Residue fields of valued function fields of conics

Suppose that K is a function field of a conic over a subfield K0. Let v0 be a valuation of K0 with residue field k0 of characteristic ≠2. Let v be an extension of v0 to K having residue field k. It has been proved that either k is an algebraic extension of k0 or k is a regular function field of a co...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 36; no. 3; pp. 469 - 478
Main Authors Khanduja, Sudesh K., Garg, Usha
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.10.1993
Online AccessGet full text
ISSN0013-0915
1464-3839
1464-3839
DOI10.1017/S0013091500018551

Cover

Abstract Suppose that K is a function field of a conic over a subfield K0. Let v0 be a valuation of K0 with residue field k0 of characteristic ≠2. Let v be an extension of v0 to K having residue field k. It has been proved that either k is an algebraic extension of k0 or k is a regular function field of a conic over a finite extension of k0. This result can also be deduced from the genus inequality of Matignon (cf. [On valued function fields I, Manuscripta Math. 65 (1989), 357–376]) which has been proved using results about vector space defect and methods of rigid analytic geometry. The proof given here is more or less self-contained requiring only elementary valuation theory.
AbstractList Suppose that K is a function field of a conic over a subfield K0. Let v0 be a valuation of K0 with residue field k0 of characteristic ≠2. Let v be an extension of v0 to K having residue field k. It has been proved that either k is an algebraic extension of k0 or k is a regular function field of a conic over a finite extension of k0. This result can also be deduced from the genus inequality of Matignon (cf. [On valued function fields I, Manuscripta Math. 65 (1989), 357–376]) which has been proved using results about vector space defect and methods of rigid analytic geometry. The proof given here is more or less self-contained requiring only elementary valuation theory.
Suppose that K is a function field of a conic over a subfield K 0 . Let v 0 be a valuation of K 0 with residue field k 0 of characteristic ≠2. Let v be an extension of v 0 to K having residue field k . It has been proved that either k is an algebraic extension of k 0 or k is a regular function field of a conic over a finite extension of k 0 . This result can also be deduced from the genus inequality of Matignon (cf. [On valued function fields I, Manuscripta Math. 65 (1989), 357–376]) which has been proved using results about vector space defect and methods of rigid analytic geometry. The proof given here is more or less self-contained requiring only elementary valuation theory.
Author Khanduja, Sudesh K.
Garg, Usha
Author_xml – sequence: 1
  givenname: Sudesh K.
  surname: Khanduja
  fullname: Khanduja, Sudesh K.
  organization: Centre for Advanced Study in Mathematics, Panjab University, Chandigarh—160014, India
– sequence: 2
  givenname: Usha
  surname: Garg
  fullname: Garg, Usha
  organization: Centre for Advanced Study in Mathematics, Panjab University, Chandigarh—160014, India
BookMark eNp9kFFLwzAUhYNMcJv-AN_6B6pJkzbNow43hYq46nO4TVLJ7NqRtOr-vS0bIlP2dC-c893DuRM0qpvaIHRJ8BXBhF_nGBOKBYlxv6RxTE7QmLCEhTSlYoTGgxwO-hmaeL_qXZzHZIyipfFWdyYoram0D5oy-ICqMzoou1q1tql_KaqprfLn6LSEypuL_Zyi1_ndy-w-zJ4WD7ObLFSU4zZkJNGEFikvwQgtIi24SlKRGKy16ifFBagUKFARMdBU8YQBNlGqKVOsUHSKot3drt7A9hOqSm6cXYPbSoLl0Fr6w9Y9RHaQco33zpR_mPwfhh8wyrYwdG8d2OooGe5I61vz9RMF7l0mnPJYJotnmd8ysZw_ZjLv_XSfBOvCWf1m5KrpXN2_8UjKN-1hiU0
CitedBy_id crossref_primary_10_1017_S0013091500018897
crossref_primary_10_1016_j_jpaa_2020_106638
Cites_doi 10.1090/S0002-9939-1983-0706500-9
10.1007/978-3-642-65505-0
10.1017/S0013091500005708
10.1007/BF01303043
10.1007/BF01169090
10.1215/kjm/1250521810
10.1090/S0002-9939-1988-0962804-0
10.1215/kjm/1250521073
ContentType Journal Article
Copyright Copyright © Edinburgh Mathematical Society 1993
Copyright_xml – notice: Copyright © Edinburgh Mathematical Society 1993
DBID BSCLL
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1017/S0013091500018551
DatabaseName Istex
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3839
EndPage 478
ExternalDocumentID 10.1017/s0013091500018551
10_1017_S0013091500018551
ark_67375_6GQ_SB49RFML_S
GroupedDBID -1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.FH
09C
09E
0E1
0R~
123
29O
3V.
4.4
5VS
6OB
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABEFU
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIPV
ACIWK
ACMRT
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOJD
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AEYYC
AFFNX
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
M7~
M8.
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNI
ROL
RR0
RZO
S6-
S6U
SAAAG
T9M
TR2
TWZ
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
XOL
YNT
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
~V1
AAKNA
AATMM
ABGDZ
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACRPL
ADNMO
AEMFK
AFZFC
AGQPQ
AHDLI
AKMAY
AMVHM
ANOYL
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c370t-416d13b87fae9d92d97c6896e0ddc89630bac8a3a3924ad3c764a0e28d34c4bc3
IEDL.DBID UNPAY
ISSN 0013-0915
1464-3839
IngestDate Tue Aug 19 21:19:31 EDT 2025
Wed Oct 01 04:26:59 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Sun Aug 31 06:48:31 EDT 2025
Wed Mar 13 05:53:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-416d13b87fae9d92d97c6896e0ddc89630bac8a3a3924ad3c764a0e28d34c4bc3
Notes ArticleID:01855
PII:S0013091500018551
istex:D28735BE7A852D884244780D3D7B9BD5A2535E16
ark:/67375/6GQ-SB49RFML-S
The research of the first author is supported partially by CSIR, New Delhi, vide grant No. 25/53/90-EMRII.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6F41BB59FC4A7AB215D3EEA358EDED82/S0013091500018551a.pdf/div-class-title-residue-fields-of-valued-function-fields-of-conics-div.pdf
PageCount 10
ParticipantIDs unpaywall_primary_10_1017_s0013091500018551
crossref_primary_10_1017_S0013091500018551
crossref_citationtrail_10_1017_S0013091500018551
istex_primary_ark_67375_6GQ_SB49RFML_S
cambridge_journals_10_1017_S0013091500018551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1993-10-01
PublicationDateYYYYMMDD 1993-10-01
PublicationDate_xml – month: 10
  year: 1993
  text: 1993-10-01
  day: 01
PublicationDecade 1990
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Proceedings of the Edinburgh Mathematical Society
PublicationTitleAlternate Proceedings of the Edinburgh Mathematical Society
PublicationYear 1993
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Artin (S0013091500018551_ref001) 1967
S0013091500018551_ref008
S0013091500018551_ref009
S0013091500018551_ref004
S0013091500018551_ref005
S0013091500018551_ref006
S0013091500018551_ref007
Zariski (S0013091500018551_ref013) 1955; 1
S0013091500018551_ref003
Bourbaki (S0013091500018551_ref002) 1972
S0013091500018551_ref010
Ohm (S0013091500018551_ref011) 1990
Weil (S0013091500018551_ref012) 1962
References_xml – ident: S0013091500018551_ref008
  doi: 10.1090/S0002-9939-1983-0706500-9
– volume-title: Algebraic Numbers and Algebraic Functions
  year: 1967
  ident: S0013091500018551_ref001
– ident: S0013091500018551_ref003
  doi: 10.1007/978-3-642-65505-0
– volume-title: Function Fields of Conies, A Theorem of Amitsur-MacRae, and a Problem of Zariski
  year: 1990
  ident: S0013091500018551_ref011
– volume-title: Commutative Algebra
  year: 1972
  ident: S0013091500018551_ref002
– volume: 1
  volume-title: Commutative Algebra
  year: 1955
  ident: S0013091500018551_ref013
– ident: S0013091500018551_ref005
  doi: 10.1017/S0013091500005708
– ident: S0013091500018551_ref004
  doi: 10.1007/BF01303043
– ident: S0013091500018551_ref006
  doi: 10.1007/BF01169090
– volume-title: Foundations of Algebraic Geometry
  year: 1962
  ident: S0013091500018551_ref012
– ident: S0013091500018551_ref009
  doi: 10.1215/kjm/1250521810
– ident: S0013091500018551_ref007
  doi: 10.1090/S0002-9939-1988-0962804-0
– ident: S0013091500018551_ref010
  doi: 10.1215/kjm/1250521073
SSID ssj0007751
Score 1.3775961
Snippet Suppose that K is a function field of a conic over a subfield K0. Let v0 be a valuation of K0 with residue field k0 of characteristic ≠2. Let v be an extension...
Suppose that K is a function field of a conic over a subfield K 0 . Let v 0 be a valuation of K 0 with residue field k 0 of characteristic ≠2. Let v be an...
SourceID unpaywall
crossref
istex
cambridge
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 469
Title Residue fields of valued function fields of conics
URI https://www.cambridge.org/core/product/identifier/S0013091500018551/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-SB49RFML-S/fulltext.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6F41BB59FC4A7AB215D3EEA358EDED82/S0013091500018551a.pdf/div-class-title-residue-fields-of-valued-function-fields-of-conics-div.pdf
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1464-3839
  dateEnd: 20241104
  omitProxy: false
  ssIdentifier: ssj0007751
  issn: 1464-3839
  databaseCode: AMVHM
  dateStart: 18830201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lb9NAEF6V5AIH3oi0UPmAOACb2N6HvUensYkQrqAlqJysfVmqGiVRnfDoT-xf4U-wu34oJVIlrpx8mN0Zazw7M-ud_QaAVyXROmClhpSEGJr8X0FBlYKI-0ShiHDswKrzYzqd4Q9n5GwPXLd3YWxZZYdx4E7yXX-0qlk4I75cwY4OHc3WdBsHPbK_0kc0w8F4TFh2hJMoGZuANkFpmiASp5N0Eof2arBx2yywjQBMrCIBH65UOVLn36G0-Sp0Hwmave652mjo6sgquCyhBd_WCtpwY1W2RZEWxLaChoVldQf0KTH7gh7oz44_Jd-6FgrMtVMwnglDsy1k7RFr4BBNb77TNtDDjYDZt9_-pyFvFiv-6wefz7eiYfYA_G71WBfBXAw3azGUV39BTP4fin4I7jdJu5fUq-wR2NOLx-Be3iHeVk9AeFJL8Go-3rL0agleK2GLUkt4CmZZ-uVoCpt-FFCiyF9Dk7uqAIk4KrlmioWKRZLGjGpfKWmeyBdcxhxxk3NirpCMKOa-DmOFsMRComegt1gu9HPg2SwJExlwQTVmnLAyxpIQJZRgOJBiAN51yi8ar1IVdUVeVOyodgD81kYK2WC72xYj89umvOmmrGpgk9sGv3aG143klxe2IjAiBX3_uTgdY3aS5R-L0wF421nmDtsdM9__p9EH4K6rNnWVlC9Ab3250S9NRrgWh6Cf5F-n-WGz5P4Aa71Yew
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lj9MwELaW9gIH3ojyUg6IAzBtEj8SH9NtygrRFexSaTlFfkVabdVWm5bXT-Sv8CewnYe6VFqJK6ccxp6JJuOZcTz-BqGXJTUm4qUBRmMCNv_XIJnWgEVINU6oIB6senbMjubk_Rk9O0C_2rswrqyywzjwJ_m-P1rVLJyRWK2ho4OnuZpu66BH7lf6iE1JNB5TPj0kWZKNbUCb4DzPME3zST5JY3c12LptHrlGADZW0UgM17oc6fOvoFy-Cv4jgd3rnuutAV9HVsGqBAe-bTS4cONUtkNRDsS2AsvCsbqB-ozafUEP9efHH7MvXQsF7tspWM9EwG4LeXvEGnlE06vvtAv0cCVg9t23_27J2-Va_PgmFoudaDi9g363eqyLYC6G240cqp9_QUz-H4q-i243SXuQ1avsHjowy_vo1qxDvK0eoPiklhDUfIJVGdQSglbCDqWW8BDNp_nnwyNo-lGAwkm4AZu76gjLNCmF4ZrHmieKpZyZUGtlnziUQqUCC5tzEqGxShgRoYlTjYkiUuFHqLdcLc1jFLgsiVAVCckM4YLyMiWKUi215CRScoDedsovGq9SFXVFXlLsqXaAwtZGCtVgu7sWI4vrprzupqxrYJPrBr_yhteNFJcXriIwoQV796k4HRN-Mp19KE4H6E1nmXts98z8yT-Nfopu-mpTX0n5DPU2l1vz3GaEG_miWWp_AK_SVt8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residue+fields+of+valued+function+fields+of+conics&rft.jtitle=Proceedings+of+the+Edinburgh+Mathematical+Society&rft.au=Khanduja%2C+Sudesh+K.&rft.au=Garg%2C+Usha&rft.date=1993-10-01&rft.pub=Cambridge+University+Press&rft.issn=0013-0915&rft.eissn=1464-3839&rft.volume=36&rft.issue=3&rft.spage=469&rft.epage=478&rft_id=info:doi/10.1017%2FS0013091500018551&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_SB49RFML_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-0915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-0915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-0915&client=summon