Feature selection from mass spectra of bacteria for serotyping Salmonella
•Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra...
Saved in:
Published in | Journal of analytical and applied pyrolysis Vol. 124; pp. 393 - 402 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-2370 1873-250X |
DOI | 10.1016/j.jaap.2016.10.014 |
Cover
Abstract | •Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra can be obtained in only 10s elapsed between analyses.
Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars. |
---|---|
AbstractList | Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars. •Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra can be obtained in only 10s elapsed between analyses. Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars. |
Author | Alusta, Pierre Wilkes, Jon G. Buzatu, Dan A. Slavov, Svetoslav |
Author_xml | – sequence: 1 givenname: Svetoslav surname: Slavov fullname: Slavov, Svetoslav – sequence: 2 givenname: Pierre surname: Alusta fullname: Alusta, Pierre – sequence: 3 givenname: Dan A. surname: Buzatu fullname: Buzatu, Dan A. – sequence: 4 givenname: Jon G. surname: Wilkes fullname: Wilkes, Jon G. email: jon.wilkes@fda.hhs.gov |
BookMark | eNp9kE9LwzAYxoNMcJt-AU85emnNnyVdwYsMp4OBBxW8hTR9IyltU5NO2Lc3ZZ487BASnjy_5H2eBZr1vgeEbinJKaHyvskbrYecpXMSckJXF2hO1wXPmCCfMzRPFyJjvCBXaBFjQwiRkq7naLcFPR4C4AgtmNH5HtvgO9zpGHEckhQ09hZX2owQnMbWh-QNfjwOrv_Cb7rt0ihtq6_RpdVthJu_fYk-tk_vm5ds__q82zzuM5N-HzMhbVFVJaOGG8lKwzmVlBYlcMErWdPClhSEAVaB0DWRVpJVIUsqjFgzTi1forvTu0Pw3weIo-pcNNMEPfhDVCxlW6VVimRdn6wm-BgDWGXcqKeQKZVrFSVqak81ampPTe1NWmovoewfOgTX6XA8Dz2cIEj5fxwEFY2D3kDtQmpS1d6dw38BIFmKiQ |
CitedBy_id | crossref_primary_10_1016_j_tifs_2019_11_007 crossref_primary_10_3390_w13243551 |
Cites_doi | 10.1007/BF00469624 10.1016/j.stamet.2005.09.006 10.1128/AEM.66.9.3828-3834.2000 10.1002/rcm.7299 10.1017/S0950268800048755 10.1002/rcm.7060 10.1002/rcm.4940 10.1007/BF02491743 10.1111/j.1574-6976.2002.tb00597.x 10.1371/journal.pone.0094254 10.1021/ac60352a007 10.1021/ac00150a018 10.1016/0041-3879(91)90009-H 10.1136/jcp.45.4.355 10.1007/BF00871823 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6 10.1016/j.jasms.2004.05.011 10.1016/S0165-2370(02)00019-0 10.1021/ac990165u 10.1021/ac990175v 10.1128/AEM.02689-07 10.1002/pmic.200500192 10.1073/pnas.2532248100 10.1128/JCM.00157-08 10.1128/JB.181.16.4725-4733.1999 10.1128/AEM.61.4.1534-1539.1995 10.1021/ac60325a051 10.1093/bioinformatics/btg210 10.1016/0168-1605(92)90019-Y 10.1016/0195-6701(91)90106-I |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jaap.2016.10.014 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-250X |
EndPage | 402 |
ExternalDocumentID | 10_1016_j_jaap_2016_10_014 S0165237016303023 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SES SEW SPC SPCBC SSK SSZ T5K TN5 WUQ YK3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c370t-56f7bb921c3c629c33161179e353b6d17f91e5ce2be5ad06f60476915c58231f3 |
IEDL.DBID | AIKHN |
ISSN | 0165-2370 |
IngestDate | Thu Sep 04 22:01:22 EDT 2025 Tue Jul 01 01:23:47 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Feb 23 02:25:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Outbreak recognition Feature selection Rapid Salmonella serotyping Outbreak traceback Pyrolysis mass spectrometry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-56f7bb921c3c629c33161179e353b6d17f91e5ce2be5ad06f60476915c58231f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000400095 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000400095 crossref_citationtrail_10_1016_j_jaap_2016_10_014 crossref_primary_10_1016_j_jaap_2016_10_014 elsevier_sciencedirect_doi_10_1016_j_jaap_2016_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of analytical and applied pyrolysis |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sisson, Freeman, Magee, Lightfoot (bib0035) 1992; 45 Champarnaud, Hopely (bib0180) 2011; 25 Holland, Wilkes, Cooper, Alusta, Williams, Pearce, Beaudoin, Buzatu (bib0100) 2014; 28 Irwins (bib0190) 1982 Bhanot, Alexe, Venkataraghavan, Levine (bib0135) 2006; 6 Demirev, Ho, Ryzhov, Fenselau (bib0075) 1999; 71 Mellmann, Cloud, Maier, Keckevoet, Ramminger, Iwen, Dunn, Hall, Wilson, LaSala, Kostrzewa, Harmsen (bib0090) 2008; 46 Sisson, Kramer, Brett, Freeman, Gilbert, Lightfoot (bib0040) 1992; 17 Barbuddhe, Maier, Schwarz, Kostrzewa, Hof, Domann, Chakraborty, Hain (bib0085) 2008; 74 Langhammer, Luderwald, Simons (bib0155) 1986; 324 Zhu, Wang, Ma, Rao, Glimm, Kovach (bib0145) 2003; 100 Alusta, Buzatu, Williams, Cooper, Tarasenko, Dorey, Hall, Parker, Wilkes (bib0110) 2015; 29 Meuzelaar, Kistemaker (bib0005) 1973; 45 P. Alusta, C. Dorey, J.G. Wilkes, D.A. Buzatu, Direct Impact Corona Ionization (DICI) MS of Bacteria for Rapid, Sensitive Identification Via Spectral Pattern Recognition U.S. Patent No. 8, 704, 169. (April 22, 2014) Miketova, Abbas-Hawks, Voorhees, Hadfield (bib0055) 2003; 67 Holland, Duffy, Rafii, Sutherland, Heinze, Holder, Voorhees, Lay (bib0080) 1999; 71 Tanimoto (bib0150) 1957 Farrar, Zink (bib0105) 2011 Conway, Smole, Sarracino, Arbeit, Leopold (bib0095) 2001; 3 Freeman, Sisson, Ward (bib0045) 1995; 68 Anhalt, Fenselau (bib0010) 1975; 47 Basile, Voorhees, Hadfield (bib0050) 1995; 61 Sisson, Freeman, Magee, Lightfoot (bib0030) 1991; 72 Heller, Cotter, Fenselau (bib0015) 1987; 59 Buzatu, Moskal, Williams, Cooper, Mattes, Wilkes (bib0120) 2014 Wu, Abbott, Fishman, McMurray, Mor, Stone, Ward, Williams, Zhao (bib0130) 2003; 19 . Boutin, Lesage, Ostiguy, Bertrand (bib0060) 2004; 15 Sisson, Freeman, Gould, Lightfoot (bib0020) 1991; 19 Ryzhov, Hathout, Fenselau (bib0070) 2000; 66 Chiavari, Lanterna, Matteini, Prati, Sandu (bib0170) 2003; 57 Datta, DePadilla (bib0140) 2006; 3 Wilkes, Miertschin, Eschler, Hosey, Raffii, Rushing, Buzatu, Bertrand (bib0185) 2006 Fox, McSweeney (bib0160) 2003; vol 1 Sisson, Freeman, Lightfoot, Richardson (bib0025) 1991; 107 Holland, Wilkes, Rafii, Sutherland, Persons, Voorhees, Lay (bib0065) 1996; 10 www.cdc.gov/pulsenet/pathogens/index.html. Beveridge (bib0165) 1999; 181 Lerouge, Vanderleyden (bib0175) 2002; 26 Farrar (10.1016/j.jaap.2016.10.014_bib0105) 2011 Holland (10.1016/j.jaap.2016.10.014_bib0100) 2014; 28 Lerouge (10.1016/j.jaap.2016.10.014_bib0175) 2002; 26 Anhalt (10.1016/j.jaap.2016.10.014_bib0010) 1975; 47 Conway (10.1016/j.jaap.2016.10.014_bib0095) 2001; 3 Zhu (10.1016/j.jaap.2016.10.014_bib0145) 2003; 100 Ryzhov (10.1016/j.jaap.2016.10.014_bib0070) 2000; 66 10.1016/j.jaap.2016.10.014_bib0115 Buzatu (10.1016/j.jaap.2016.10.014_bib0120) 2014 Datta (10.1016/j.jaap.2016.10.014_bib0140) 2006; 3 Barbuddhe (10.1016/j.jaap.2016.10.014_bib0085) 2008; 74 Sisson (10.1016/j.jaap.2016.10.014_bib0040) 1992; 17 Irwins (10.1016/j.jaap.2016.10.014_bib0190) 1982 Holland (10.1016/j.jaap.2016.10.014_bib0080) 1999; 71 Bhanot (10.1016/j.jaap.2016.10.014_bib0135) 2006; 6 Sisson (10.1016/j.jaap.2016.10.014_bib0025) 1991; 107 Heller (10.1016/j.jaap.2016.10.014_bib0015) 1987; 59 Meuzelaar (10.1016/j.jaap.2016.10.014_bib0005) 1973; 45 Miketova (10.1016/j.jaap.2016.10.014_bib0055) 2003; 67 10.1016/j.jaap.2016.10.014_bib0125 Tanimoto (10.1016/j.jaap.2016.10.014_bib0150) 1957 Wilkes (10.1016/j.jaap.2016.10.014_bib0185) 2006 Alusta (10.1016/j.jaap.2016.10.014_bib0110) 2015; 29 Langhammer (10.1016/j.jaap.2016.10.014_bib0155) 1986; 324 Fox (10.1016/j.jaap.2016.10.014_bib0160) 2003; vol 1 Holland (10.1016/j.jaap.2016.10.014_bib0065) 1996; 10 Basile (10.1016/j.jaap.2016.10.014_bib0050) 1995; 61 Boutin (10.1016/j.jaap.2016.10.014_bib0060) 2004; 15 Wu (10.1016/j.jaap.2016.10.014_bib0130) 2003; 19 Freeman (10.1016/j.jaap.2016.10.014_bib0045) 1995; 68 Sisson (10.1016/j.jaap.2016.10.014_bib0035) 1992; 45 Beveridge (10.1016/j.jaap.2016.10.014_bib0165) 1999; 181 Sisson (10.1016/j.jaap.2016.10.014_bib0030) 1991; 72 Mellmann (10.1016/j.jaap.2016.10.014_bib0090) 2008; 46 Chiavari (10.1016/j.jaap.2016.10.014_bib0170) 2003; 57 Sisson (10.1016/j.jaap.2016.10.014_bib0020) 1991; 19 Champarnaud (10.1016/j.jaap.2016.10.014_bib0180) 2011; 25 Demirev (10.1016/j.jaap.2016.10.014_bib0075) 1999; 71 |
References_xml | – volume: 59 start-page: 2806 year: 1987 end-page: 2809 ident: bib0015 article-title: Profiling of bacteria by fast atom bombardment mass spectrometry publication-title: Anal. Chem. – volume: 68 start-page: 253 year: 1995 end-page: 260 ident: bib0045 article-title: Resolution of batch variations in pyrolysis mass spectrometry of bacteria by the use of artificial neural network analysis publication-title: Antonie Van Leeuwenhoek – volume: 107 start-page: 127 year: 1991 end-page: 132 ident: bib0025 article-title: Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry publication-title: Epidemiol. Infect. – volume: 57 start-page: 645 year: 2003 end-page: 648 ident: bib0170 article-title: Analysis of proteinaceous binders by in-situ pyrolysis and silylation publication-title: Chromatographia – volume: 324 start-page: 5 year: 1986 end-page: 8 ident: bib0155 article-title: Analytical pyrolysis of proteins publication-title: Fresenius Z. Anal. Chem. – volume: 17 start-page: 57 year: 1992 end-page: 66 ident: bib0040 article-title: Application of pyrolysis mass spectrometry to the investigation of food poisoning and non-gastrointestinal infection associated with publication-title: Int. J. Food Microbiol. – volume: vol 1 year: 2003 ident: bib0160 article-title: Advanced dairy chemistry publication-title: Proteins, Parts A&B – volume: 19 start-page: 137 year: 1991 end-page: 140 ident: bib0020 article-title: Strain differentiation of nosocomial isolates of publication-title: J. Hosp. Infect. – year: 1957 ident: bib0150 publication-title: IBM Internal Report. – volume: 72 start-page: 206 year: 1991 end-page: 209 ident: bib0030 article-title: Differentiation between mycobacteria of the publication-title: Tubercle – year: 1982 ident: bib0190 article-title: Analytical Pyrolysis: a Comprehensive Guide – volume: 3 start-page: 103 year: 2001 end-page: 112 ident: bib0095 article-title: Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry publication-title: J. Mol. Microbiol. Biotechnol. – volume: 61 start-page: 1534 year: 1995 end-page: 1539 ident: bib0050 article-title: Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts publication-title: Appl. Environ. Microbiol. – volume: 66 start-page: 3828 year: 2000 end-page: 3834 ident: bib0070 article-title: Rapid characterization of spores of publication-title: Appl. Environ. Microbiol. – volume: 15 start-page: 1315 year: 2004 end-page: 1319 ident: bib0060 publication-title: J Am Soc. Mass Spectrom. – volume: 46 start-page: 1946 year: 2008 end-page: 1954 ident: bib0090 article-title: Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria publication-title: J. Clin. Microbiol. – reference: www.cdc.gov/pulsenet/pathogens/index.html. – reference: P. Alusta, C. Dorey, J.G. Wilkes, D.A. Buzatu, Direct Impact Corona Ionization (DICI) MS of Bacteria for Rapid, Sensitive Identification Via Spectral Pattern Recognition U.S. Patent No. 8, 704, 169. (April 22, 2014) – volume: 26 start-page: 17 year: 2002 end-page: 47 ident: bib0175 article-title: O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions publication-title: FEMS Microbiol. Rev. – volume: 45 start-page: 587 year: 1973 end-page: 590 ident: bib0005 article-title: Technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry publication-title: Anal. Chem. – volume: 67 start-page: 109 year: 2003 end-page: 122 ident: bib0055 article-title: Microorganism gram-type differentiation of whole cells based on pyrolysis high-resolution mass spectrometry data publication-title: J. Anal. Appl. Pyrolysis – year: 2011 ident: bib0105 article-title: FDA Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods publication-title: US Food & Drug Administration, Office of Foods – volume: 19 start-page: 1636 year: 2003 end-page: 1643 ident: bib0130 article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data publication-title: Bioinform – volume: 3 start-page: 79 year: 2006 end-page: 92 ident: bib0140 article-title: Feature selection and machine learning with mass spectrometry data for distinguishing cancer and noncancer samples publication-title: Stat. Methodol. – volume: 71 start-page: 2732 year: 1999 end-page: 2738 ident: bib0075 article-title: Microorganism identification by mass spectrometry and protein database searches publication-title: Anal. Chem. – year: 2014 ident: bib0120 article-title: An integrated flow cytometry-based system for real-Time, high sensitivity bacterial detection and identification publication-title: PLoS One – reference: . – volume: 47 start-page: 219 year: 1975 end-page: 225 ident: bib0010 article-title: Identification of bacteria using mass spectrometry publication-title: Anal. Chem. – volume: 45 start-page: 355 year: 1992 end-page: 357 ident: bib0035 article-title: Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry publication-title: J. Clin. Pathol. – volume: 29 start-page: 1961 year: 2015 end-page: 1968 ident: bib0110 article-title: Instrumental improvements and sample preparations that enable reproducible, reliable acquisition of mass spectra from whole bacterial cells publication-title: Rapid Commun. Mass Spectrom. – volume: 181 start-page: 4725 year: 1999 end-page: 4733 ident: bib0165 article-title: Structures of gram-negative cell walls and their derived membrane vesicles publication-title: J. Bacteriol. – volume: 74 start-page: 5402 year: 2008 end-page: 5407 ident: bib0085 article-title: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Appl. Environ. Microbiol. – volume: 6 start-page: 592 year: 2006 end-page: 604 ident: bib0135 article-title: A robust meta-classification strategy for cancer detection from MS data publication-title: Proteomics – volume: 25 start-page: 1001 year: 2011 end-page: 1007 ident: bib0180 article-title: Evaluation of the comparability of spectra generated using a tuning point protocol on twelve electrospray ionisation tandem-in-space mass spectrometers publication-title: Rapid Commun. Mass Spectrom. – start-page: 91 year: 2006 end-page: 124 ident: bib0185 article-title: Method reproducibility and spectral library assembly for rapid bacterial characterization by metastable atom bombardment pyrolysis mass spectrometry, Chapter 5 publication-title: Identification of Microorganisms by Mass Spectrometry – volume: 10 start-page: 1227 year: 1996 end-page: 1232 ident: bib0065 article-title: Rapid identification of intact whole bacteria based on spectrum patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry publication-title: Rapid Commun. Mass Spectrom. – volume: 28 start-page: 2617 year: 2014 end-page: 2626 ident: bib0100 article-title: Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the sub-species level publication-title: Rapid Commun. Mass Spectrom. – volume: 100 start-page: 14666 year: 2003 end-page: 14671 ident: bib0145 article-title: Detection of cancer-specific markers amid massive mass spectral data publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 71 start-page: 3226 year: 1999 end-page: 3230 ident: bib0080 article-title: Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells publication-title: Anal. Chem. – year: 1982 ident: 10.1016/j.jaap.2016.10.014_bib0190 – volume: 324 start-page: 5 year: 1986 ident: 10.1016/j.jaap.2016.10.014_bib0155 article-title: Analytical pyrolysis of proteins publication-title: Fresenius Z. Anal. Chem. doi: 10.1007/BF00469624 – volume: 3 start-page: 79 year: 2006 ident: 10.1016/j.jaap.2016.10.014_bib0140 article-title: Feature selection and machine learning with mass spectrometry data for distinguishing cancer and noncancer samples publication-title: Stat. Methodol. doi: 10.1016/j.stamet.2005.09.006 – volume: 66 start-page: 3828 year: 2000 ident: 10.1016/j.jaap.2016.10.014_bib0070 article-title: Rapid characterization of spores of Bacillus cereus group bacteria by MALDI-TOF mass spectrometry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.9.3828-3834.2000 – volume: 29 start-page: 1961 year: 2015 ident: 10.1016/j.jaap.2016.10.014_bib0110 article-title: Instrumental improvements and sample preparations that enable reproducible, reliable acquisition of mass spectra from whole bacterial cells publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.7299 – volume: 107 start-page: 127 year: 1991 ident: 10.1016/j.jaap.2016.10.014_bib0025 article-title: Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry publication-title: Epidemiol. Infect. doi: 10.1017/S0950268800048755 – volume: 28 start-page: 2617 year: 2014 ident: 10.1016/j.jaap.2016.10.014_bib0100 article-title: Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the sub-species level publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.7060 – ident: 10.1016/j.jaap.2016.10.014_bib0115 – volume: 25 start-page: 1001 year: 2011 ident: 10.1016/j.jaap.2016.10.014_bib0180 article-title: Evaluation of the comparability of spectra generated using a tuning point protocol on twelve electrospray ionisation tandem-in-space mass spectrometers publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.4940 – volume: 57 start-page: 645 year: 2003 ident: 10.1016/j.jaap.2016.10.014_bib0170 article-title: Analysis of proteinaceous binders by in-situ pyrolysis and silylation publication-title: Chromatographia doi: 10.1007/BF02491743 – volume: 26 start-page: 17 year: 2002 ident: 10.1016/j.jaap.2016.10.014_bib0175 article-title: O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2002.tb00597.x – year: 2014 ident: 10.1016/j.jaap.2016.10.014_bib0120 article-title: An integrated flow cytometry-based system for real-Time, high sensitivity bacterial detection and identification publication-title: PLoS One doi: 10.1371/journal.pone.0094254 – volume: 47 start-page: 219 year: 1975 ident: 10.1016/j.jaap.2016.10.014_bib0010 article-title: Identification of bacteria using mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac60352a007 – volume: 59 start-page: 2806 year: 1987 ident: 10.1016/j.jaap.2016.10.014_bib0015 article-title: Profiling of bacteria by fast atom bombardment mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac00150a018 – volume: 72 start-page: 206 year: 1991 ident: 10.1016/j.jaap.2016.10.014_bib0030 article-title: Differentiation between mycobacteria of the Mycobacterium tuberculosis complex by pyrolysis mass spectrometry publication-title: Tubercle doi: 10.1016/0041-3879(91)90009-H – volume: 45 start-page: 355 year: 1992 ident: 10.1016/j.jaap.2016.10.014_bib0035 article-title: Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry publication-title: J. Clin. Pathol. doi: 10.1136/jcp.45.4.355 – volume: 68 start-page: 253 year: 1995 ident: 10.1016/j.jaap.2016.10.014_bib0045 article-title: Resolution of batch variations in pyrolysis mass spectrometry of bacteria by the use of artificial neural network analysis publication-title: Antonie Van Leeuwenhoek doi: 10.1007/BF00871823 – volume: 10 start-page: 1227 year: 1996 ident: 10.1016/j.jaap.2016.10.014_bib0065 article-title: Rapid identification of intact whole bacteria based on spectrum patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6 – volume: 15 start-page: 1315 year: 2004 ident: 10.1016/j.jaap.2016.10.014_bib0060 publication-title: J Am Soc. Mass Spectrom. doi: 10.1016/j.jasms.2004.05.011 – ident: 10.1016/j.jaap.2016.10.014_bib0125 – volume: 67 start-page: 109 year: 2003 ident: 10.1016/j.jaap.2016.10.014_bib0055 article-title: Microorganism gram-type differentiation of whole cells based on pyrolysis high-resolution mass spectrometry data publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/S0165-2370(02)00019-0 – volume: 71 start-page: 2732 year: 1999 ident: 10.1016/j.jaap.2016.10.014_bib0075 article-title: Microorganism identification by mass spectrometry and protein database searches publication-title: Anal. Chem. doi: 10.1021/ac990165u – volume: 71 start-page: 3226 year: 1999 ident: 10.1016/j.jaap.2016.10.014_bib0080 article-title: Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells publication-title: Anal. Chem. doi: 10.1021/ac990175v – volume: 3 start-page: 103 year: 2001 ident: 10.1016/j.jaap.2016.10.014_bib0095 article-title: Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry publication-title: J. Mol. Microbiol. Biotechnol. – volume: 74 start-page: 5402 year: 2008 ident: 10.1016/j.jaap.2016.10.014_bib0085 article-title: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02689-07 – year: 2011 ident: 10.1016/j.jaap.2016.10.014_bib0105 article-title: FDA Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods – volume: 6 start-page: 592 year: 2006 ident: 10.1016/j.jaap.2016.10.014_bib0135 article-title: A robust meta-classification strategy for cancer detection from MS data publication-title: Proteomics doi: 10.1002/pmic.200500192 – year: 1957 ident: 10.1016/j.jaap.2016.10.014_bib0150 publication-title: IBM Internal Report. – volume: 100 start-page: 14666 year: 2003 ident: 10.1016/j.jaap.2016.10.014_bib0145 article-title: Detection of cancer-specific markers amid massive mass spectral data publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2532248100 – volume: 46 start-page: 1946 year: 2008 ident: 10.1016/j.jaap.2016.10.014_bib0090 article-title: Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00157-08 – volume: 181 start-page: 4725 year: 1999 ident: 10.1016/j.jaap.2016.10.014_bib0165 article-title: Structures of gram-negative cell walls and their derived membrane vesicles publication-title: J. Bacteriol. doi: 10.1128/JB.181.16.4725-4733.1999 – volume: 61 start-page: 1534 year: 1995 ident: 10.1016/j.jaap.2016.10.014_bib0050 article-title: Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.61.4.1534-1539.1995 – volume: 45 start-page: 587 year: 1973 ident: 10.1016/j.jaap.2016.10.014_bib0005 article-title: Technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac60325a051 – volume: 19 start-page: 1636 year: 2003 ident: 10.1016/j.jaap.2016.10.014_bib0130 article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data publication-title: Bioinform doi: 10.1093/bioinformatics/btg210 – volume: 17 start-page: 57 year: 1992 ident: 10.1016/j.jaap.2016.10.014_bib0040 article-title: Application of pyrolysis mass spectrometry to the investigation of food poisoning and non-gastrointestinal infection associated with Bacillus species and Clostridium perfringens publication-title: Int. J. Food Microbiol. doi: 10.1016/0168-1605(92)90019-Y – volume: vol 1 year: 2003 ident: 10.1016/j.jaap.2016.10.014_bib0160 article-title: Advanced dairy chemistry – start-page: 91 year: 2006 ident: 10.1016/j.jaap.2016.10.014_bib0185 article-title: Method reproducibility and spectral library assembly for rapid bacterial characterization by metastable atom bombardment pyrolysis mass spectrometry, Chapter 5 – volume: 19 start-page: 137 year: 1991 ident: 10.1016/j.jaap.2016.10.014_bib0020 article-title: Strain differentiation of nosocomial isolates of Pseudomonas aeruginosa by pyrolysis mass spectrometry publication-title: J. Hosp. Infect. doi: 10.1016/0195-6701(91)90106-I |
SSID | ssj0006618 |
Score | 2.18651 |
Snippet | •Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t... Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 393 |
SubjectTerms | algorithms bacteria discriminant analysis Feature selection ions Outbreak recognition Outbreak traceback pathogens pyrolysis Pyrolysis mass spectrometry Rapid Salmonella serotyping Salmonella serotypes |
Title | Feature selection from mass spectra of bacteria for serotyping Salmonella |
URI | https://dx.doi.org/10.1016/j.jaap.2016.10.014 https://www.proquest.com/docview/2000400095 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sPagH0ar4LBG8ydom2ex2j1KUVtFLFbwtSTYBpbZl2x68-Nud2YeooAdPC2Gzj8nkmw8y3wzAGbIE5bPMB9bjJg-99oGJtQkUOrTWXWtiSeLku_to8BjePKmnFejXWhhKq6ywv8T0Aq2rkU5lzc7s-bkzIiGOkDFeEIYx9DRgVWC07zVh9XJ4O7j_BGQMQb2yxLcKaEKlnSnTvF60prKVPLqgJC8e_haffiB1EX6ut2Cz4o3ssvy0bVhxkxas9et2bS3Y-FJZcAeGRO2WuWPzos8NGp-RkIS9Ildmhboy12zqmSmLNWuG3BXvzaeLNxJQsZEeo39SZtQuPF5fPfQHQdU1IbD4b4tART42JhHcShuJxEqJpA63nZNKmijjsU-4U9YJ45TOupGPumEcJVxZRUeCXu5Bc4Jv2AfmkV44IbRLkDYZ4XuyF2dJFhqe2K5X_gB4bavUViXFqbPFOK1zx15Ssm9K9qUxtO8BnH_OmZUFNf68W9VLkH5zixQR_895p_V6pbgOdAiiJ266nFPbTcItZJaH_3z2EawLiu1FItoxNBf50p0gM1mYNjQu3nm78r8PZcTh2g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APolWxPlfwJrFNNps0x1KU1j4uKngLu5tdsNS2pO3Bf-9MHkUFPXgKLNk8Zme_-WDnmwG4QZYgbJJYR1vc5L6V1lGhVI5Ah5aypVXISZw8Gge9F__xVbxWoFtqYSitssD-HNMztC5GmoU1m4u3t-YTCXE8HuIFYRhDzxbUfGpqXYVapz_ojTeAjCGonZf4Fg5NKLQzeZrXREoqW-kGd5Tk5fq_xacfSJ2Fn4d92Ct4I-vkn3YAFTOrw3a3bNdWh90vlQUPoU_Ubp0atsz63KDxGQlJ2DtyZZapK1PJ5papvFizZMhd8d50vvogARV7klP0T8qMOoKXh_vnbs8puiY4Gv9t5YjAhkpFnqu5DrxIc46kDred4YKrIHFDG7lGaOMpI2TSCmzQ8sMgcoUWdCRo-TFUZ_iGE2AW6YXxPGkipE3Ks23eDpMo8ZUb6ZYVtgFuaatYFyXFqbPFNC5zxyYx2Tcm-9IY2rcBt5s5i7ygxp93i3IJ4m9uESPi_znvulyvGNeBDkHkzMzXS2q7SbiFzPL0n8--gu3e82gYD_vjwRnseBTns6S0c6iu0rW5QJayUpeFF34Cur_jwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+from+mass+spectra+of+bacteria+for+serotyping+Salmonella&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Slavov%2C+Svetoslav&rft.au=Alusta%2C+Pierre&rft.au=Buzatu%2C+Dan+A.&rft.au=Wilkes%2C+Jon+G.&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0165-2370&rft.eissn=1873-250X&rft.volume=124&rft.spage=393&rft.epage=402&rft_id=info:doi/10.1016%2Fj.jaap.2016.10.014&rft.externalDocID=S0165237016303023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon |