A variable selection package driving Netica with Python

Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 115; pp. 1 - 5
Main Authors Beuzen, Tomas, Simmons, Joshua
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
DOI10.1016/j.envsoft.2019.01.018

Cover

Abstract Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications. •Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems.•The process of variable selection aids in developing parsimonious and skilful BNs.•CVNetica_VS is a python tool for performing variable selection in BNs.•CVNetica_VS and the variable selection process are demonstrated with a BN that models coastal erosion.
AbstractList Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications. •Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems.•The process of variable selection aids in developing parsimonious and skilful BNs.•CVNetica_VS is a python tool for performing variable selection in BNs.•CVNetica_VS and the variable selection process are demonstrated with a BN that models coastal erosion.
Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications.
Author Beuzen, Tomas
Simmons, Joshua
Author_xml – sequence: 1
  givenname: Tomas
  surname: Beuzen
  fullname: Beuzen, Tomas
  email: t.beuzen@unsw.edu.au
– sequence: 2
  givenname: Joshua
  surname: Simmons
  fullname: Simmons, Joshua
BookMark eNqFkE1LxDAQhoMoqKs_QSh48dJ1krZJigcR8QtEPeg5pOl0zVqTNcmu7L83y3ryIgxkDs_7knkOya7zDgk5oTClQPn5fIpuFf2QpgxoOwWaR-6QAypFVXLB-G7eK16XkjZsnxzGOAeAvNcHRFwVKx2s7kYsIo5okvWuWGjzoWdY9MGurJsVT5is0cW3Te_Fyzq9e3dE9gY9Rjz-fSfk7fbm9fq-fHy-e7i-eixNJSCVDfQ9r7quEW3fMk11w0TdahBVj6LtQAshO17LxtSZR-go72HgfODMMCp5NSFn295F8F9LjEl92mhwHLVDv4yKMQZSQFXRjJ7-Qed-GVz-XaagbSQI2BRebCkTfIwBB2Vs0purU9B2VBTURqqaq1-paiNVAc0jc7r5k14E-6nD-t_c5TaH2dXKYlDRWHQGexuyc9V7-0_DD2urlJk
CitedBy_id crossref_primary_10_1029_2019JF005184
crossref_primary_10_1016_j_engappai_2019_103384
crossref_primary_10_1016_j_jenvman_2023_118400
crossref_primary_10_1016_j_scitotenv_2021_152520
crossref_primary_10_1016_j_envsoft_2022_105356
crossref_primary_10_21105_joss_01890
crossref_primary_10_1029_2019WR026226
crossref_primary_10_1016_j_ecolmodel_2019_108929
crossref_primary_10_3390_su162410993
crossref_primary_10_1016_j_earscirev_2019_04_022
Cites_doi 10.1016/j.ecolmodel.2012.01.013
10.1016/S0004-3702(97)00043-X
10.1016/j.coastaleng.2018.01.005
10.1016/j.envsoft.2018.07.007
10.1016/j.envsoft.2014.09.007
10.1016/j.envsoft.2006.03.006
10.1016/j.ecolmodel.2006.11.033
10.1016/S1364-8152(97)00008-X
10.1109/MCSE.2007.53
10.1016/j.coastaleng.2016.08.011
10.1016/j.envsoft.2006.06.003
10.1016/j.envsoft.2015.11.023
10.1029/2010JF001891
10.1038/s41598-017-05792-1
10.1016/j.envsoft.2014.08.015
10.1016/j.margeo.2010.10.001
10.1016/j.envsoft.2012.03.012
10.1016/j.jhydrol.2015.10.025
10.1016/S0004-3702(97)00063-5
10.1016/j.envsoft.2011.06.004
10.1002/wrcr.20496
10.1139/x06-135
10.25080/Majora-92bf1922-00a
10.1016/j.envsoft.2016.10.007
10.1002/ieam.1327
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. May 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. May 2019
DBID AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
DOI 10.1016/j.envsoft.2019.01.018
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
EndPage 5
ExternalDocumentID 10_1016_j_envsoft_2019_01_018
S1364815218305358
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ID FETCH-LOGICAL-c370t-50dd63bb579d92a1a52749a073de79b0a778b6485c4370e0b16d0f66f62c21863
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Sun Sep 28 11:00:43 EDT 2025
Wed Aug 13 09:45:52 EDT 2025
Thu Apr 24 23:16:02 EDT 2025
Wed Oct 01 02:02:27 EDT 2025
Thu Nov 14 02:16:23 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-50dd63bb579d92a1a52749a073de79b0a778b6485c4370e0b16d0f66f62c21863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2209580706
PQPubID 2047471
PageCount 5
ParticipantIDs proquest_miscellaneous_2220870331
proquest_journals_2209580706
crossref_citationtrail_10_1016_j_envsoft_2019_01_018
crossref_primary_10_1016_j_envsoft_2019_01_018
elsevier_sciencedirect_doi_10_1016_j_envsoft_2019_01_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Friedman, Hastie, Tibshirani (bib14) 2001
Marcot, Steventon, Sutherland, McCann (bib26) 2006; 36
Nojavan, Qian, Stow (bib28) 2017; 87
Aguilera, Fernández, Fernández, Rumí, Salmerón (bib1) 2011; 26
Hugin Expert A/S (bib22) 2017
Korb, Nicholson (bib24) 2010
Pérez, Granger (bib32) 2007; 9
Nolan, Fienen, Lorenz (bib29) 2015; 531
Fienen, Plant (bib13) 2015; 63
Gutierrez, Plant, Thieler (bib16) 2011; 116
Guyon, Elisseeff (bib17) 2003; 3
Harley, Turner, Kinsela, Middleton, Mumford, Splinter, Phillips, Simmons, Hanslow, Short (bib21) 2017; 7
Pearl (bib31) 1988
Hapke, Plant (bib20) 2010; 278
Beuzen, Splinter, Turner, Harley, Marshall (bib6) 2017
Guyon, Gunn, Nikravesh, Zadeh (bib18) 2008
Marcot (bib25) 2012; 230
Uusitalo (bib35) 2007; 203
Fienen, Masterson, Plant, Gutierrez, Thieler (bib11) 2013; 49
Charniak (bib9) 1991; 12
Chen, Pollino (bib10) 2012; 37
Castelletti, Soncini-Sessa (bib8) 2007; 22
Bayesia (bib3) 2018
Beuzen, Marshall, Splinter (bib4) 2018; 108
Pollino, Woodberry, Nicholson, Korb, Hart (bib34) 2007; 22
Hall (bib19) 2000
Galelli, Humphrey, Maier, Castelletti, Dandy, Gibbs (bib15) 2014; 62
McKinney (bib27) 2010
Barton, Kuikka, Varis, Uusitalo, Henriksen, Borsuk, de la Hera, Farmani, Johnson, Linnell (bib2) 2012; 8
Varis (bib36) 1997; 12
Blum, Langley (bib7) 1997; 97
Beuzen, Splinter, Marshall, Turner, Harley, Palmsten (bib5) 2018; 135
Poelhekke, Jäger, van Dongeren, Plomaritis, McCall, Ferreira (bib33) 2016; 118
Norsys Software Corporation (bib1a) 2010
Norsys Software Corporation (bib30) 2016
Fienen, Nolan, Feinstein (bib12) 2016; 77
Kohavi, John (bib23) 1997; 97
McKinney (10.1016/j.envsoft.2019.01.018_bib27) 2010
Beuzen (10.1016/j.envsoft.2019.01.018_bib4) 2018; 108
Kohavi (10.1016/j.envsoft.2019.01.018_bib23) 1997; 97
Nojavan (10.1016/j.envsoft.2019.01.018_bib28) 2017; 87
Charniak (10.1016/j.envsoft.2019.01.018_bib9) 1991; 12
Chen (10.1016/j.envsoft.2019.01.018_bib10) 2012; 37
Hapke (10.1016/j.envsoft.2019.01.018_bib20) 2010; 278
Norsys Software Corporation (10.1016/j.envsoft.2019.01.018_bib1a) 2010
Hall (10.1016/j.envsoft.2019.01.018_bib19) 2000
Galelli (10.1016/j.envsoft.2019.01.018_bib15) 2014; 62
Marcot (10.1016/j.envsoft.2019.01.018_bib26) 2006; 36
Beuzen (10.1016/j.envsoft.2019.01.018_bib5) 2018; 135
Fienen (10.1016/j.envsoft.2019.01.018_bib12) 2016; 77
Blum (10.1016/j.envsoft.2019.01.018_bib7) 1997; 97
Harley (10.1016/j.envsoft.2019.01.018_bib21) 2017; 7
Pérez (10.1016/j.envsoft.2019.01.018_bib32) 2007; 9
Guyon (10.1016/j.envsoft.2019.01.018_bib18) 2008
Gutierrez (10.1016/j.envsoft.2019.01.018_bib16) 2011; 116
Fienen (10.1016/j.envsoft.2019.01.018_bib13) 2015; 63
Hugin Expert A/S (10.1016/j.envsoft.2019.01.018_bib22) 2017
Pearl (10.1016/j.envsoft.2019.01.018_bib31) 1988
Pollino (10.1016/j.envsoft.2019.01.018_bib34) 2007; 22
Bayesia (10.1016/j.envsoft.2019.01.018_bib3) 2018
Castelletti (10.1016/j.envsoft.2019.01.018_bib8) 2007; 22
Varis (10.1016/j.envsoft.2019.01.018_bib36) 1997; 12
Marcot (10.1016/j.envsoft.2019.01.018_bib25) 2012; 230
Aguilera (10.1016/j.envsoft.2019.01.018_bib1) 2011; 26
Guyon (10.1016/j.envsoft.2019.01.018_bib17) 2003; 3
Norsys Software Corporation (10.1016/j.envsoft.2019.01.018_bib30) 2016
Poelhekke (10.1016/j.envsoft.2019.01.018_bib33) 2016; 118
Korb (10.1016/j.envsoft.2019.01.018_bib24) 2010
Nolan (10.1016/j.envsoft.2019.01.018_bib29) 2015; 531
Friedman (10.1016/j.envsoft.2019.01.018_bib14) 2001
Barton (10.1016/j.envsoft.2019.01.018_bib2) 2012; 8
Fienen (10.1016/j.envsoft.2019.01.018_bib11) 2013; 49
Uusitalo (10.1016/j.envsoft.2019.01.018_bib35) 2007; 203
Beuzen (10.1016/j.envsoft.2019.01.018_bib6) 2017
References_xml – year: 2010
  ident: bib1a
  article-title: Netica API Programmer's Library Reference Manual Version 4.18
– volume: 77
  start-page: 95
  year: 2016
  end-page: 107
  ident: bib12
  article-title: Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model
  publication-title: Environ. Model. Softw
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib17
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 87
  start-page: 64
  year: 2017
  end-page: 71
  ident: bib28
  article-title: Comparative analysis of discretization methods in Bayesian networks
  publication-title: Environ. Model. Softw
– volume: 26
  start-page: 1376
  year: 2011
  end-page: 1388
  ident: bib1
  article-title: Bayesian networks in environmental modelling
  publication-title: Environ. Model. Softw
– year: 2010
  ident: bib24
  article-title: Bayesian Artificial Intelligence
– start-page: 51
  year: 2010
  end-page: 56
  ident: bib27
  article-title: Data structures for statistical computing in python
  publication-title: Proceedings of the 9th Python in Science Conference. Austin, TX
– volume: 49
  start-page: 6459
  year: 2013
  end-page: 6473
  ident: bib11
  article-title: Bridging groundwater models and decision support with a Bayesian network
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 3063
  year: 2006
  end-page: 3074
  ident: bib26
  article-title: Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation
  publication-title: Can. J. For. Res.
– volume: 63
  start-page: 14
  year: 2015
  end-page: 23
  ident: bib13
  article-title: A cross-validation package driving Netica with python
  publication-title: Environ. Model. Softw
– volume: 22
  start-page: 1075
  year: 2007
  end-page: 1088
  ident: bib8
  article-title: Bayesian Networks and participatory modelling in water resource management
  publication-title: Environ. Model. Softw
– volume: 203
  start-page: 312
  year: 2007
  end-page: 318
  ident: bib35
  article-title: Advantages and challenges of Bayesian networks in environmental modelling
  publication-title: Ecol. Model.
– year: 2017
  ident: bib22
  article-title: Hugin Version 8.5
– volume: 37
  start-page: 134
  year: 2012
  end-page: 145
  ident: bib10
  article-title: Good practice in Bayesian network modelling
  publication-title: Environ. Model. Softw
– year: 2016
  ident: bib30
  article-title: Netica Version 5.22
– volume: 62
  start-page: 33
  year: 2014
  end-page: 51
  ident: bib15
  article-title: An evaluation framework for input variable selection algorithms for environmental data-driven models
  publication-title: Environ. Model. Softw
– year: 2000
  ident: bib19
  article-title: Correlation-based Feature Selection of Discrete and Numeric Class Machine Learning (Working Paper 00/08)
– year: 2001
  ident: bib14
  article-title: The Elements of Statistical Learning
– volume: 135
  start-page: 16
  year: 2018
  end-page: 30
  ident: bib5
  article-title: Bayesian Networks in coastal engineering: distinguishing descriptive and predictive applications
  publication-title: Coast. Eng.
– volume: 116
  year: 2011
  ident: bib16
  article-title: A Bayesian network to predict coastal vulnerability to sea level rise
  publication-title: J. Geophys. Res.
– volume: 97
  start-page: 245
  year: 1997
  end-page: 271
  ident: bib7
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
– volume: 108
  start-page: 61
  year: 2018
  end-page: 66
  ident: bib4
  article-title: A comparison of methods for discretizing continuous variables in Bayesian networks
  publication-title: Environ. Model. Softw
– volume: 8
  start-page: 418
  year: 2012
  end-page: 429
  ident: bib2
  article-title: Bayesian networks in environmental and resource management
  publication-title: Integrated Environ. Assess. Manag.
– year: 2018
  ident: bib3
  article-title: BayesiaLab Version 8
– volume: 22
  start-page: 1140
  year: 2007
  end-page: 1152
  ident: bib34
  article-title: Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment
  publication-title: Environ. Model. Softw
– year: 2008
  ident: bib18
  article-title: Feature Extraction: Foundations and Applications
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib23
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 230
  start-page: 50
  year: 2012
  end-page: 62
  ident: bib25
  article-title: Metrics for evaluating performance and uncertainty of Bayesian network models
  publication-title: Ecol. Model.
– start-page: 102
  year: 2017
  ident: bib6
  article-title: Predicting Storm Erosion on Sandy Coastlines Using a Bayesian Network, Australasian Coasts & Ports 2017: Working with Nature
– volume: 531
  start-page: 902
  year: 2015
  end-page: 911
  ident: bib29
  article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA
  publication-title: J. Hydrol.
– year: 1988
  ident: bib31
  article-title: Probabilistic Reasoning in Intelligent Systems
– volume: 9
  year: 2007
  ident: bib32
  article-title: IPython: a system for interactive scientific computing
  publication-title: Comput. Sci. Eng.
– volume: 278
  start-page: 140
  year: 2010
  end-page: 149
  ident: bib20
  article-title: Predicting coastal cliff erosion using a Bayesian probabilistic model
  publication-title: Mar. Geol.
– volume: 118
  start-page: 21
  year: 2016
  end-page: 34
  ident: bib33
  article-title: Predicting coastal hazards for sandy coasts with a Bayesian network
  publication-title: Coast. Eng.
– volume: 12
  start-page: 50
  year: 1991
  end-page: 63
  ident: bib9
  article-title: Bayesian networks without tears
  publication-title: AI Mag.
– volume: 7
  year: 2017
  ident: bib21
  article-title: Extreme coastal erosion enhanced by anomalous extratropical storm wave direction
  publication-title: Sci. Rep.
– volume: 12
  start-page: 177
  year: 1997
  end-page: 185
  ident: bib36
  article-title: Bayesian decision analysis for environmental and resource management
  publication-title: Environ. Model. Softw
– volume: 230
  start-page: 50
  year: 2012
  ident: 10.1016/j.envsoft.2019.01.018_bib25
  article-title: Metrics for evaluating performance and uncertainty of Bayesian network models
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2012.01.013
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.envsoft.2019.01.018_bib23
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 135
  start-page: 16
  year: 2018
  ident: 10.1016/j.envsoft.2019.01.018_bib5
  article-title: Bayesian Networks in coastal engineering: distinguishing descriptive and predictive applications
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2018.01.005
– volume: 108
  start-page: 61
  year: 2018
  ident: 10.1016/j.envsoft.2019.01.018_bib4
  article-title: A comparison of methods for discretizing continuous variables in Bayesian networks
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2018.07.007
– volume: 63
  start-page: 14
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.018_bib13
  article-title: A cross-validation package driving Netica with python
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2014.09.007
– volume: 22
  start-page: 1140
  issue: 8
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.018_bib34
  article-title: Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2006.03.006
– volume: 203
  start-page: 312
  issue: 3–4
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.018_bib35
  article-title: Advantages and challenges of Bayesian networks in environmental modelling
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2006.11.033
– volume: 12
  start-page: 177
  issue: 2
  year: 1997
  ident: 10.1016/j.envsoft.2019.01.018_bib36
  article-title: Bayesian decision analysis for environmental and resource management
  publication-title: Environ. Model. Softw
  doi: 10.1016/S1364-8152(97)00008-X
– volume: 9
  issue: 3
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.018_bib32
  article-title: IPython: a system for interactive scientific computing
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.53
– start-page: 102
  year: 2017
  ident: 10.1016/j.envsoft.2019.01.018_bib6
– year: 2017
  ident: 10.1016/j.envsoft.2019.01.018_bib22
– volume: 118
  start-page: 21
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.018_bib33
  article-title: Predicting coastal hazards for sandy coasts with a Bayesian network
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2016.08.011
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.envsoft.2019.01.018_bib17
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1075
  issue: 8
  year: 2007
  ident: 10.1016/j.envsoft.2019.01.018_bib8
  article-title: Bayesian Networks and participatory modelling in water resource management
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2006.06.003
– volume: 77
  start-page: 95
  year: 2016
  ident: 10.1016/j.envsoft.2019.01.018_bib12
  article-title: Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2015.11.023
– year: 2000
  ident: 10.1016/j.envsoft.2019.01.018_bib19
– volume: 116
  issue: F2
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.018_bib16
  article-title: A Bayesian network to predict coastal vulnerability to sea level rise
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JF001891
– year: 2001
  ident: 10.1016/j.envsoft.2019.01.018_bib14
– year: 2016
  ident: 10.1016/j.envsoft.2019.01.018_bib30
– year: 2018
  ident: 10.1016/j.envsoft.2019.01.018_bib3
– volume: 7
  year: 2017
  ident: 10.1016/j.envsoft.2019.01.018_bib21
  article-title: Extreme coastal erosion enhanced by anomalous extratropical storm wave direction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05792-1
– volume: 62
  start-page: 33
  year: 2014
  ident: 10.1016/j.envsoft.2019.01.018_bib15
  article-title: An evaluation framework for input variable selection algorithms for environmental data-driven models
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2014.08.015
– volume: 278
  start-page: 140
  issue: 1–4
  year: 2010
  ident: 10.1016/j.envsoft.2019.01.018_bib20
  article-title: Predicting coastal cliff erosion using a Bayesian probabilistic model
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2010.10.001
– year: 2010
  ident: 10.1016/j.envsoft.2019.01.018_bib1a
– volume: 37
  start-page: 134
  year: 2012
  ident: 10.1016/j.envsoft.2019.01.018_bib10
  article-title: Good practice in Bayesian network modelling
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2012.03.012
– volume: 12
  start-page: 50
  issue: 4
  year: 1991
  ident: 10.1016/j.envsoft.2019.01.018_bib9
  article-title: Bayesian networks without tears
  publication-title: AI Mag.
– volume: 531
  start-page: 902
  year: 2015
  ident: 10.1016/j.envsoft.2019.01.018_bib29
  article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.025
– year: 2008
  ident: 10.1016/j.envsoft.2019.01.018_bib18
– year: 1988
  ident: 10.1016/j.envsoft.2019.01.018_bib31
– volume: 97
  start-page: 245
  issue: 1
  year: 1997
  ident: 10.1016/j.envsoft.2019.01.018_bib7
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 26
  start-page: 1376
  issue: 12
  year: 2011
  ident: 10.1016/j.envsoft.2019.01.018_bib1
  article-title: Bayesian networks in environmental modelling
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2011.06.004
– volume: 49
  start-page: 6459
  issue: 10
  year: 2013
  ident: 10.1016/j.envsoft.2019.01.018_bib11
  article-title: Bridging groundwater models and decision support with a Bayesian network
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20496
– volume: 36
  start-page: 3063
  issue: 12
  year: 2006
  ident: 10.1016/j.envsoft.2019.01.018_bib26
  article-title: Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation
  publication-title: Can. J. For. Res.
  doi: 10.1139/x06-135
– year: 2010
  ident: 10.1016/j.envsoft.2019.01.018_bib24
– start-page: 51
  year: 2010
  ident: 10.1016/j.envsoft.2019.01.018_bib27
  article-title: Data structures for statistical computing in python
  doi: 10.25080/Majora-92bf1922-00a
– volume: 87
  start-page: 64
  year: 2017
  ident: 10.1016/j.envsoft.2019.01.018_bib28
  article-title: Comparative analysis of discretization methods in Bayesian networks
  publication-title: Environ. Model. Softw
  doi: 10.1016/j.envsoft.2016.10.007
– volume: 8
  start-page: 418
  issue: 3
  year: 2012
  ident: 10.1016/j.envsoft.2019.01.018_bib2
  article-title: Bayesian networks in environmental and resource management
  publication-title: Integrated Environ. Assess. Manag.
  doi: 10.1002/ieam.1327
SSID ssj0001524
Score 2.323872
Snippet Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms artificial intelligence
Bayesian analysis
Bayesian theory
Computer programs
computer software
Environment models
Learning algorithms
Machine learning
Mathematical models
Probabilistic methods
Reptiles & amphibians
Software
Source code
Title A variable selection package driving Netica with Python
URI https://dx.doi.org/10.1016/j.envsoft.2019.01.018
https://www.proquest.com/docview/2209580706
https://www.proquest.com/docview/2220870331
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KS2F76LZsZdm6osFenUi2LNmPoaRkLQuFrdA3oa9AuuGWJi30pX_77my5WcegMPCLrZNt7nx3OvnufgBfqspZdNsiw9hDZVJEnzldhyyEYDF-CLZui8K-zdXsXJ5clBdbcNTXwlBaZbL9nU1vrXW6Mk7cHF8vl-PvolDUaYR8PDUpoYJfKTWhGIweNmkeSNAB2yqZEfWmimd8OYrN3QqtHWV41W33TsL--Ld_-stSt-7n-DXspXUjm3Sv9ga2YjOAVz0mA0sqOoDdaduG-n4AL_9oNTiA_emmog3vk-hXb0FP2B3Gy1RBxVYtKA5KimEk_RMtDQs3S9pxYPO21pHRri07u6d-A-_g_Hj642iWJTSFzBear7OSh6AK50oURZ1bYUsMSGuLKh6irh23WlcOOVp6ifSRO6ECXyi1ULkn4KpiH7abqya-B8ajdD63tcVoSNaiwEFX8SAW3vuF1mIIsueh8anVOCFe_DJ9TtmlSaw3xHrDBR7VEEaP0667XhvPTah6AZknH41Bf_Dc1INeoCZp7crkOS44KzSCagifH4dR3-gnim3i1S3R5BxtXFGID___9I_wgs66xMkD2F7f3MZPuLhZu8P26z2EncnX09n8N7LR-Eo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRdQHq6fF01ZX8DV3u8lmN3ks5cqp7SHYQt-W_Tq4KmnpXQt98W93Jtn0tBQKQp6ys0mY2fnNzmY-AD5XlbNotkWGvofKpIg-c7oOWQjBov8QbN0mhR3N1PREfj0tTzdgv8-FobDKhP0dprdone6MEzfHF4vF-IcoFFUaIRtPRUqqR_BYlrkmD2z0ex3ngRRdZ1slMyJfp_GMz0axuV4i3FGIV92W76TmH_cbqDtQ3dqfg5fwIm0c2V73ba9gIzYD2OqbMrCkowN4MmnrUN8M4PlftQYHsD1Zp7ThcxL98jXoPXaNDjOlULFl2xUHRcXQlf6JUMPC5YKOHNisTXZkdGzLvt9QwYE3cHIwOd6fZqmdQuYLzVdZyUNQhXMlyqLOrbDILFlb1PEQde241bpyyNLSS6SP3AkV-Fypuco9da4qtmGzOW_iW2A8SudzW1t0h2QtChx0FQ9i7r2fay2GIHseGp9qjVPLi1-mDyo7M4n1hlhvuMCrGsLodtpFV2zjoQlVLyDzz6oxaBAemrrTC9QktV2aPMcdZ4UoqIbw6XYYFY7-otgmnl8RTc4R5IpCvPv_t3-Ep9Pjo0Nz-GX27T08o5EuinIHNleXV3EXdzor96FdyX8AbhX53w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+selection+package+driving+Netica+with+Python&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Beuzen%2C+Tomas&rft.au=Simmons%2C+Joshua&rft.date=2019-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=115&rft.spage=1&rft_id=info:doi/10.1016%2Fj.envsoft.2019.01.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon