A variable selection package driving Netica with Python
Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of...
Saved in:
| Published in | Environmental modelling & software : with environment data news Vol. 115; pp. 1 - 5 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.05.2019
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1364-8152 1873-6726 |
| DOI | 10.1016/j.envsoft.2019.01.018 |
Cover
| Abstract | Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications.
•Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems.•The process of variable selection aids in developing parsimonious and skilful BNs.•CVNetica_VS is a python tool for performing variable selection in BNs.•CVNetica_VS and the variable selection process are demonstrated with a BN that models coastal erosion. |
|---|---|
| AbstractList | Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications.
•Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems.•The process of variable selection aids in developing parsimonious and skilful BNs.•CVNetica_VS is a python tool for performing variable selection in BNs.•CVNetica_VS and the variable selection process are demonstrated with a BN that models coastal erosion. Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables included in the model framework. The selection of the optimum set of variables to include in a BN (“variable selection”) is therefore a key part of the BN modelling process. While variable selection is an issue dealt with in the wider BN and machine learning literature, it remains largely absent from environmental BN applications to date, due in large part to a lack of software designed to work with available BN packages. CVNetica_VS is an open-source Python module that extends the functionality of Netica, a commonly used commercial BN software package, to perform variable selection. CVNetica_VS uses wrapper-based variable selection and cross-validation to search for the optimum variable set to use in a BN. The software will aid in objectifying and automating the development of BNs in environmental applications. |
| Author | Beuzen, Tomas Simmons, Joshua |
| Author_xml | – sequence: 1 givenname: Tomas surname: Beuzen fullname: Beuzen, Tomas email: t.beuzen@unsw.edu.au – sequence: 2 givenname: Joshua surname: Simmons fullname: Simmons, Joshua |
| BookMark | eNqFkE1LxDAQhoMoqKs_QSh48dJ1krZJigcR8QtEPeg5pOl0zVqTNcmu7L83y3ryIgxkDs_7knkOya7zDgk5oTClQPn5fIpuFf2QpgxoOwWaR-6QAypFVXLB-G7eK16XkjZsnxzGOAeAvNcHRFwVKx2s7kYsIo5okvWuWGjzoWdY9MGurJsVT5is0cW3Te_Fyzq9e3dE9gY9Rjz-fSfk7fbm9fq-fHy-e7i-eixNJSCVDfQ9r7quEW3fMk11w0TdahBVj6LtQAshO17LxtSZR-go72HgfODMMCp5NSFn295F8F9LjEl92mhwHLVDv4yKMQZSQFXRjJ7-Qed-GVz-XaagbSQI2BRebCkTfIwBB2Vs0purU9B2VBTURqqaq1-paiNVAc0jc7r5k14E-6nD-t_c5TaH2dXKYlDRWHQGexuyc9V7-0_DD2urlJk |
| CitedBy_id | crossref_primary_10_1029_2019JF005184 crossref_primary_10_1016_j_engappai_2019_103384 crossref_primary_10_1016_j_jenvman_2023_118400 crossref_primary_10_1016_j_scitotenv_2021_152520 crossref_primary_10_1016_j_envsoft_2022_105356 crossref_primary_10_21105_joss_01890 crossref_primary_10_1029_2019WR026226 crossref_primary_10_1016_j_ecolmodel_2019_108929 crossref_primary_10_3390_su162410993 crossref_primary_10_1016_j_earscirev_2019_04_022 |
| Cites_doi | 10.1016/j.ecolmodel.2012.01.013 10.1016/S0004-3702(97)00043-X 10.1016/j.coastaleng.2018.01.005 10.1016/j.envsoft.2018.07.007 10.1016/j.envsoft.2014.09.007 10.1016/j.envsoft.2006.03.006 10.1016/j.ecolmodel.2006.11.033 10.1016/S1364-8152(97)00008-X 10.1109/MCSE.2007.53 10.1016/j.coastaleng.2016.08.011 10.1016/j.envsoft.2006.06.003 10.1016/j.envsoft.2015.11.023 10.1029/2010JF001891 10.1038/s41598-017-05792-1 10.1016/j.envsoft.2014.08.015 10.1016/j.margeo.2010.10.001 10.1016/j.envsoft.2012.03.012 10.1016/j.jhydrol.2015.10.025 10.1016/S0004-3702(97)00063-5 10.1016/j.envsoft.2011.06.004 10.1002/wrcr.20496 10.1139/x06-135 10.25080/Majora-92bf1922-00a 10.1016/j.envsoft.2016.10.007 10.1002/ieam.1327 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier Science Ltd. May 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 2019 |
| DBID | AAYXX CITATION 7QH 7SC 7ST 7UA 8FD C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 |
| DOI | 10.1016/j.envsoft.2019.01.018 |
| DatabaseName | CrossRef Aqualine Computer and Information Systems Abstracts Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Aqualine Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Ecology Computer Science Environmental Sciences |
| EISSN | 1873-6726 |
| EndPage | 5 |
| ExternalDocumentID | 10_1016_j_envsoft_2019_01_018 S1364815218305358 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7QH 7SC 7ST 7UA 8FD AGCQF C1K FR3 JQ2 KR7 L7M L~C L~D SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c370t-50dd63bb579d92a1a52749a073de79b0a778b6485c4370e0b16d0f66f62c21863 |
| IEDL.DBID | .~1 |
| ISSN | 1364-8152 |
| IngestDate | Sun Sep 28 11:00:43 EDT 2025 Wed Aug 13 09:45:52 EDT 2025 Thu Apr 24 23:16:02 EDT 2025 Wed Oct 01 02:02:27 EDT 2025 Thu Nov 14 02:16:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-50dd63bb579d92a1a52749a073de79b0a778b6485c4370e0b16d0f66f62c21863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2209580706 |
| PQPubID | 2047471 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2220870331 proquest_journals_2209580706 crossref_citationtrail_10_1016_j_envsoft_2019_01_018 crossref_primary_10_1016_j_envsoft_2019_01_018 elsevier_sciencedirect_doi_10_1016_j_envsoft_2019_01_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 2019-05-00 20190501 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Environmental modelling & software : with environment data news |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Friedman, Hastie, Tibshirani (bib14) 2001 Marcot, Steventon, Sutherland, McCann (bib26) 2006; 36 Nojavan, Qian, Stow (bib28) 2017; 87 Aguilera, Fernández, Fernández, Rumí, Salmerón (bib1) 2011; 26 Hugin Expert A/S (bib22) 2017 Korb, Nicholson (bib24) 2010 Pérez, Granger (bib32) 2007; 9 Nolan, Fienen, Lorenz (bib29) 2015; 531 Fienen, Plant (bib13) 2015; 63 Gutierrez, Plant, Thieler (bib16) 2011; 116 Guyon, Elisseeff (bib17) 2003; 3 Harley, Turner, Kinsela, Middleton, Mumford, Splinter, Phillips, Simmons, Hanslow, Short (bib21) 2017; 7 Pearl (bib31) 1988 Hapke, Plant (bib20) 2010; 278 Beuzen, Splinter, Turner, Harley, Marshall (bib6) 2017 Guyon, Gunn, Nikravesh, Zadeh (bib18) 2008 Marcot (bib25) 2012; 230 Uusitalo (bib35) 2007; 203 Fienen, Masterson, Plant, Gutierrez, Thieler (bib11) 2013; 49 Charniak (bib9) 1991; 12 Chen, Pollino (bib10) 2012; 37 Castelletti, Soncini-Sessa (bib8) 2007; 22 Bayesia (bib3) 2018 Beuzen, Marshall, Splinter (bib4) 2018; 108 Pollino, Woodberry, Nicholson, Korb, Hart (bib34) 2007; 22 Hall (bib19) 2000 Galelli, Humphrey, Maier, Castelletti, Dandy, Gibbs (bib15) 2014; 62 McKinney (bib27) 2010 Barton, Kuikka, Varis, Uusitalo, Henriksen, Borsuk, de la Hera, Farmani, Johnson, Linnell (bib2) 2012; 8 Varis (bib36) 1997; 12 Blum, Langley (bib7) 1997; 97 Beuzen, Splinter, Marshall, Turner, Harley, Palmsten (bib5) 2018; 135 Poelhekke, Jäger, van Dongeren, Plomaritis, McCall, Ferreira (bib33) 2016; 118 Norsys Software Corporation (bib1a) 2010 Norsys Software Corporation (bib30) 2016 Fienen, Nolan, Feinstein (bib12) 2016; 77 Kohavi, John (bib23) 1997; 97 McKinney (10.1016/j.envsoft.2019.01.018_bib27) 2010 Beuzen (10.1016/j.envsoft.2019.01.018_bib4) 2018; 108 Kohavi (10.1016/j.envsoft.2019.01.018_bib23) 1997; 97 Nojavan (10.1016/j.envsoft.2019.01.018_bib28) 2017; 87 Charniak (10.1016/j.envsoft.2019.01.018_bib9) 1991; 12 Chen (10.1016/j.envsoft.2019.01.018_bib10) 2012; 37 Hapke (10.1016/j.envsoft.2019.01.018_bib20) 2010; 278 Norsys Software Corporation (10.1016/j.envsoft.2019.01.018_bib1a) 2010 Hall (10.1016/j.envsoft.2019.01.018_bib19) 2000 Galelli (10.1016/j.envsoft.2019.01.018_bib15) 2014; 62 Marcot (10.1016/j.envsoft.2019.01.018_bib26) 2006; 36 Beuzen (10.1016/j.envsoft.2019.01.018_bib5) 2018; 135 Fienen (10.1016/j.envsoft.2019.01.018_bib12) 2016; 77 Blum (10.1016/j.envsoft.2019.01.018_bib7) 1997; 97 Harley (10.1016/j.envsoft.2019.01.018_bib21) 2017; 7 Pérez (10.1016/j.envsoft.2019.01.018_bib32) 2007; 9 Guyon (10.1016/j.envsoft.2019.01.018_bib18) 2008 Gutierrez (10.1016/j.envsoft.2019.01.018_bib16) 2011; 116 Fienen (10.1016/j.envsoft.2019.01.018_bib13) 2015; 63 Hugin Expert A/S (10.1016/j.envsoft.2019.01.018_bib22) 2017 Pearl (10.1016/j.envsoft.2019.01.018_bib31) 1988 Pollino (10.1016/j.envsoft.2019.01.018_bib34) 2007; 22 Bayesia (10.1016/j.envsoft.2019.01.018_bib3) 2018 Castelletti (10.1016/j.envsoft.2019.01.018_bib8) 2007; 22 Varis (10.1016/j.envsoft.2019.01.018_bib36) 1997; 12 Marcot (10.1016/j.envsoft.2019.01.018_bib25) 2012; 230 Aguilera (10.1016/j.envsoft.2019.01.018_bib1) 2011; 26 Guyon (10.1016/j.envsoft.2019.01.018_bib17) 2003; 3 Norsys Software Corporation (10.1016/j.envsoft.2019.01.018_bib30) 2016 Poelhekke (10.1016/j.envsoft.2019.01.018_bib33) 2016; 118 Korb (10.1016/j.envsoft.2019.01.018_bib24) 2010 Nolan (10.1016/j.envsoft.2019.01.018_bib29) 2015; 531 Friedman (10.1016/j.envsoft.2019.01.018_bib14) 2001 Barton (10.1016/j.envsoft.2019.01.018_bib2) 2012; 8 Fienen (10.1016/j.envsoft.2019.01.018_bib11) 2013; 49 Uusitalo (10.1016/j.envsoft.2019.01.018_bib35) 2007; 203 Beuzen (10.1016/j.envsoft.2019.01.018_bib6) 2017 |
| References_xml | – year: 2010 ident: bib1a article-title: Netica API Programmer's Library Reference Manual Version 4.18 – volume: 77 start-page: 95 year: 2016 end-page: 107 ident: bib12 article-title: Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model publication-title: Environ. Model. Softw – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib17 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 87 start-page: 64 year: 2017 end-page: 71 ident: bib28 article-title: Comparative analysis of discretization methods in Bayesian networks publication-title: Environ. Model. Softw – volume: 26 start-page: 1376 year: 2011 end-page: 1388 ident: bib1 article-title: Bayesian networks in environmental modelling publication-title: Environ. Model. Softw – year: 2010 ident: bib24 article-title: Bayesian Artificial Intelligence – start-page: 51 year: 2010 end-page: 56 ident: bib27 article-title: Data structures for statistical computing in python publication-title: Proceedings of the 9th Python in Science Conference. Austin, TX – volume: 49 start-page: 6459 year: 2013 end-page: 6473 ident: bib11 article-title: Bridging groundwater models and decision support with a Bayesian network publication-title: Water Resour. Res. – volume: 36 start-page: 3063 year: 2006 end-page: 3074 ident: bib26 article-title: Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation publication-title: Can. J. For. Res. – volume: 63 start-page: 14 year: 2015 end-page: 23 ident: bib13 article-title: A cross-validation package driving Netica with python publication-title: Environ. Model. Softw – volume: 22 start-page: 1075 year: 2007 end-page: 1088 ident: bib8 article-title: Bayesian Networks and participatory modelling in water resource management publication-title: Environ. Model. Softw – volume: 203 start-page: 312 year: 2007 end-page: 318 ident: bib35 article-title: Advantages and challenges of Bayesian networks in environmental modelling publication-title: Ecol. Model. – year: 2017 ident: bib22 article-title: Hugin Version 8.5 – volume: 37 start-page: 134 year: 2012 end-page: 145 ident: bib10 article-title: Good practice in Bayesian network modelling publication-title: Environ. Model. Softw – year: 2016 ident: bib30 article-title: Netica Version 5.22 – volume: 62 start-page: 33 year: 2014 end-page: 51 ident: bib15 article-title: An evaluation framework for input variable selection algorithms for environmental data-driven models publication-title: Environ. Model. Softw – year: 2000 ident: bib19 article-title: Correlation-based Feature Selection of Discrete and Numeric Class Machine Learning (Working Paper 00/08) – year: 2001 ident: bib14 article-title: The Elements of Statistical Learning – volume: 135 start-page: 16 year: 2018 end-page: 30 ident: bib5 article-title: Bayesian Networks in coastal engineering: distinguishing descriptive and predictive applications publication-title: Coast. Eng. – volume: 116 year: 2011 ident: bib16 article-title: A Bayesian network to predict coastal vulnerability to sea level rise publication-title: J. Geophys. Res. – volume: 97 start-page: 245 year: 1997 end-page: 271 ident: bib7 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. – volume: 108 start-page: 61 year: 2018 end-page: 66 ident: bib4 article-title: A comparison of methods for discretizing continuous variables in Bayesian networks publication-title: Environ. Model. Softw – volume: 8 start-page: 418 year: 2012 end-page: 429 ident: bib2 article-title: Bayesian networks in environmental and resource management publication-title: Integrated Environ. Assess. Manag. – year: 2018 ident: bib3 article-title: BayesiaLab Version 8 – volume: 22 start-page: 1140 year: 2007 end-page: 1152 ident: bib34 article-title: Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment publication-title: Environ. Model. Softw – year: 2008 ident: bib18 article-title: Feature Extraction: Foundations and Applications – volume: 97 start-page: 273 year: 1997 end-page: 324 ident: bib23 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. – volume: 230 start-page: 50 year: 2012 end-page: 62 ident: bib25 article-title: Metrics for evaluating performance and uncertainty of Bayesian network models publication-title: Ecol. Model. – start-page: 102 year: 2017 ident: bib6 article-title: Predicting Storm Erosion on Sandy Coastlines Using a Bayesian Network, Australasian Coasts & Ports 2017: Working with Nature – volume: 531 start-page: 902 year: 2015 end-page: 911 ident: bib29 article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA publication-title: J. Hydrol. – year: 1988 ident: bib31 article-title: Probabilistic Reasoning in Intelligent Systems – volume: 9 year: 2007 ident: bib32 article-title: IPython: a system for interactive scientific computing publication-title: Comput. Sci. Eng. – volume: 278 start-page: 140 year: 2010 end-page: 149 ident: bib20 article-title: Predicting coastal cliff erosion using a Bayesian probabilistic model publication-title: Mar. Geol. – volume: 118 start-page: 21 year: 2016 end-page: 34 ident: bib33 article-title: Predicting coastal hazards for sandy coasts with a Bayesian network publication-title: Coast. Eng. – volume: 12 start-page: 50 year: 1991 end-page: 63 ident: bib9 article-title: Bayesian networks without tears publication-title: AI Mag. – volume: 7 year: 2017 ident: bib21 article-title: Extreme coastal erosion enhanced by anomalous extratropical storm wave direction publication-title: Sci. Rep. – volume: 12 start-page: 177 year: 1997 end-page: 185 ident: bib36 article-title: Bayesian decision analysis for environmental and resource management publication-title: Environ. Model. Softw – volume: 230 start-page: 50 year: 2012 ident: 10.1016/j.envsoft.2019.01.018_bib25 article-title: Metrics for evaluating performance and uncertainty of Bayesian network models publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2012.01.013 – volume: 97 start-page: 273 issue: 1–2 year: 1997 ident: 10.1016/j.envsoft.2019.01.018_bib23 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 135 start-page: 16 year: 2018 ident: 10.1016/j.envsoft.2019.01.018_bib5 article-title: Bayesian Networks in coastal engineering: distinguishing descriptive and predictive applications publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2018.01.005 – volume: 108 start-page: 61 year: 2018 ident: 10.1016/j.envsoft.2019.01.018_bib4 article-title: A comparison of methods for discretizing continuous variables in Bayesian networks publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2018.07.007 – volume: 63 start-page: 14 year: 2015 ident: 10.1016/j.envsoft.2019.01.018_bib13 article-title: A cross-validation package driving Netica with python publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2014.09.007 – volume: 22 start-page: 1140 issue: 8 year: 2007 ident: 10.1016/j.envsoft.2019.01.018_bib34 article-title: Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2006.03.006 – volume: 203 start-page: 312 issue: 3–4 year: 2007 ident: 10.1016/j.envsoft.2019.01.018_bib35 article-title: Advantages and challenges of Bayesian networks in environmental modelling publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2006.11.033 – volume: 12 start-page: 177 issue: 2 year: 1997 ident: 10.1016/j.envsoft.2019.01.018_bib36 article-title: Bayesian decision analysis for environmental and resource management publication-title: Environ. Model. Softw doi: 10.1016/S1364-8152(97)00008-X – volume: 9 issue: 3 year: 2007 ident: 10.1016/j.envsoft.2019.01.018_bib32 article-title: IPython: a system for interactive scientific computing publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.53 – start-page: 102 year: 2017 ident: 10.1016/j.envsoft.2019.01.018_bib6 – year: 2017 ident: 10.1016/j.envsoft.2019.01.018_bib22 – volume: 118 start-page: 21 year: 2016 ident: 10.1016/j.envsoft.2019.01.018_bib33 article-title: Predicting coastal hazards for sandy coasts with a Bayesian network publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2016.08.011 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 10.1016/j.envsoft.2019.01.018_bib17 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1075 issue: 8 year: 2007 ident: 10.1016/j.envsoft.2019.01.018_bib8 article-title: Bayesian Networks and participatory modelling in water resource management publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2006.06.003 – volume: 77 start-page: 95 year: 2016 ident: 10.1016/j.envsoft.2019.01.018_bib12 article-title: Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2015.11.023 – year: 2000 ident: 10.1016/j.envsoft.2019.01.018_bib19 – volume: 116 issue: F2 year: 2011 ident: 10.1016/j.envsoft.2019.01.018_bib16 article-title: A Bayesian network to predict coastal vulnerability to sea level rise publication-title: J. Geophys. Res. doi: 10.1029/2010JF001891 – year: 2001 ident: 10.1016/j.envsoft.2019.01.018_bib14 – year: 2016 ident: 10.1016/j.envsoft.2019.01.018_bib30 – year: 2018 ident: 10.1016/j.envsoft.2019.01.018_bib3 – volume: 7 year: 2017 ident: 10.1016/j.envsoft.2019.01.018_bib21 article-title: Extreme coastal erosion enhanced by anomalous extratropical storm wave direction publication-title: Sci. Rep. doi: 10.1038/s41598-017-05792-1 – volume: 62 start-page: 33 year: 2014 ident: 10.1016/j.envsoft.2019.01.018_bib15 article-title: An evaluation framework for input variable selection algorithms for environmental data-driven models publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2014.08.015 – volume: 278 start-page: 140 issue: 1–4 year: 2010 ident: 10.1016/j.envsoft.2019.01.018_bib20 article-title: Predicting coastal cliff erosion using a Bayesian probabilistic model publication-title: Mar. Geol. doi: 10.1016/j.margeo.2010.10.001 – year: 2010 ident: 10.1016/j.envsoft.2019.01.018_bib1a – volume: 37 start-page: 134 year: 2012 ident: 10.1016/j.envsoft.2019.01.018_bib10 article-title: Good practice in Bayesian network modelling publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2012.03.012 – volume: 12 start-page: 50 issue: 4 year: 1991 ident: 10.1016/j.envsoft.2019.01.018_bib9 article-title: Bayesian networks without tears publication-title: AI Mag. – volume: 531 start-page: 902 year: 2015 ident: 10.1016/j.envsoft.2019.01.018_bib29 article-title: A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.025 – year: 2008 ident: 10.1016/j.envsoft.2019.01.018_bib18 – year: 1988 ident: 10.1016/j.envsoft.2019.01.018_bib31 – volume: 97 start-page: 245 issue: 1 year: 1997 ident: 10.1016/j.envsoft.2019.01.018_bib7 article-title: Selection of relevant features and examples in machine learning publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00063-5 – volume: 26 start-page: 1376 issue: 12 year: 2011 ident: 10.1016/j.envsoft.2019.01.018_bib1 article-title: Bayesian networks in environmental modelling publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2011.06.004 – volume: 49 start-page: 6459 issue: 10 year: 2013 ident: 10.1016/j.envsoft.2019.01.018_bib11 article-title: Bridging groundwater models and decision support with a Bayesian network publication-title: Water Resour. Res. doi: 10.1002/wrcr.20496 – volume: 36 start-page: 3063 issue: 12 year: 2006 ident: 10.1016/j.envsoft.2019.01.018_bib26 article-title: Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation publication-title: Can. J. For. Res. doi: 10.1139/x06-135 – year: 2010 ident: 10.1016/j.envsoft.2019.01.018_bib24 – start-page: 51 year: 2010 ident: 10.1016/j.envsoft.2019.01.018_bib27 article-title: Data structures for statistical computing in python doi: 10.25080/Majora-92bf1922-00a – volume: 87 start-page: 64 year: 2017 ident: 10.1016/j.envsoft.2019.01.018_bib28 article-title: Comparative analysis of discretization methods in Bayesian networks publication-title: Environ. Model. Softw doi: 10.1016/j.envsoft.2016.10.007 – volume: 8 start-page: 418 issue: 3 year: 2012 ident: 10.1016/j.envsoft.2019.01.018_bib2 article-title: Bayesian networks in environmental and resource management publication-title: Integrated Environ. Assess. Manag. doi: 10.1002/ieam.1327 |
| SSID | ssj0001524 |
| Score | 2.323872 |
| Snippet | Bayesian Networks (BNs) are useful methods of probabilistically modelling environmental systems. BN performance is sensitive to the number of variables... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | artificial intelligence Bayesian analysis Bayesian theory Computer programs computer software Environment models Learning algorithms Machine learning Mathematical models Probabilistic methods Reptiles & amphibians Software Source code |
| Title | A variable selection package driving Netica with Python |
| URI | https://dx.doi.org/10.1016/j.envsoft.2019.01.018 https://www.proquest.com/docview/2209580706 https://www.proquest.com/docview/2220870331 |
| Volume | 115 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AIKHN dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: ACRLP dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6726 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001524 issn: 1364-8152 databaseCode: AKRWK dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KS2F76LZsZdm6osFenUi2LNmPoaRkLQuFrdA3oa9AuuGWJi30pX_77my5WcegMPCLrZNt7nx3OvnufgBfqspZdNsiw9hDZVJEnzldhyyEYDF-CLZui8K-zdXsXJ5clBdbcNTXwlBaZbL9nU1vrXW6Mk7cHF8vl-PvolDUaYR8PDUpoYJfKTWhGIweNmkeSNAB2yqZEfWmimd8OYrN3QqtHWV41W33TsL--Ld_-stSt-7n-DXspXUjm3Sv9ga2YjOAVz0mA0sqOoDdaduG-n4AL_9oNTiA_emmog3vk-hXb0FP2B3Gy1RBxVYtKA5KimEk_RMtDQs3S9pxYPO21pHRri07u6d-A-_g_Hj642iWJTSFzBear7OSh6AK50oURZ1bYUsMSGuLKh6irh23WlcOOVp6ifSRO6ECXyi1ULkn4KpiH7abqya-B8ajdD63tcVoSNaiwEFX8SAW3vuF1mIIsueh8anVOCFe_DJ9TtmlSaw3xHrDBR7VEEaP0667XhvPTah6AZknH41Bf_Dc1INeoCZp7crkOS44KzSCagifH4dR3-gnim3i1S3R5BxtXFGID___9I_wgs66xMkD2F7f3MZPuLhZu8P26z2EncnX09n8N7LR-Eo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRdQHq6fF01ZX8DV3u8lmN3ks5cqp7SHYQt-W_Tq4KmnpXQt98W93Jtn0tBQKQp6ys0mY2fnNzmY-AD5XlbNotkWGvofKpIg-c7oOWQjBov8QbN0mhR3N1PREfj0tTzdgv8-FobDKhP0dprdone6MEzfHF4vF-IcoFFUaIRtPRUqqR_BYlrkmD2z0ex3ngRRdZ1slMyJfp_GMz0axuV4i3FGIV92W76TmH_cbqDtQ3dqfg5fwIm0c2V73ba9gIzYD2OqbMrCkowN4MmnrUN8M4PlftQYHsD1Zp7ThcxL98jXoPXaNDjOlULFl2xUHRcXQlf6JUMPC5YKOHNisTXZkdGzLvt9QwYE3cHIwOd6fZqmdQuYLzVdZyUNQhXMlyqLOrbDILFlb1PEQde241bpyyNLSS6SP3AkV-Fypuco9da4qtmGzOW_iW2A8SudzW1t0h2QtChx0FQ9i7r2fay2GIHseGp9qjVPLi1-mDyo7M4n1hlhvuMCrGsLodtpFV2zjoQlVLyDzz6oxaBAemrrTC9QktV2aPMcdZ4UoqIbw6XYYFY7-otgmnl8RTc4R5IpCvPv_t3-Ep9Pjo0Nz-GX27T08o5EuinIHNleXV3EXdzor96FdyX8AbhX53w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variable+selection+package+driving+Netica+with+Python&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Beuzen%2C+Tomas&rft.au=Simmons%2C+Joshua&rft.date=2019-05-01&rft.pub=Elsevier+Science+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=115&rft.spage=1&rft_id=info:doi/10.1016%2Fj.envsoft.2019.01.018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |