_2024_1358310 crossref_primary_10_1109_JIOT_2024_3484755 crossref_primary_10_1145_3723037 crossref_primary_10_1109_TASE_2024_3376427 crossref_primary_10_1016_j_future_2024_07_036 crossref_primary_10_1109_ACCESS_2023_3321274 crossref_primary_10_3390_s23084008 crossref_primary_10_3390_sym16070906 crossref_primary_10_1109_ACCESS_2023_3290901 crossref_primary_10_1186_s40537_023_00737_0 crossref_primary_10_1016_j_iot_2022_100674 crossref_primary_10_1007_s10462_024_10947_4 crossref_primary_10_1109_JSAC_2024_3460049 |
| Cites_doi | 10.1109/TII.2021.3088407 10.1109/MCOM.2016.1600492CM 10.1109/ICCNC.2018.8390359 10.1109/OJIES.2021.3055901 10.1145/1814433.1814441 10.1109/JIOT.2018.2869750 10.1109/JIOT.2019.2922324 10.1016/j.knosys.2017.11.010 10.3390/info12010016 10.1007/978-1-4842-6494-2 10.1109/NETSOFT.2019.8806671 10.1109/SEC.2018.00025 10.1109/INFOCOM42981.2021.9488701 10.1109/TITS.2020.2990462 10.1109/TCOMM.2015.2388575 10.1109/DCS.1988.12507 10.1109/TVT.2021.3105270 10.1109/CLOUD.2015.12 10.1109/LCOMM.2019.2920832 10.1016/j.camwa.2011.10.044 10.1109/MWC.2017.1600387 10.1109/JSYST.2020.3020474 10.1109/TNSE.2020.3004475 10.1109/JIOT.2017.2747214 10.1109/CLUSTERWKSP.2010.5613086 10.1109/JIOT.2021.3079510 10.1109/TVT.2021.3096928 10.1016/j.jnca.2014.09.009 10.1109/MC.2017.9 10.1145/1966445.1966473 10.1109/TPDS.2019.2891695 10.1109/IPDPSW52791.2021.00018 10.1145/3404397.3404451 10.1109/IPDPSW.2019.00090 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Attribution - NonCommercial - ShareAlike |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Attribution - NonCommercial - ShareAlike |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES ADTOC UNPAY |
| DOI | 10.1109/JIOT.2022.3153970 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 7432 |
| ExternalDocumentID | oai:HAL:hal-04901292v1 10_1109_JIOT_2022_3153970 9721411 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFB2104300 funderid: 10.13039/501100012166 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515110079 funderid: 10.13039/501100021171 – fundername: Norwegian Research Council through the DILUTE Project grantid: 262854/F20 – fundername: Key Projects of Science and Technology of Henan Province grantid: 222102210043 – fundername: Major Key Project of Peng Cheng Laboratory grantid: PCL2021A15 funderid: 10.13039/100018919 – fundername: China Postdoctoral Science Foundation grantid: 2021M692501 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities grantid: XJS210107 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62001357 funderid: 10.13039/501100001809 – fundername: Joint Funds of the National Natural Science Foundation of China grantid: U21B2002 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES 4.4 ADTOC AGSQL EJD UNPAY |
| ID | FETCH-LOGICAL-c370t-583283520f38e99e2956233b8d81ab1b89ec82294ab1344313ed1a543d3d443 |
| IEDL.DBID | UNPAY |
| ISSN | 2327-4662 2372-2541 |
| IngestDate | Sun Oct 26 03:17:33 EDT 2025 Tue Oct 14 20:25:23 EDT 2025 Mon Jun 30 07:45:59 EDT 2025 Wed Oct 01 04:45:43 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed Aug 27 02:36:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Keywords | orchestration 3-D simultaneous localization and mapping (SLAM) application partitioning heterogeneous edge computing computer vision |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-583283520f38e99e2956233b8d81ab1b89ec82294ab1344313ed1a543d3d443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1672-054X 0000-0003-0608-9408 0000-0002-7788-4137 0000-0003-1104-5039 0000-0001-8173-0408 0000-0001-6872-8821 0000-0003-2794-4792 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04901292/document |
| PQID | 2660158306 |
| PQPubID | 2040421 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1109_jiot_2022_3153970 crossref_primary_10_1109_JIOT_2022_3153970 proquest_journals_2660158306 hal_primary_oai_HAL_hal_04901292v1 crossref_citationtrail_10_1109_JIOT_2022_3153970 ieee_primary_9721411 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref31 (ref38) 2021 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 (ref25) 2021 Merkel (ref26) 2014 Jiang (ref11) (ref37) 2021 (ref47) 2021 ref46 ref23 ref45 (ref39) 2021 ref48 ref20 ref42 (ref32) 2021 ref41 ref22 ref44 ref21 ref43 (ref34) 2021 (ref40) 2020 ref28 ref27 ref29 ref7 ref9 (ref30) 2021 ref4 ref3 ref6 (ref36) 2021 ref5 (ref8) 2017 Bochkovskiy (ref24) 2020 |
| References_xml | – ident: ref2 doi: 10.1109/TII.2021.3088407 – ident: ref31 doi: 10.1109/MCOM.2016.1600492CM – ident: ref35 doi: 10.1109/ICCNC.2018.8390359 – volume-title: Kubernetes Manage Resource year: 2021 ident: ref30 – ident: ref27 doi: 10.1109/OJIES.2021.3055901 – ident: ref13 doi: 10.1145/1814433.1814441 – volume-title: KubeEdge year: 2021 ident: ref25 – ident: ref17 doi: 10.1109/JIOT.2018.2869750 – volume-title: Top Utility Tool year: 2021 ident: ref34 – ident: ref20 doi: 10.1109/JIOT.2019.2922324 – start-page: 2 issue: 239 year: 2014 ident: ref26 article-title: Docker: Lightweight Linux containers for consistent development and deployment publication-title: Linux J. – ident: ref3 doi: 10.1016/j.knosys.2017.11.010 – ident: ref46 doi: 10.3390/info12010016 – volume-title: Jetson Nano Developer Kit year: 2021 ident: ref38 – start-page: 463 volume-title: Proc. 14th USENIX Symp. Oper. Syst. Des. Implement. (OSDI) ident: ref11 article-title: A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters – ident: ref33 doi: 10.1007/978-1-4842-6494-2 – volume-title: Docker Buildx year: 2020 ident: ref40 – ident: ref45 doi: 10.1109/NETSOFT.2019.8806671 – ident: ref42 doi: 10.1109/SEC.2018.00025 – ident: ref19 doi: 10.1109/INFOCOM42981.2021.9488701 – ident: ref28 doi: 10.1109/TITS.2020.2990462 – ident: ref48 doi: 10.1109/TCOMM.2015.2388575 – ident: ref41 doi: 10.1109/DCS.1988.12507 – ident: ref9 doi: 10.1109/TVT.2021.3105270 – ident: ref43 doi: 10.1109/CLOUD.2015.12 – volume-title: NVIDIA System Management Interface year: 2021 ident: ref37 – ident: ref29 doi: 10.1109/LCOMM.2019.2920832 – volume-title: Jetson AGX Xavier Developer Kit year: 2021 ident: ref32 – ident: ref15 doi: 10.1016/j.camwa.2011.10.044 – volume-title: Amazon EC2 On-Demand Pricing year: 2021 ident: ref47 – ident: ref4 doi: 10.1109/MWC.2017.1600387 – ident: ref7 doi: 10.1109/JSYST.2020.3020474 – ident: ref10 doi: 10.1109/TNSE.2020.3004475 – volume-title: iPerf Utility Tool year: 2021 ident: ref36 – ident: ref18 doi: 10.1109/JIOT.2017.2747214 – ident: ref22 doi: 10.1109/CLUSTERWKSP.2010.5613086 – year: 2020 ident: ref24 article-title: YOLOv4: Optimal speed and accuracy of object detection publication-title: arXiv:2004.10934 – ident: ref1 doi: 10.1109/JIOT.2021.3079510 – ident: ref6 doi: 10.1109/TVT.2021.3096928 – ident: ref12 doi: 10.1016/j.jnca.2014.09.009 – ident: ref5 doi: 10.1109/MC.2017.9 – ident: ref14 doi: 10.1145/1966445.1966473 – ident: ref16 doi: 10.1109/TPDS.2019.2891695 – ident: ref21 doi: 10.1109/IPDPSW52791.2021.00018 – ident: ref44 doi: 10.1145/3404397.3404451 – ident: ref23 doi: 10.1109/IPDPSW.2019.00090 – volume-title: Raspberry Pi 3 Model B+ Developer Kit year: 2021 ident: ref39 – volume-title: Openfog Consortium Technical Report V.1.0 year: 2017 ident: ref8 |
| SSID | ssj0001105196 |
| Score | 2.3538678 |
| Snippet | Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive... |
| SourceID | unpaywall hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7418 |
| SubjectTerms | 3-D simultaneous localization and mapping (SLAM) Algorithms application partitioning Central processing units Cloud computing Computer architecture Computer Science Computer vision Costs CPUs Edge computing Electronic devices End users Graphics processing units Hardware heterogeneous edge computing Heterogeneous networks Minimum cost Nodes orchestration Partitioning Run time (computers) Scheduling Task analysis Task scheduling |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tfYEXxhiI7EsW4glIZ8dJm-ytqjaVibJJFLS3yLEd2FYl05qA4K_nLnGzliGElIc4uiiO7mfd7-z7AHjNh1pxpdHJyUTgU-NtP0ZD4Aca6YYa5CJr0sWmHweTz-HZZXS5Ae-6XBhrbRN8Zvt025zlm1LXtFV2RJVmQkrk3RzGgzZX634_RRAZGbiDS8GTo7P35zN0AIMA_dIIzS5fMz2b3yjwsemoskYuH9XFrfr5Q83nK3bmdAumyxm24SU3_brK-vrXH8Ub__cXnsITRzjZqEXINmzY4hlsLZs5MLe2d8DM1OKGXRCS3B4tU4Vh53dNR60WJwyvCcXPlAg7W9YLdmK-WnYxVxVx38UxQ9SxMRpGVubsS5O2zkYrR-TP4dPpyWw88V0LBl_LIa8oJ4sKsgU8l7FNEhskxJdkFptYqExkcWI1lYwPcSBDJCPSGqGiUBppcPgCekVZ2JfATMI1EnktTZ6HSR5TIT1hdKiGubIysh7wpW5S7aqTU5OMedp4KTxJSZ0pqTN16vTgTffKbVua41_Cr1DhnRwV1Z6MPqT0jM4-kfUE34UHO6SxTsopy4P9JT5St8IXKRIbZFIxelwevO0w82Ai11dltTaR3b9_Yw8ekxTFJYhoH3rVXW0PkO5U2WGD899s5Pnj priority: 102 providerName: IEEE |
| Title | Task Partitioning and Orchestration on Heterogeneous Edge Platforms: The Case of Vision Applications |
| URI | https://ieeexplore.ieee.org/document/9721411 https://www.proquest.com/docview/2660158306 https://hal.science/hal-04901292 https://hal.science/hal-04901292/document |
| UnpaywallVersion | submittedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7s9UFfrFrF01oW8UlJuz-SS-LbUVrOou2BV6lPYbO7abVHUppE0b_emb29o6cgCnnIhg0kzLeZb7Iz3wC84qnRXBsMckohI2q8HWXoCCJpkG7oUSVKXy724WQ0OYuPz5PzIBZNtTCXyDjDt5_OI9qYQpck921jevpftgGbowRp9wA2z06m48--eZxMo3jkm4dKlcoIgx4RdjAFz_e_fmkoa1JKDFAT9L98zQdtXFIGpG-tssYy7_b1tf7xXc_ntxzO0dYiVav1OoWUZ3K113flnvn5m4rjP73LA7gfaCcbL3DyEO64-hFsLVs6sLDCt8HOdHvFpoSn8KeW6dqy0xvfV2uBFobHhLJoGgSfa_qWHdoLx6Zz3REDbt8yxB47QPfImop98sXrbHxro_wxfDw6nB1MotCIITIq5R1VZpEsm-SVylyeO5kTa1JlZjOhS1FmuTMkHB_jQMVISZSzQiexssri8AkM6qZ2T4HZnBuk80bZqorzKiM5PWFNrNNKO5W4IfClYQoTNMqpVca88LEKz4vjd6ezgmxZBFsO4fXqluuFQMffJr9EQ6zmkbT2ZPy-oGtL43wTQ9gmMKxmkb5RLPDyzhIcRVjnbYH0BvlUhnHXEN6sAPPHgxAC1x7k2X_Nfg73aEhJCyLZgUF307sXyIW6ctcXLO6GtfALsSIB1A |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigXChREoBQLcQKytWNnN-ltVbVKy25biQX1Fjm2w6OrpOomIPj1nUmyaRcQQsohiWzF0XzWfON5AbzmI6O5NmjkZCLwqfG2H6Ei8AODdEMPc5E16WLTk2HyUR2fh-dr8K7PhXHONcFnbkC3jS_flqamo7JdqjSjKJH3bqiUCttsrZsTFUF0ZNi5LgWPd4-PTmdoAgYBWqYhKl6-onzufKHQx6anygq93KiLS_3zh57Pb2maw02YLtfYBphcDOoqG5hfv5Vv_N-feAD3O8rJxi1GHsKaKx7B5rKdA-t29xbYmV5csDPCUndKy3Rh2elV01OrRQrDK6EImhKB58p6wQ7sZ8fO5roi9rvYY4g7to-qkZU5-9QkrrPxLSf5Y_hweDDbT_yuCYNv5IhXlJVFJdkCnsvIxbELYmJMMotsJHQmsih2horGK3yQCumIdFboUEkrLT4-gfWiLNxTYDbmBqm8kTbPVZxHVEpPWKP0KNdOhs4DvpRNarr65NQmY542dgqPUxJnSuJMO3F68KafctkW5_jX4Fco8H4cldVOxpOU3pH3E3lP8F14sEUS60d1wvJge4mPtNvjixSpDXKpCG0uD972mPljId--ltXKQp79_RsvYSOZTSfp5Ojk_XO4RzMoSkGE27BeXdXuBZKfKttpMH8NpBj9MA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8YAvoKLxEM3G-KQp7I_22vJ2IZCTKFziQeCp2e5uRbm0hLYa-eud6e1dOE0IJn3obrZJm_m2883u7DcA73lsNNcGg5xcyIAKbwcJOoJAGqQbelCIvDsu9uVkMDoLjy-iCy8WTWdhrpBx-n8_3Qe0MYUuSe7ZyrS0XrYKa4MIaXcP1s5OxsPLrnicjINw0BUPlSqWAQY9wu9gCp7u_fheUdaklBigRuh_-ZIPWr2iDMiutMoSy1xvyxv9-5eeTu85nKPNWapW3ekUUp7J9W7b5Lvm7i8Vx0d9y1PY8LSTDWc4eQYrrnwOm_OSDszP8C2wE11fszHhya_UMl1adnrb1dWaoYXhNaIsmgrB56q2Zof2m2PjqW6IAdf7DLHHDtA9sqpg593hdTa8t1H-Ar4eHU4ORoEvxBAYFfOGTmaRLJvkhUpcmjqZEmtSeWIToXORJ6kzJBwfYkOFSEmUs0JHobLKYvMl9MqqdK-A2ZQbpPNG2aII0yIhOT1hTajjQjsVuT7wuWEy4zXKqVTGNOtiFZ5mx59OJxnZMvO27MOHxSM3M4GOhwa_Q0MsxpG09mj4OaO-uXF-ij5sERgWo0jfKBTYvTMHR-bneZ0hvUE-lWDc1YePC8D88yKEwKUX2f6v0a_hCTUpaUFEO9Brblv3BrlQk7_1s-APq7sA0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Partitioning+and+Orchestration+on+Heterogeneous+Edge+Platforms%3A+The+Case+of+Vision+Applications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Lan%2C+Dapeng&rft.au=Taherkordi%2C+Amir&rft.au=Eliassen%2C+Frank&rft.au=Liu%2C+Lei&rft.date=2022-05-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=10&rft.spage=7418&rft.epage=7432&rft_id=info:doi/10.1109%2FJIOT.2022.3153970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2022_3153970 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |