Task Partitioning and Orchestration on Heterogeneous Edge Platforms: The Case of Vision Applications

Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and netwo...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 9; no. 10; pp. 7418 - 7432
Main Authors Lan, Dapeng, Taherkordi, Amir, Eliassen, Frank, Liu, Lei, Delbruel, Stephane, Dustdar, Schahram, Yang, Yang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2372-2541
2327-4662
DOI10.1109/JIOT.2022.3153970

Cover

Abstract Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGE VISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGE VISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that EdgeVision can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines.
AbstractList Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGEVISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGEVISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that E DGE V ISION can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines.
Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive amount of computation. Edge computing has been introduced to move Cloud features closer to end users, providing necessary computing and network resources for end devices. The heterogeneous edge devices, with different hardware architectures (e.g., CPUs and GPUs) and runtime environments, provide diverse resources to support processing tasks from end devices, resulting in different costs and quality of services. How to partition these computing tasks and distribute them over these heterogeneous hardware nodes is still an open research question. Considering these inherently heterogeneous hardware architectures, new approaches for service orchestration and task scheduling are required to meet the service-level agreement and reduce the overall cost of the system (e.g., facility utilization cost). This article presents a system framework, EDGE VISION, for computer vision applications partitioning and orchestration on heterogeneous edge computing platforms considering both CPUs and GPUs. EDGE VISION abstracts the heterogeneous hardware resources and the task runtime environments and divides the application into separate tasks to be orchestrated and deployed into the heterogeneous edge nodes. We also propose two scheduling algorithms in our framework, minimum latency task scheduling and minimum cost task scheduling, aiming to minimize the processing latency and the overall system cost. We evaluate our framework by implementing the edge-based 3-D SLAM application in our real testbed with ten heterogeneous edge devices. Evaluations show that EdgeVision can efficiently minimize the processing latency and the system overall cost and achieve up to 30% decrease in task processing latency and 15% more cost saving compared to the State-of-the-Art baselines.
Author Dustdar, Schahram
Lan, Dapeng
Delbruel, Stephane
Eliassen, Frank
Yang, Yang
Taherkordi, Amir
Liu, Lei
Author_xml – sequence: 1
  givenname: Dapeng
  orcidid: 0000-0003-1104-5039
  surname: Lan
  fullname: Lan, Dapeng
  email: dapengl@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 2
  givenname: Amir
  orcidid: 0000-0003-1672-054X
  surname: Taherkordi
  fullname: Taherkordi, Amir
  email: amirhost@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 3
  givenname: Frank
  orcidid: 0000-0002-7788-4137
  surname: Eliassen
  fullname: Eliassen, Frank
  email: frank@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 4
  givenname: Lei
  orcidid: 0000-0001-8173-0408
  surname: Liu
  fullname: Liu, Lei
  email: tianjiaoliulei@163.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China
– sequence: 5
  givenname: Stephane
  surname: Delbruel
  fullname: Delbruel, Stephane
  email: stephane.delbruel@labri.fr
  organization: LaBRI, University of Bordeaux, Talence, France
– sequence: 6
  givenname: Schahram
  orcidid: 0000-0001-6872-8821
  surname: Dustdar
  fullname: Dustdar, Schahram
  email: dustdar@dsg.tuwien.ac.at
  organization: Distributed Systems Group, Technische Universitat Wien, Vienna, Austria
– sequence: 7
  givenname: Yang
  orcidid: 0000-0003-0608-9408
  surname: Yang
  fullname: Yang, Yang
  email: yangyang@shanghaitech.edu.cn
  organization: Shanghai Institute of Fog Computing Technology, ShanghaiTech University, Shanghai, China
BackLink https://hal.science/hal-04901292$$DView record in HAL
BookMark eNp9kU9rGzEQxUVIoWmSD1ByEeTUg13NaP8pN2PSOMHgQE2vQt6dteVsVhtp3ZJvX202tCWBgkCa4f2kpzef2HHrWmLsM4gpgFBf725X6ykKxKmEVKpcHLETlJhPkizD43_OH9l5CHshRMRSUNkJq9YmPPB743vbW9fadstNW_GVL3cUem-GJo9rQT15t6WW3CHw62pL_L4xfe38Y7ji6x3xuQnEXc1_2DAws65rbPnChzP2oTZNoPPX_ZR9_3a9ni8my9XN7Xy2nJQyF_0kLSQWMkVRy4KUIlRphlJuiqoAs4FNoagsEFUSC5kkEiRVYNJEVrKK5SnD8dZD25nnX6ZpdOfto_HPGoQegtJ763o9BKVfg4rQlxHamb9yZ6xezJZ66IlECUCFPyFqL0dt593TIcaj9-7g2_gjjVkmIPoXWVTBqCq9C8FT_c7FMK63LvI3TGn7l-ziCGzzX_JiJC0R_XlJ5QgJgPwN90mgzQ
CODEN IITJAU
CitedBy_id crossref_primary_10_3389_fenrg_2024_1358310
crossref_primary_10_1109_JIOT_2024_3484755
crossref_primary_10_1145_3723037
crossref_primary_10_1109_TASE_2024_3376427
crossref_primary_10_1016_j_future_2024_07_036
crossref_primary_10_1109_ACCESS_2023_3321274
crossref_primary_10_3390_s23084008
crossref_primary_10_3390_sym16070906
crossref_primary_10_1109_ACCESS_2023_3290901
crossref_primary_10_1186_s40537_023_00737_0
crossref_primary_10_1016_j_iot_2022_100674
crossref_primary_10_1007_s10462_024_10947_4
crossref_primary_10_1109_JSAC_2024_3460049
Cites_doi 10.1109/TII.2021.3088407
10.1109/MCOM.2016.1600492CM
10.1109/ICCNC.2018.8390359
10.1109/OJIES.2021.3055901
10.1145/1814433.1814441
10.1109/JIOT.2018.2869750
10.1109/JIOT.2019.2922324
10.1016/j.knosys.2017.11.010
10.3390/info12010016
10.1007/978-1-4842-6494-2
10.1109/NETSOFT.2019.8806671
10.1109/SEC.2018.00025
10.1109/INFOCOM42981.2021.9488701
10.1109/TITS.2020.2990462
10.1109/TCOMM.2015.2388575
10.1109/DCS.1988.12507
10.1109/TVT.2021.3105270
10.1109/CLOUD.2015.12
10.1109/LCOMM.2019.2920832
10.1016/j.camwa.2011.10.044
10.1109/MWC.2017.1600387
10.1109/JSYST.2020.3020474
10.1109/TNSE.2020.3004475
10.1109/JIOT.2017.2747214
10.1109/CLUSTERWKSP.2010.5613086
10.1109/JIOT.2021.3079510
10.1109/TVT.2021.3096928
10.1016/j.jnca.2014.09.009
10.1109/MC.2017.9
10.1145/1966445.1966473
10.1109/TPDS.2019.2891695
10.1109/IPDPSW52791.2021.00018
10.1145/3404397.3404451
10.1109/IPDPSW.2019.00090
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Attribution - NonCommercial - ShareAlike
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Attribution - NonCommercial - ShareAlike
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1109/JIOT.2022.3153970
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 7432
ExternalDocumentID oai:HAL:hal-04901292v1
10_1109_JIOT_2022_3153970
9721411
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFB2104300
  funderid: 10.13039/501100012166
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515110079
  funderid: 10.13039/501100021171
– fundername: Norwegian Research Council through the DILUTE Project
  grantid: 262854/F20
– fundername: Key Projects of Science and Technology of Henan Province
  grantid: 222102210043
– fundername: Major Key Project of Peng Cheng Laboratory
  grantid: PCL2021A15
  funderid: 10.13039/100018919
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M692501
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XJS210107
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62001357
  funderid: 10.13039/501100001809
– fundername: Joint Funds of the National Natural Science Foundation of China
  grantid: U21B2002
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
4.4
ADTOC
AGSQL
EJD
UNPAY
ID FETCH-LOGICAL-c370t-583283520f38e99e2956233b8d81ab1b89ec82294ab1344313ed1a543d3d443
IEDL.DBID UNPAY
ISSN 2327-4662
2372-2541
IngestDate Sun Oct 26 03:17:33 EDT 2025
Tue Oct 14 20:25:23 EDT 2025
Mon Jun 30 07:45:59 EDT 2025
Wed Oct 01 04:45:43 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed Aug 27 02:36:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords orchestration
3-D simultaneous localization and mapping (SLAM)
application partitioning
heterogeneous edge computing
computer vision
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-583283520f38e99e2956233b8d81ab1b89ec82294ab1344313ed1a543d3d443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1672-054X
0000-0003-0608-9408
0000-0002-7788-4137
0000-0003-1104-5039
0000-0001-8173-0408
0000-0001-6872-8821
0000-0003-2794-4792
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04901292/document
PQID 2660158306
PQPubID 2040421
PageCount 15
ParticipantIDs unpaywall_primary_10_1109_jiot_2022_3153970
crossref_primary_10_1109_JIOT_2022_3153970
proquest_journals_2660158306
hal_primary_oai_HAL_hal_04901292v1
crossref_citationtrail_10_1109_JIOT_2022_3153970
ieee_primary_9721411
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
(ref38) 2021
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
(ref25) 2021
Merkel (ref26) 2014
Jiang (ref11)
(ref37) 2021
(ref47) 2021
ref46
ref23
ref45
(ref39) 2021
ref48
ref20
ref42
(ref32) 2021
ref41
ref22
ref44
ref21
ref43
(ref34) 2021
(ref40) 2020
ref28
ref27
ref29
ref7
ref9
(ref30) 2021
ref4
ref3
ref6
(ref36) 2021
ref5
(ref8) 2017
Bochkovskiy (ref24) 2020
References_xml – ident: ref2
  doi: 10.1109/TII.2021.3088407
– ident: ref31
  doi: 10.1109/MCOM.2016.1600492CM
– ident: ref35
  doi: 10.1109/ICCNC.2018.8390359
– volume-title: Kubernetes Manage Resource
  year: 2021
  ident: ref30
– ident: ref27
  doi: 10.1109/OJIES.2021.3055901
– ident: ref13
  doi: 10.1145/1814433.1814441
– volume-title: KubeEdge
  year: 2021
  ident: ref25
– ident: ref17
  doi: 10.1109/JIOT.2018.2869750
– volume-title: Top Utility Tool
  year: 2021
  ident: ref34
– ident: ref20
  doi: 10.1109/JIOT.2019.2922324
– start-page: 2
  issue: 239
  year: 2014
  ident: ref26
  article-title: Docker: Lightweight Linux containers for consistent development and deployment
  publication-title: Linux J.
– ident: ref3
  doi: 10.1016/j.knosys.2017.11.010
– ident: ref46
  doi: 10.3390/info12010016
– volume-title: Jetson Nano Developer Kit
  year: 2021
  ident: ref38
– start-page: 463
  volume-title: Proc. 14th USENIX Symp. Oper. Syst. Des. Implement. (OSDI)
  ident: ref11
  article-title: A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters
– ident: ref33
  doi: 10.1007/978-1-4842-6494-2
– volume-title: Docker Buildx
  year: 2020
  ident: ref40
– ident: ref45
  doi: 10.1109/NETSOFT.2019.8806671
– ident: ref42
  doi: 10.1109/SEC.2018.00025
– ident: ref19
  doi: 10.1109/INFOCOM42981.2021.9488701
– ident: ref28
  doi: 10.1109/TITS.2020.2990462
– ident: ref48
  doi: 10.1109/TCOMM.2015.2388575
– ident: ref41
  doi: 10.1109/DCS.1988.12507
– ident: ref9
  doi: 10.1109/TVT.2021.3105270
– ident: ref43
  doi: 10.1109/CLOUD.2015.12
– volume-title: NVIDIA System Management Interface
  year: 2021
  ident: ref37
– ident: ref29
  doi: 10.1109/LCOMM.2019.2920832
– volume-title: Jetson AGX Xavier Developer Kit
  year: 2021
  ident: ref32
– ident: ref15
  doi: 10.1016/j.camwa.2011.10.044
– volume-title: Amazon EC2 On-Demand Pricing
  year: 2021
  ident: ref47
– ident: ref4
  doi: 10.1109/MWC.2017.1600387
– ident: ref7
  doi: 10.1109/JSYST.2020.3020474
– ident: ref10
  doi: 10.1109/TNSE.2020.3004475
– volume-title: iPerf Utility Tool
  year: 2021
  ident: ref36
– ident: ref18
  doi: 10.1109/JIOT.2017.2747214
– ident: ref22
  doi: 10.1109/CLUSTERWKSP.2010.5613086
– year: 2020
  ident: ref24
  article-title: YOLOv4: Optimal speed and accuracy of object detection
  publication-title: arXiv:2004.10934
– ident: ref1
  doi: 10.1109/JIOT.2021.3079510
– ident: ref6
  doi: 10.1109/TVT.2021.3096928
– ident: ref12
  doi: 10.1016/j.jnca.2014.09.009
– ident: ref5
  doi: 10.1109/MC.2017.9
– ident: ref14
  doi: 10.1145/1966445.1966473
– ident: ref16
  doi: 10.1109/TPDS.2019.2891695
– ident: ref21
  doi: 10.1109/IPDPSW52791.2021.00018
– ident: ref44
  doi: 10.1145/3404397.3404451
– ident: ref23
  doi: 10.1109/IPDPSW.2019.00090
– volume-title: Raspberry Pi 3 Model B+ Developer Kit
  year: 2021
  ident: ref39
– volume-title: Openfog Consortium Technical Report V.1.0
  year: 2017
  ident: ref8
SSID ssj0001105196
Score 2.3538678
Snippet Running computer vision applications, such as 3-D simultaneous localization and mapping (SLAM), on mobile devices requires low-latency responses and a massive...
SourceID unpaywall
hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7418
SubjectTerms 3-D simultaneous localization and mapping (SLAM)
Algorithms
application partitioning
Central processing units
Cloud computing
Computer architecture
Computer Science
Computer vision
Costs
CPUs
Edge computing
Electronic devices
End users
Graphics processing units
Hardware
heterogeneous edge computing
Heterogeneous networks
Minimum cost
Nodes
orchestration
Partitioning
Run time (computers)
Scheduling
Task analysis
Task scheduling
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tfYEXxhiI7EsW4glIZ8dJm-ytqjaVibJJFLS3yLEd2FYl05qA4K_nLnGzliGElIc4uiiO7mfd7-z7AHjNh1pxpdHJyUTgU-NtP0ZD4Aca6YYa5CJr0sWmHweTz-HZZXS5Ae-6XBhrbRN8Zvt025zlm1LXtFV2RJVmQkrk3RzGgzZX634_RRAZGbiDS8GTo7P35zN0AIMA_dIIzS5fMz2b3yjwsemoskYuH9XFrfr5Q83nK3bmdAumyxm24SU3_brK-vrXH8Ub__cXnsITRzjZqEXINmzY4hlsLZs5MLe2d8DM1OKGXRCS3B4tU4Vh53dNR60WJwyvCcXPlAg7W9YLdmK-WnYxVxVx38UxQ9SxMRpGVubsS5O2zkYrR-TP4dPpyWw88V0LBl_LIa8oJ4sKsgU8l7FNEhskxJdkFptYqExkcWI1lYwPcSBDJCPSGqGiUBppcPgCekVZ2JfATMI1EnktTZ6HSR5TIT1hdKiGubIysh7wpW5S7aqTU5OMedp4KTxJSZ0pqTN16vTgTffKbVua41_Cr1DhnRwV1Z6MPqT0jM4-kfUE34UHO6SxTsopy4P9JT5St8IXKRIbZFIxelwevO0w82Ai11dltTaR3b9_Yw8ekxTFJYhoH3rVXW0PkO5U2WGD899s5Pnj
  priority: 102
  providerName: IEEE
Title Task Partitioning and Orchestration on Heterogeneous Edge Platforms: The Case of Vision Applications
URI https://ieeexplore.ieee.org/document/9721411
https://www.proquest.com/docview/2660158306
https://hal.science/hal-04901292
https://hal.science/hal-04901292/document
UnpaywallVersion submittedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB7s9UFfrFrF01oW8UlJuz-SS-LbUVrOou2BV6lPYbO7abVHUppE0b_emb29o6cgCnnIhg0kzLeZb7Iz3wC84qnRXBsMckohI2q8HWXoCCJpkG7oUSVKXy724WQ0OYuPz5PzIBZNtTCXyDjDt5_OI9qYQpck921jevpftgGbowRp9wA2z06m48--eZxMo3jkm4dKlcoIgx4RdjAFz_e_fmkoa1JKDFAT9L98zQdtXFIGpG-tssYy7_b1tf7xXc_ntxzO0dYiVav1OoWUZ3K113flnvn5m4rjP73LA7gfaCcbL3DyEO64-hFsLVs6sLDCt8HOdHvFpoSn8KeW6dqy0xvfV2uBFobHhLJoGgSfa_qWHdoLx6Zz3REDbt8yxB47QPfImop98sXrbHxro_wxfDw6nB1MotCIITIq5R1VZpEsm-SVylyeO5kTa1JlZjOhS1FmuTMkHB_jQMVISZSzQiexssri8AkM6qZ2T4HZnBuk80bZqorzKiM5PWFNrNNKO5W4IfClYQoTNMqpVca88LEKz4vjd6ezgmxZBFsO4fXqluuFQMffJr9EQ6zmkbT2ZPy-oGtL43wTQ9gmMKxmkb5RLPDyzhIcRVjnbYH0BvlUhnHXEN6sAPPHgxAC1x7k2X_Nfg73aEhJCyLZgUF307sXyIW6ctcXLO6GtfALsSIB1A
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcigXChREoBQLcQKytWNnN-ltVbVKy25biQX1Fjm2w6OrpOomIPj1nUmyaRcQQsohiWzF0XzWfON5AbzmI6O5NmjkZCLwqfG2H6Ei8AODdEMPc5E16WLTk2HyUR2fh-dr8K7PhXHONcFnbkC3jS_flqamo7JdqjSjKJH3bqiUCttsrZsTFUF0ZNi5LgWPd4-PTmdoAgYBWqYhKl6-onzufKHQx6anygq93KiLS_3zh57Pb2maw02YLtfYBphcDOoqG5hfv5Vv_N-feAD3O8rJxi1GHsKaKx7B5rKdA-t29xbYmV5csDPCUndKy3Rh2elV01OrRQrDK6EImhKB58p6wQ7sZ8fO5roi9rvYY4g7to-qkZU5-9QkrrPxLSf5Y_hweDDbT_yuCYNv5IhXlJVFJdkCnsvIxbELYmJMMotsJHQmsih2horGK3yQCumIdFboUEkrLT4-gfWiLNxTYDbmBqm8kTbPVZxHVEpPWKP0KNdOhs4DvpRNarr65NQmY542dgqPUxJnSuJMO3F68KafctkW5_jX4Fco8H4cldVOxpOU3pH3E3lP8F14sEUS60d1wvJge4mPtNvjixSpDXKpCG0uD972mPljId--ltXKQp79_RsvYSOZTSfp5Ojk_XO4RzMoSkGE27BeXdXuBZKfKttpMH8NpBj9MA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9RAEJ7A8YAvoKLxEM3G-KQp7I_22vJ2IZCTKFziQeCp2e5uRbm0hLYa-eud6e1dOE0IJn3obrZJm_m2883u7DcA73lsNNcGg5xcyIAKbwcJOoJAGqQbelCIvDsu9uVkMDoLjy-iCy8WTWdhrpBx-n8_3Qe0MYUuSe7ZyrS0XrYKa4MIaXcP1s5OxsPLrnicjINw0BUPlSqWAQY9wu9gCp7u_fheUdaklBigRuh_-ZIPWr2iDMiutMoSy1xvyxv9-5eeTu85nKPNWapW3ekUUp7J9W7b5Lvm7i8Vx0d9y1PY8LSTDWc4eQYrrnwOm_OSDszP8C2wE11fszHhya_UMl1adnrb1dWaoYXhNaIsmgrB56q2Zof2m2PjqW6IAdf7DLHHDtA9sqpg593hdTa8t1H-Ar4eHU4ORoEvxBAYFfOGTmaRLJvkhUpcmjqZEmtSeWIToXORJ6kzJBwfYkOFSEmUs0JHobLKYvMl9MqqdK-A2ZQbpPNG2aII0yIhOT1hTajjQjsVuT7wuWEy4zXKqVTGNOtiFZ5mx59OJxnZMvO27MOHxSM3M4GOhwa_Q0MsxpG09mj4OaO-uXF-ij5sERgWo0jfKBTYvTMHR-bneZ0hvUE-lWDc1YePC8D88yKEwKUX2f6v0a_hCTUpaUFEO9Brblv3BrlQk7_1s-APq7sA0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+Partitioning+and+Orchestration+on+Heterogeneous+Edge+Platforms%3A+The+Case+of+Vision+Applications&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Lan%2C+Dapeng&rft.au=Taherkordi%2C+Amir&rft.au=Eliassen%2C+Frank&rft.au=Liu%2C+Lei&rft.date=2022-05-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=9&rft.issue=10&rft.spage=7418&rft.epage=7432&rft_id=info:doi/10.1109%2FJIOT.2022.3153970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2022_3153970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon