Feature selection from mass spectra of bacteria for serotyping Salmonella

•Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical and applied pyrolysis Vol. 124; pp. 393 - 402
Main Authors Slavov, Svetoslav, Alusta, Pierre, Buzatu, Dan A., Wilkes, Jon G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2017
Subjects
Online AccessGet full text
ISSN0165-2370
1873-250X
DOI10.1016/j.jaap.2016.10.014

Cover

Abstract •Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra can be obtained in only 10s elapsed between analyses. Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars.
AbstractList Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars.
•Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t obtained.•Selected ions are apparently derived from 3 plausible biochemical classes.•Feature selected Py-MS enables epidemiological concordance.•Spectra can be obtained in only 10s elapsed between analyses. Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one using all ions and the other, only 19. Without feature selection, classification based on all ions (m/z 70–700) could distinguish similar strains, but samples so classified did not form serotype similarity super-clusters: i.e., different strains of the same serotype did not yield replicate spectra similar to each other when subject to pattern recognition and analysis. The first feature-selection strategy used all available ions, grouped training set samples by serotype (four groups), and passed the Principal Component eigenvectors into Linear Discriminant Analysis. By emphasizing the relative intensities of serovar-related ions, this approach provided implicit feature selection. The best model was used to predict the serotype of seven external samples (representatives from each of the four serotypes), producing correct serovar assignments for three of seven. The second strategy involved explicit feature selection. The five most statistically significant ions for distinguishing each pair were nominated. Redundancy among nominees reduced their number from 30 to 19, ions that consistently differentiated samples based on the six pairs among four classes. The resulting patterns were assessed by a novel pattern recognition approach, in which calculated ratios of average ion intensity for each ion pair combination were analyzed by Tanimoto Similarity and used to classify spectra with respect to serovar by k Nearest Neighbors. Six of the seven external samples were correctly serotyped. Ion redundancy observed among nominees for distinguishing particular serovar pairs suggested the approach can be extended to more than four serovars. Biochemical sources for serovar-correlated ions were provisionally associated with cell surface constituents prominent in Gram-negative pathogens, which also suggested the method could be used to distinguish other, perhaps many other, serovars.
Author Alusta, Pierre
Wilkes, Jon G.
Buzatu, Dan A.
Slavov, Svetoslav
Author_xml – sequence: 1
  givenname: Svetoslav
  surname: Slavov
  fullname: Slavov, Svetoslav
– sequence: 2
  givenname: Pierre
  surname: Alusta
  fullname: Alusta, Pierre
– sequence: 3
  givenname: Dan A.
  surname: Buzatu
  fullname: Buzatu, Dan A.
– sequence: 4
  givenname: Jon G.
  surname: Wilkes
  fullname: Wilkes, Jon G.
  email: jon.wilkes@fda.hhs.gov
BookMark eNp9kE9LwzAYxoNMcJt-AU85emnNnyVdwYsMp4OBBxW8hTR9IyltU5NO2Lc3ZZ487BASnjy_5H2eBZr1vgeEbinJKaHyvskbrYecpXMSckJXF2hO1wXPmCCfMzRPFyJjvCBXaBFjQwiRkq7naLcFPR4C4AgtmNH5HtvgO9zpGHEckhQ09hZX2owQnMbWh-QNfjwOrv_Cb7rt0ihtq6_RpdVthJu_fYk-tk_vm5ds__q82zzuM5N-HzMhbVFVJaOGG8lKwzmVlBYlcMErWdPClhSEAVaB0DWRVpJVIUsqjFgzTi1forvTu0Pw3weIo-pcNNMEPfhDVCxlW6VVimRdn6wm-BgDWGXcqKeQKZVrFSVqak81ampPTe1NWmovoewfOgTX6XA8Dz2cIEj5fxwEFY2D3kDtQmpS1d6dw38BIFmKiQ
CitedBy_id crossref_primary_10_1016_j_tifs_2019_11_007
crossref_primary_10_3390_w13243551
Cites_doi 10.1007/BF00469624
10.1016/j.stamet.2005.09.006
10.1128/AEM.66.9.3828-3834.2000
10.1002/rcm.7299
10.1017/S0950268800048755
10.1002/rcm.7060
10.1002/rcm.4940
10.1007/BF02491743
10.1111/j.1574-6976.2002.tb00597.x
10.1371/journal.pone.0094254
10.1021/ac60352a007
10.1021/ac00150a018
10.1016/0041-3879(91)90009-H
10.1136/jcp.45.4.355
10.1007/BF00871823
10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
10.1016/j.jasms.2004.05.011
10.1016/S0165-2370(02)00019-0
10.1021/ac990165u
10.1021/ac990175v
10.1128/AEM.02689-07
10.1002/pmic.200500192
10.1073/pnas.2532248100
10.1128/JCM.00157-08
10.1128/JB.181.16.4725-4733.1999
10.1128/AEM.61.4.1534-1539.1995
10.1021/ac60325a051
10.1093/bioinformatics/btg210
10.1016/0168-1605(92)90019-Y
10.1016/0195-6701(91)90106-I
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jaap.2016.10.014
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-250X
EndPage 402
ExternalDocumentID 10_1016_j_jaap_2016_10_014
S0165237016303023
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
TN5
WUQ
YK3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c370t-56f7bb921c3c629c33161179e353b6d17f91e5ce2be5ad06f60476915c58231f3
IEDL.DBID AIKHN
ISSN 0165-2370
IngestDate Thu Sep 04 22:01:22 EDT 2025
Tue Jul 01 01:23:47 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Feb 23 02:25:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outbreak recognition
Feature selection
Rapid Salmonella serotyping
Outbreak traceback
Pyrolysis mass spectrometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-56f7bb921c3c629c33161179e353b6d17f91e5ce2be5ad06f60476915c58231f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000400095
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2000400095
crossref_citationtrail_10_1016_j_jaap_2016_10_014
crossref_primary_10_1016_j_jaap_2016_10_014
elsevier_sciencedirect_doi_10_1016_j_jaap_2016_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of analytical and applied pyrolysis
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sisson, Freeman, Magee, Lightfoot (bib0035) 1992; 45
Champarnaud, Hopely (bib0180) 2011; 25
Holland, Wilkes, Cooper, Alusta, Williams, Pearce, Beaudoin, Buzatu (bib0100) 2014; 28
Irwins (bib0190) 1982
Bhanot, Alexe, Venkataraghavan, Levine (bib0135) 2006; 6
Demirev, Ho, Ryzhov, Fenselau (bib0075) 1999; 71
Mellmann, Cloud, Maier, Keckevoet, Ramminger, Iwen, Dunn, Hall, Wilson, LaSala, Kostrzewa, Harmsen (bib0090) 2008; 46
Sisson, Kramer, Brett, Freeman, Gilbert, Lightfoot (bib0040) 1992; 17
Barbuddhe, Maier, Schwarz, Kostrzewa, Hof, Domann, Chakraborty, Hain (bib0085) 2008; 74
Langhammer, Luderwald, Simons (bib0155) 1986; 324
Zhu, Wang, Ma, Rao, Glimm, Kovach (bib0145) 2003; 100
Alusta, Buzatu, Williams, Cooper, Tarasenko, Dorey, Hall, Parker, Wilkes (bib0110) 2015; 29
Meuzelaar, Kistemaker (bib0005) 1973; 45
P. Alusta, C. Dorey, J.G. Wilkes, D.A. Buzatu, Direct Impact Corona Ionization (DICI) MS of Bacteria for Rapid, Sensitive Identification Via Spectral Pattern Recognition U.S. Patent No. 8, 704, 169. (April 22, 2014)
Miketova, Abbas-Hawks, Voorhees, Hadfield (bib0055) 2003; 67
Holland, Duffy, Rafii, Sutherland, Heinze, Holder, Voorhees, Lay (bib0080) 1999; 71
Tanimoto (bib0150) 1957
Farrar, Zink (bib0105) 2011
Conway, Smole, Sarracino, Arbeit, Leopold (bib0095) 2001; 3
Freeman, Sisson, Ward (bib0045) 1995; 68
Anhalt, Fenselau (bib0010) 1975; 47
Basile, Voorhees, Hadfield (bib0050) 1995; 61
Sisson, Freeman, Magee, Lightfoot (bib0030) 1991; 72
Heller, Cotter, Fenselau (bib0015) 1987; 59
Buzatu, Moskal, Williams, Cooper, Mattes, Wilkes (bib0120) 2014
Wu, Abbott, Fishman, McMurray, Mor, Stone, Ward, Williams, Zhao (bib0130) 2003; 19
.
Boutin, Lesage, Ostiguy, Bertrand (bib0060) 2004; 15
Sisson, Freeman, Gould, Lightfoot (bib0020) 1991; 19
Ryzhov, Hathout, Fenselau (bib0070) 2000; 66
Chiavari, Lanterna, Matteini, Prati, Sandu (bib0170) 2003; 57
Datta, DePadilla (bib0140) 2006; 3
Wilkes, Miertschin, Eschler, Hosey, Raffii, Rushing, Buzatu, Bertrand (bib0185) 2006
Fox, McSweeney (bib0160) 2003; vol 1
Sisson, Freeman, Lightfoot, Richardson (bib0025) 1991; 107
Holland, Wilkes, Rafii, Sutherland, Persons, Voorhees, Lay (bib0065) 1996; 10
www.cdc.gov/pulsenet/pathogens/index.html.
Beveridge (bib0165) 1999; 181
Lerouge, Vanderleyden (bib0175) 2002; 26
Farrar (10.1016/j.jaap.2016.10.014_bib0105) 2011
Holland (10.1016/j.jaap.2016.10.014_bib0100) 2014; 28
Lerouge (10.1016/j.jaap.2016.10.014_bib0175) 2002; 26
Anhalt (10.1016/j.jaap.2016.10.014_bib0010) 1975; 47
Conway (10.1016/j.jaap.2016.10.014_bib0095) 2001; 3
Zhu (10.1016/j.jaap.2016.10.014_bib0145) 2003; 100
Ryzhov (10.1016/j.jaap.2016.10.014_bib0070) 2000; 66
10.1016/j.jaap.2016.10.014_bib0115
Buzatu (10.1016/j.jaap.2016.10.014_bib0120) 2014
Datta (10.1016/j.jaap.2016.10.014_bib0140) 2006; 3
Barbuddhe (10.1016/j.jaap.2016.10.014_bib0085) 2008; 74
Sisson (10.1016/j.jaap.2016.10.014_bib0040) 1992; 17
Irwins (10.1016/j.jaap.2016.10.014_bib0190) 1982
Holland (10.1016/j.jaap.2016.10.014_bib0080) 1999; 71
Bhanot (10.1016/j.jaap.2016.10.014_bib0135) 2006; 6
Sisson (10.1016/j.jaap.2016.10.014_bib0025) 1991; 107
Heller (10.1016/j.jaap.2016.10.014_bib0015) 1987; 59
Meuzelaar (10.1016/j.jaap.2016.10.014_bib0005) 1973; 45
Miketova (10.1016/j.jaap.2016.10.014_bib0055) 2003; 67
10.1016/j.jaap.2016.10.014_bib0125
Tanimoto (10.1016/j.jaap.2016.10.014_bib0150) 1957
Wilkes (10.1016/j.jaap.2016.10.014_bib0185) 2006
Alusta (10.1016/j.jaap.2016.10.014_bib0110) 2015; 29
Langhammer (10.1016/j.jaap.2016.10.014_bib0155) 1986; 324
Fox (10.1016/j.jaap.2016.10.014_bib0160) 2003; vol 1
Holland (10.1016/j.jaap.2016.10.014_bib0065) 1996; 10
Basile (10.1016/j.jaap.2016.10.014_bib0050) 1995; 61
Boutin (10.1016/j.jaap.2016.10.014_bib0060) 2004; 15
Wu (10.1016/j.jaap.2016.10.014_bib0130) 2003; 19
Freeman (10.1016/j.jaap.2016.10.014_bib0045) 1995; 68
Sisson (10.1016/j.jaap.2016.10.014_bib0035) 1992; 45
Beveridge (10.1016/j.jaap.2016.10.014_bib0165) 1999; 181
Sisson (10.1016/j.jaap.2016.10.014_bib0030) 1991; 72
Mellmann (10.1016/j.jaap.2016.10.014_bib0090) 2008; 46
Chiavari (10.1016/j.jaap.2016.10.014_bib0170) 2003; 57
Sisson (10.1016/j.jaap.2016.10.014_bib0020) 1991; 19
Champarnaud (10.1016/j.jaap.2016.10.014_bib0180) 2011; 25
Demirev (10.1016/j.jaap.2016.10.014_bib0075) 1999; 71
References_xml – volume: 59
  start-page: 2806
  year: 1987
  end-page: 2809
  ident: bib0015
  article-title: Profiling of bacteria by fast atom bombardment mass spectrometry
  publication-title: Anal. Chem.
– volume: 68
  start-page: 253
  year: 1995
  end-page: 260
  ident: bib0045
  article-title: Resolution of batch variations in pyrolysis mass spectrometry of bacteria by the use of artificial neural network analysis
  publication-title: Antonie Van Leeuwenhoek
– volume: 107
  start-page: 127
  year: 1991
  end-page: 132
  ident: bib0025
  article-title: Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry
  publication-title: Epidemiol. Infect.
– volume: 57
  start-page: 645
  year: 2003
  end-page: 648
  ident: bib0170
  article-title: Analysis of proteinaceous binders by in-situ pyrolysis and silylation
  publication-title: Chromatographia
– volume: 324
  start-page: 5
  year: 1986
  end-page: 8
  ident: bib0155
  article-title: Analytical pyrolysis of proteins
  publication-title: Fresenius Z. Anal. Chem.
– volume: 17
  start-page: 57
  year: 1992
  end-page: 66
  ident: bib0040
  article-title: Application of pyrolysis mass spectrometry to the investigation of food poisoning and non-gastrointestinal infection associated with
  publication-title: Int. J. Food Microbiol.
– volume: vol 1
  year: 2003
  ident: bib0160
  article-title: Advanced dairy chemistry
  publication-title: Proteins, Parts A&B
– volume: 19
  start-page: 137
  year: 1991
  end-page: 140
  ident: bib0020
  article-title: Strain differentiation of nosocomial isolates of
  publication-title: J. Hosp. Infect.
– year: 1957
  ident: bib0150
  publication-title: IBM Internal Report.
– volume: 72
  start-page: 206
  year: 1991
  end-page: 209
  ident: bib0030
  article-title: Differentiation between mycobacteria of the
  publication-title: Tubercle
– year: 1982
  ident: bib0190
  article-title: Analytical Pyrolysis: a Comprehensive Guide
– volume: 3
  start-page: 103
  year: 2001
  end-page: 112
  ident: bib0095
  article-title: Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 61
  start-page: 1534
  year: 1995
  end-page: 1539
  ident: bib0050
  article-title: Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts
  publication-title: Appl. Environ. Microbiol.
– volume: 66
  start-page: 3828
  year: 2000
  end-page: 3834
  ident: bib0070
  article-title: Rapid characterization of spores of
  publication-title: Appl. Environ. Microbiol.
– volume: 15
  start-page: 1315
  year: 2004
  end-page: 1319
  ident: bib0060
  publication-title: J Am Soc. Mass Spectrom.
– volume: 46
  start-page: 1946
  year: 2008
  end-page: 1954
  ident: bib0090
  article-title: Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria
  publication-title: J. Clin. Microbiol.
– reference: www.cdc.gov/pulsenet/pathogens/index.html.
– reference: P. Alusta, C. Dorey, J.G. Wilkes, D.A. Buzatu, Direct Impact Corona Ionization (DICI) MS of Bacteria for Rapid, Sensitive Identification Via Spectral Pattern Recognition U.S. Patent No. 8, 704, 169. (April 22, 2014)
– volume: 26
  start-page: 17
  year: 2002
  end-page: 47
  ident: bib0175
  article-title: O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions
  publication-title: FEMS Microbiol. Rev.
– volume: 45
  start-page: 587
  year: 1973
  end-page: 590
  ident: bib0005
  article-title: Technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry
  publication-title: Anal. Chem.
– volume: 67
  start-page: 109
  year: 2003
  end-page: 122
  ident: bib0055
  article-title: Microorganism gram-type differentiation of whole cells based on pyrolysis high-resolution mass spectrometry data
  publication-title: J. Anal. Appl. Pyrolysis
– year: 2011
  ident: bib0105
  article-title: FDA Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods
  publication-title: US Food & Drug Administration, Office of Foods
– volume: 19
  start-page: 1636
  year: 2003
  end-page: 1643
  ident: bib0130
  article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
  publication-title: Bioinform
– volume: 3
  start-page: 79
  year: 2006
  end-page: 92
  ident: bib0140
  article-title: Feature selection and machine learning with mass spectrometry data for distinguishing cancer and noncancer samples
  publication-title: Stat. Methodol.
– volume: 71
  start-page: 2732
  year: 1999
  end-page: 2738
  ident: bib0075
  article-title: Microorganism identification by mass spectrometry and protein database searches
  publication-title: Anal. Chem.
– year: 2014
  ident: bib0120
  article-title: An integrated flow cytometry-based system for real-Time, high sensitivity bacterial detection and identification
  publication-title: PLoS One
– reference: .
– volume: 47
  start-page: 219
  year: 1975
  end-page: 225
  ident: bib0010
  article-title: Identification of bacteria using mass spectrometry
  publication-title: Anal. Chem.
– volume: 45
  start-page: 355
  year: 1992
  end-page: 357
  ident: bib0035
  article-title: Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry
  publication-title: J. Clin. Pathol.
– volume: 29
  start-page: 1961
  year: 2015
  end-page: 1968
  ident: bib0110
  article-title: Instrumental improvements and sample preparations that enable reproducible, reliable acquisition of mass spectra from whole bacterial cells
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 181
  start-page: 4725
  year: 1999
  end-page: 4733
  ident: bib0165
  article-title: Structures of gram-negative cell walls and their derived membrane vesicles
  publication-title: J. Bacteriol.
– volume: 74
  start-page: 5402
  year: 2008
  end-page: 5407
  ident: bib0085
  article-title: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 592
  year: 2006
  end-page: 604
  ident: bib0135
  article-title: A robust meta-classification strategy for cancer detection from MS data
  publication-title: Proteomics
– volume: 25
  start-page: 1001
  year: 2011
  end-page: 1007
  ident: bib0180
  article-title: Evaluation of the comparability of spectra generated using a tuning point protocol on twelve electrospray ionisation tandem-in-space mass spectrometers
  publication-title: Rapid Commun. Mass Spectrom.
– start-page: 91
  year: 2006
  end-page: 124
  ident: bib0185
  article-title: Method reproducibility and spectral library assembly for rapid bacterial characterization by metastable atom bombardment pyrolysis mass spectrometry, Chapter 5
  publication-title: Identification of Microorganisms by Mass Spectrometry
– volume: 10
  start-page: 1227
  year: 1996
  end-page: 1232
  ident: bib0065
  article-title: Rapid identification of intact whole bacteria based on spectrum patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 28
  start-page: 2617
  year: 2014
  end-page: 2626
  ident: bib0100
  article-title: Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the sub-species level
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 100
  start-page: 14666
  year: 2003
  end-page: 14671
  ident: bib0145
  article-title: Detection of cancer-specific markers amid massive mass spectral data
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 71
  start-page: 3226
  year: 1999
  end-page: 3230
  ident: bib0080
  article-title: Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells
  publication-title: Anal. Chem.
– year: 1982
  ident: 10.1016/j.jaap.2016.10.014_bib0190
– volume: 324
  start-page: 5
  year: 1986
  ident: 10.1016/j.jaap.2016.10.014_bib0155
  article-title: Analytical pyrolysis of proteins
  publication-title: Fresenius Z. Anal. Chem.
  doi: 10.1007/BF00469624
– volume: 3
  start-page: 79
  year: 2006
  ident: 10.1016/j.jaap.2016.10.014_bib0140
  article-title: Feature selection and machine learning with mass spectrometry data for distinguishing cancer and noncancer samples
  publication-title: Stat. Methodol.
  doi: 10.1016/j.stamet.2005.09.006
– volume: 66
  start-page: 3828
  year: 2000
  ident: 10.1016/j.jaap.2016.10.014_bib0070
  article-title: Rapid characterization of spores of Bacillus cereus group bacteria by MALDI-TOF mass spectrometry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.9.3828-3834.2000
– volume: 29
  start-page: 1961
  year: 2015
  ident: 10.1016/j.jaap.2016.10.014_bib0110
  article-title: Instrumental improvements and sample preparations that enable reproducible, reliable acquisition of mass spectra from whole bacterial cells
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.7299
– volume: 107
  start-page: 127
  year: 1991
  ident: 10.1016/j.jaap.2016.10.014_bib0025
  article-title: Incrimination of an environmental source of a case of Legionnaires’ disease by pyrolysis mass spectrometry
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268800048755
– volume: 28
  start-page: 2617
  year: 2014
  ident: 10.1016/j.jaap.2016.10.014_bib0100
  article-title: Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the sub-species level
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.7060
– ident: 10.1016/j.jaap.2016.10.014_bib0115
– volume: 25
  start-page: 1001
  year: 2011
  ident: 10.1016/j.jaap.2016.10.014_bib0180
  article-title: Evaluation of the comparability of spectra generated using a tuning point protocol on twelve electrospray ionisation tandem-in-space mass spectrometers
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.4940
– volume: 57
  start-page: 645
  year: 2003
  ident: 10.1016/j.jaap.2016.10.014_bib0170
  article-title: Analysis of proteinaceous binders by in-situ pyrolysis and silylation
  publication-title: Chromatographia
  doi: 10.1007/BF02491743
– volume: 26
  start-page: 17
  year: 2002
  ident: 10.1016/j.jaap.2016.10.014_bib0175
  article-title: O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2002.tb00597.x
– year: 2014
  ident: 10.1016/j.jaap.2016.10.014_bib0120
  article-title: An integrated flow cytometry-based system for real-Time, high sensitivity bacterial detection and identification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094254
– volume: 47
  start-page: 219
  year: 1975
  ident: 10.1016/j.jaap.2016.10.014_bib0010
  article-title: Identification of bacteria using mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac60352a007
– volume: 59
  start-page: 2806
  year: 1987
  ident: 10.1016/j.jaap.2016.10.014_bib0015
  article-title: Profiling of bacteria by fast atom bombardment mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac00150a018
– volume: 72
  start-page: 206
  year: 1991
  ident: 10.1016/j.jaap.2016.10.014_bib0030
  article-title: Differentiation between mycobacteria of the Mycobacterium tuberculosis complex by pyrolysis mass spectrometry
  publication-title: Tubercle
  doi: 10.1016/0041-3879(91)90009-H
– volume: 45
  start-page: 355
  year: 1992
  ident: 10.1016/j.jaap.2016.10.014_bib0035
  article-title: Rapid differentiation of Mycobacterium xenopi from mycobacteria of the Mycobacterium avium-intracellulare complex by pyrolysis mass spectrometry
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.45.4.355
– volume: 68
  start-page: 253
  year: 1995
  ident: 10.1016/j.jaap.2016.10.014_bib0045
  article-title: Resolution of batch variations in pyrolysis mass spectrometry of bacteria by the use of artificial neural network analysis
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/BF00871823
– volume: 10
  start-page: 1227
  year: 1996
  ident: 10.1016/j.jaap.2016.10.014_bib0065
  article-title: Rapid identification of intact whole bacteria based on spectrum patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
– volume: 15
  start-page: 1315
  year: 2004
  ident: 10.1016/j.jaap.2016.10.014_bib0060
  publication-title: J Am Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2004.05.011
– ident: 10.1016/j.jaap.2016.10.014_bib0125
– volume: 67
  start-page: 109
  year: 2003
  ident: 10.1016/j.jaap.2016.10.014_bib0055
  article-title: Microorganism gram-type differentiation of whole cells based on pyrolysis high-resolution mass spectrometry data
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/S0165-2370(02)00019-0
– volume: 71
  start-page: 2732
  year: 1999
  ident: 10.1016/j.jaap.2016.10.014_bib0075
  article-title: Microorganism identification by mass spectrometry and protein database searches
  publication-title: Anal. Chem.
  doi: 10.1021/ac990165u
– volume: 71
  start-page: 3226
  year: 1999
  ident: 10.1016/j.jaap.2016.10.014_bib0080
  article-title: Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells
  publication-title: Anal. Chem.
  doi: 10.1021/ac990175v
– volume: 3
  start-page: 103
  year: 2001
  ident: 10.1016/j.jaap.2016.10.014_bib0095
  article-title: Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 74
  start-page: 5402
  year: 2008
  ident: 10.1016/j.jaap.2016.10.014_bib0085
  article-title: Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02689-07
– year: 2011
  ident: 10.1016/j.jaap.2016.10.014_bib0105
  article-title: FDA Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods
– volume: 6
  start-page: 592
  year: 2006
  ident: 10.1016/j.jaap.2016.10.014_bib0135
  article-title: A robust meta-classification strategy for cancer detection from MS data
  publication-title: Proteomics
  doi: 10.1002/pmic.200500192
– year: 1957
  ident: 10.1016/j.jaap.2016.10.014_bib0150
  publication-title: IBM Internal Report.
– volume: 100
  start-page: 14666
  year: 2003
  ident: 10.1016/j.jaap.2016.10.014_bib0145
  article-title: Detection of cancer-specific markers amid massive mass spectral data
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2532248100
– volume: 46
  start-page: 1946
  year: 2008
  ident: 10.1016/j.jaap.2016.10.014_bib0090
  article-title: Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00157-08
– volume: 181
  start-page: 4725
  year: 1999
  ident: 10.1016/j.jaap.2016.10.014_bib0165
  article-title: Structures of gram-negative cell walls and their derived membrane vesicles
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.16.4725-4733.1999
– volume: 61
  start-page: 1534
  year: 1995
  ident: 10.1016/j.jaap.2016.10.014_bib0050
  article-title: Microorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial Fatty Acid methyl ester extracts
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.61.4.1534-1539.1995
– volume: 45
  start-page: 587
  year: 1973
  ident: 10.1016/j.jaap.2016.10.014_bib0005
  article-title: Technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac60325a051
– volume: 19
  start-page: 1636
  year: 2003
  ident: 10.1016/j.jaap.2016.10.014_bib0130
  article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
  publication-title: Bioinform
  doi: 10.1093/bioinformatics/btg210
– volume: 17
  start-page: 57
  year: 1992
  ident: 10.1016/j.jaap.2016.10.014_bib0040
  article-title: Application of pyrolysis mass spectrometry to the investigation of food poisoning and non-gastrointestinal infection associated with Bacillus species and Clostridium perfringens
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/0168-1605(92)90019-Y
– volume: vol 1
  year: 2003
  ident: 10.1016/j.jaap.2016.10.014_bib0160
  article-title: Advanced dairy chemistry
– start-page: 91
  year: 2006
  ident: 10.1016/j.jaap.2016.10.014_bib0185
  article-title: Method reproducibility and spectral library assembly for rapid bacterial characterization by metastable atom bombardment pyrolysis mass spectrometry, Chapter 5
– volume: 19
  start-page: 137
  year: 1991
  ident: 10.1016/j.jaap.2016.10.014_bib0020
  article-title: Strain differentiation of nosocomial isolates of Pseudomonas aeruginosa by pyrolysis mass spectrometry
  publication-title: J. Hosp. Infect.
  doi: 10.1016/0195-6701(91)90106-I
SSID ssj0006618
Score 2.18651
Snippet •Feature selection from Py-MS of intact Salmonella cells facilitates serotyping.•Without feature selection to yield only 19 ions, serotyping isn’t...
Algorithms applied to mass spectra of Salmonella isolates were used to achieve accurate and rapid serotyping. Two classification strategies were developed, one...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 393
SubjectTerms algorithms
bacteria
discriminant analysis
Feature selection
ions
Outbreak recognition
Outbreak traceback
pathogens
pyrolysis
Pyrolysis mass spectrometry
Rapid Salmonella serotyping
Salmonella
serotypes
Title Feature selection from mass spectra of bacteria for serotyping Salmonella
URI https://dx.doi.org/10.1016/j.jaap.2016.10.014
https://www.proquest.com/docview/2000400095
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5sPagH0ar4LBG8ydom2ex2j1KUVtFLFbwtSTYBpbZl2x68-Nud2YeooAdPC2Gzj8nkmw8y3wzAGbIE5bPMB9bjJg-99oGJtQkUOrTWXWtiSeLku_to8BjePKmnFejXWhhKq6ywv8T0Aq2rkU5lzc7s-bkzIiGOkDFeEIYx9DRgVWC07zVh9XJ4O7j_BGQMQb2yxLcKaEKlnSnTvF60prKVPLqgJC8e_haffiB1EX6ut2Cz4o3ssvy0bVhxkxas9et2bS3Y-FJZcAeGRO2WuWPzos8NGp-RkIS9Ildmhboy12zqmSmLNWuG3BXvzaeLNxJQsZEeo39SZtQuPF5fPfQHQdU1IbD4b4tART42JhHcShuJxEqJpA63nZNKmijjsU-4U9YJ45TOupGPumEcJVxZRUeCXu5Bc4Jv2AfmkV44IbRLkDYZ4XuyF2dJFhqe2K5X_gB4bavUViXFqbPFOK1zx15Ssm9K9qUxtO8BnH_OmZUFNf68W9VLkH5zixQR_895p_V6pbgOdAiiJ266nFPbTcItZJaH_3z2EawLiu1FItoxNBf50p0gM1mYNjQu3nm78r8PZcTh2g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1APolWxPlfwJrFNNps0x1KU1j4uKngLu5tdsNS2pO3Bf-9MHkUFPXgKLNk8Zme_-WDnmwG4QZYgbJJYR1vc5L6V1lGhVI5Ah5aypVXISZw8Gge9F__xVbxWoFtqYSitssD-HNMztC5GmoU1m4u3t-YTCXE8HuIFYRhDzxbUfGpqXYVapz_ojTeAjCGonZf4Fg5NKLQzeZrXREoqW-kGd5Tk5fq_xacfSJ2Fn4d92Ct4I-vkn3YAFTOrw3a3bNdWh90vlQUPoU_Ubp0atsz63KDxGQlJ2DtyZZapK1PJ5papvFizZMhd8d50vvogARV7klP0T8qMOoKXh_vnbs8puiY4Gv9t5YjAhkpFnqu5DrxIc46kDred4YKrIHFDG7lGaOMpI2TSCmzQ8sMgcoUWdCRo-TFUZ_iGE2AW6YXxPGkipE3Ks23eDpMo8ZUb6ZYVtgFuaatYFyXFqbPFNC5zxyYx2Tcm-9IY2rcBt5s5i7ygxp93i3IJ4m9uESPi_znvulyvGNeBDkHkzMzXS2q7SbiFzPL0n8--gu3e82gYD_vjwRnseBTns6S0c6iu0rW5QJayUpeFF34Cur_jwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+from+mass+spectra+of+bacteria+for+serotyping+Salmonella&rft.jtitle=Journal+of+analytical+and+applied+pyrolysis&rft.au=Slavov%2C+Svetoslav&rft.au=Alusta%2C+Pierre&rft.au=Buzatu%2C+Dan+A.&rft.au=Wilkes%2C+Jon+G.&rft.date=2017-03-01&rft.pub=Elsevier+B.V&rft.issn=0165-2370&rft.eissn=1873-250X&rft.volume=124&rft.spage=393&rft.epage=402&rft_id=info:doi/10.1016%2Fj.jaap.2016.10.014&rft.externalDocID=S0165237016303023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-2370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-2370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-2370&client=summon