Improved time-hardening creep model for investigation on behaviour of pre-tensioned steel strands subject to localised fire

Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numericall...

Full description

Saved in:
Bibliographic Details
Published inFire safety journal Vol. 116; p. 103191
Main Authors Du, Yong, Richard Liew, J.Y., Jiang, Jian, Li, Guo-Qiang
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0379-7112
1873-7226
DOI10.1016/j.firesaf.2020.103191

Cover

Abstract Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures.
AbstractList Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures.
Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures.
ArticleNumber 103191
Author Richard Liew, J.Y.
Jiang, Jian
Li, Guo-Qiang
Du, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Du
  fullname: Du, Yong
  email: yongdu_mail@njtech.edu.cn
  organization: College of Civil Engineering, Nanjing Tech University, Nanjing, 211800, China
– sequence: 2
  givenname: J.Y.
  surname: Richard Liew
  fullname: Richard Liew, J.Y.
  organization: College of Civil Engineering, Nanjing Tech University, Nanjing, 211800, China
– sequence: 3
  givenname: Jian
  surname: Jiang
  fullname: Jiang, Jian
  organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, 221116, China
– sequence: 4
  givenname: Guo-Qiang
  surname: Li
  fullname: Li, Guo-Qiang
  organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Shanghai, 200092, China
BookMark eNqFUU1r3DAUFCWBbtL-hIKgl168efqwZdNDKaFNAoFcmrOQpedExpa2knah9M9X280pl4BA4mlmeDNzQc5CDEjIJwZbBqy7mreTT5jNtOXAjzPBBvaObFivRKM4787IBoQaGsUYf08ucp4BmAIYNuTv3bpL8YCOFr9i82ySw-DDE7UJcUfX6HChU0zUhwPm4p9M8THQekZ8Ngcf94nGie4SNgVDrn9VKhesrFySCS7TvB9ntIWWSJdozeJzhRw3_kDOJ7Nk_PhyX5LHnz9-Xd829w83d9ff7xsrFJRGQM-4bUfRqRasxZEpBtKZvpVylGOnpBtBMmaq-171Aob6dnwU3KpKBHFJvpx0q9Pf--pCrz5bXBYTMO6z5kPfDkx2ICv08yvoXB2Gup3mLbSSSdnzimpPKJtizgknvUt-NemPZqCPlehZv1Sij5XoUyWV9_UVz_ryP9AalV_eZH87sbFmdfCYdLYeg0VXwbZoF_0bCv8AezCtQA
CitedBy_id crossref_primary_10_1016_j_engfracmech_2023_109479
crossref_primary_10_1061_JMCEE7_MTENG_16144
crossref_primary_10_1016_j_firesaf_2024_104160
crossref_primary_10_1016_j_istruc_2023_105682
crossref_primary_10_1007_s00170_023_12260_w
crossref_primary_10_1038_s41598_023_31182_x
crossref_primary_10_3390_met12071073
crossref_primary_10_1016_j_jcsr_2023_108302
crossref_primary_10_1007_s11709_023_0981_y
crossref_primary_10_1016_j_firesaf_2023_103868
crossref_primary_10_1016_j_conbuildmat_2022_128858
crossref_primary_10_1016_j_ijfatigue_2023_107959
Cites_doi 10.1016/j.firesaf.2012.07.004
10.1016/j.engstruct.2014.12.004
10.1617/s11527-010-9583-y
10.3390/app9081670
10.1016/j.tws.2019.02.017
10.1260/2040-2317.2.3.139
10.1016/j.conbuildmat.2018.06.012
10.2749/101686612X13363929517730
10.1002/fam.2345
10.1016/j.firesaf.2019.01.002
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7T2
7TB
8FD
C1K
FR3
KR7
7S9
L.6
DOI 10.1016/j.firesaf.2020.103191
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Health & Safety Science Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7226
ExternalDocumentID 10_1016_j_firesaf_2020_103191
S0379711219306526
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TAE
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
~V8
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
7T2
7TB
8FD
C1K
EFKBS
FR3
KR7
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c370t-30812c5b36750cceb17104da8544b4b674db0411a20287830911ad2b32c712c03
IEDL.DBID AIKHN
ISSN 0379-7112
IngestDate Sun Sep 28 08:00:42 EDT 2025
Wed Aug 13 04:29:51 EDT 2025
Tue Jul 01 03:06:50 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
Fri Feb 23 02:45:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Material property at elevated temperature
Localised fire
Pre-tensioned steel strand
High-temperature creep model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-30812c5b36750cceb17104da8544b4b674db0411a20287830911ad2b32c712c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2505414482
PQPubID 2045475
ParticipantIDs proquest_miscellaneous_2985914604
proquest_journals_2505414482
crossref_primary_10_1016_j_firesaf_2020_103191
crossref_citationtrail_10_1016_j_firesaf_2020_103191
elsevier_sciencedirect_doi_10_1016_j_firesaf_2020_103191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Fire safety journal
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References BSi (bib20) 2012
BS EN 10291-2000 British Standards Institution (BSI) (bib25) 2000
AS/NZS 4672 (bib18) 2007
Du, Richard Liew, Zhang, Li (bib3) 2018; 14
Dorn (bib15) 1954; 3
Du, Peng, Richard Liew, Li (bib9) 2018; 182
(bib26) 2006
Gales, Bisby, Gillie (bib11) 2011; 2
Gales, Robertson, Bisby (bib8) 2016; 40
(bib27) 2007
Du, Li (bib28) 2012; 54
Du, Yakai Sun, Zhang, Li (bib6) 2019; 104
Day, Jenkinson, Smith (bib14) 1960; 16
ASTM (bib17) 2003
Du, Gou (bib22) 2019; 9
Main, Luecke (bib29) 2010
ASTM (bib19) 2003
Kodur, Dwaikat (bib10) 2010; 43
Harmathy, Stanzak (bib16) 1970; vol. 464
Cheng, Du, Sheng (bib2) 2016
Gales, Bisby, Strafford (bib1) 2012; 22
Clark, Walley (bib13) 1953; 2
EN 1992-1-2 (bib24) 2004
Gales, Bisby, Gillie (bib12) 2011; 2
Du, Zhu, Jiang, Li (bib7) 2019; 138
Kotsovinos, Atalioti, McSwiney, Lugaresi, Rein, Sadowski (bib4) 2019
Fontanari, Benedetti, Monelli, Degasperi (bib5) 2015; 84
Zhou, Nie, Li, Zhang (bib21) 2014; 35
(bib23) 1998
Main (10.1016/j.firesaf.2020.103191_bib29) 2010
Du (10.1016/j.firesaf.2020.103191_bib9) 2018; 182
Clark (10.1016/j.firesaf.2020.103191_bib13) 1953; 2
BS EN 10291-2000 British Standards Institution (BSI) (10.1016/j.firesaf.2020.103191_bib25) 2000
Du (10.1016/j.firesaf.2020.103191_bib7) 2019; 138
ASTM (10.1016/j.firesaf.2020.103191_bib19) 2003
Gales (10.1016/j.firesaf.2020.103191_bib11) 2011; 2
Dorn (10.1016/j.firesaf.2020.103191_bib15) 1954; 3
Kodur (10.1016/j.firesaf.2020.103191_bib10) 2010; 43
BSi (10.1016/j.firesaf.2020.103191_bib20) 2012
(10.1016/j.firesaf.2020.103191_bib27) 2007
Du (10.1016/j.firesaf.2020.103191_bib22) 2019; 9
(10.1016/j.firesaf.2020.103191_bib23) 1998
EN 1992-1-2 (10.1016/j.firesaf.2020.103191_bib24) 2004
Harmathy (10.1016/j.firesaf.2020.103191_bib16) 1970; vol. 464
Gales (10.1016/j.firesaf.2020.103191_bib12) 2011; 2
AS/NZS 4672 (10.1016/j.firesaf.2020.103191_bib18) 2007
Du (10.1016/j.firesaf.2020.103191_bib28) 2012; 54
Kotsovinos (10.1016/j.firesaf.2020.103191_bib4) 2019
Fontanari (10.1016/j.firesaf.2020.103191_bib5) 2015; 84
(10.1016/j.firesaf.2020.103191_bib26) 2006
Du (10.1016/j.firesaf.2020.103191_bib3) 2018; 14
ASTM (10.1016/j.firesaf.2020.103191_bib17) 2003
Du (10.1016/j.firesaf.2020.103191_bib6) 2019; 104
Zhou (10.1016/j.firesaf.2020.103191_bib21) 2014; 35
Day (10.1016/j.firesaf.2020.103191_bib14) 1960; 16
Gales (10.1016/j.firesaf.2020.103191_bib1) 2012; 22
Gales (10.1016/j.firesaf.2020.103191_bib8) 2016; 40
Cheng (10.1016/j.firesaf.2020.103191_bib2) 2016
References_xml – volume: 182
  start-page: 52
  year: 2018
  end-page: 65
  ident: bib9
  article-title: Mechanical properties of high tensile steel cables at elevated temperatures
  publication-title: Constr. Build. Mater.
– volume: 9
  start-page: 1670
  year: 2019
  ident: bib22
  article-title: Application of the non-contact video gauge on the mechanical properties test for steel cable at elevated temperature
  publication-title: J. Appl. Sci.
– volume: 54
  start-page: 113
  year: 2012
  end-page: 120
  ident: bib28
  article-title: A new temperature–time curve for fire-resistance analysis of structures
  publication-title: J. Fire Saf.
– year: 2003
  ident: bib17
  article-title: Standard Specification for Steel Strand, Uncoated Seven-Wire for Pre-stressed Concrete
– volume: 16
  start-page: 55
  year: 1960
  end-page: 70
  ident: bib14
  article-title: Effect of elevated temperatures on high-tensile-steel wires for pre-stressed concrete
  publication-title: ICE Proc.
– year: 2007
  ident: bib18
  article-title: Standards Australia New Zealand. Pre-stressing Strand Standard 4672
– year: 2004
  ident: bib24
  article-title: Design of Concrete Structures. Part 1. 2 General Rules – Structural Fire Design
– volume: 2
  start-page: 139
  year: 2011
  end-page: 153
  ident: bib11
  article-title: Unbounded post-tensioned concrete slabs in fire – part I – experimental response of unbounded tendons under transient localized heating
  publication-title: J. Struct. Fire Eng.
– year: 2000
  ident: bib25
  article-title: Metallic Materials – Uniaxial Creep Testing in Tension – Methods of Test
– start-page: 1621
  year: 2016
  end-page: 1632
  ident: bib2
  article-title: Analytical method of mechanical behaviours for beam string structure exposed to localized fires
  publication-title: Proc., 8th Int. Conf. on Steel and Aluminium Structures, Hong Kong, China
– volume: 40
  start-page: 875
  year: 2016
  end-page: 895
  ident: bib8
  article-title: Creep of pre-stressing steels in fire
  publication-title: Fire Mater.
– volume: 43
  start-page: 1327
  year: 2010
  end-page: 1341
  ident: bib10
  article-title: Effect of high temperature creep on the fire response of restrained steel beams
  publication-title: Mater. Struct.
– volume: 2
  start-page: 154
  year: 2011
  end-page: 171
  ident: bib12
  article-title: Post-tensioned concrete slabs in fire – part II – modelling tendon response and consequences of localized heating
  publication-title: J. Struct. Fire Eng.
– start-page: 1
  year: 2019
  end-page: 29
  ident: bib4
  article-title: Analysis of the thermo-mechanical response of structural cables subject to fire
  publication-title: Fire Technol.
– year: 2003
  ident: bib19
  article-title: Standard Specification for Steel Strand, Uncoated Seven-Wire for Pre-stressed Concrete
– volume: 35
  start-page: 123
  year: 2014
  end-page: 129
  ident: bib21
  article-title: Experimental research on creep properties of pre-stressed steel strand in 1860 MPa at high temperature
  publication-title: J. Build. Struct.
– year: 2010
  ident: bib29
  article-title: Safety Assessment of Parallel Wire Suspension Bridge Cables under Thermal Effects. Technical Note (NIST TN)-1678
– volume: 84
  start-page: 340
  year: 2015
  end-page: 349
  ident: bib5
  article-title: Fire behavior of steel wire ropes: experimental investigation and numerical analysis
  publication-title: Eng. Struct.
– volume: 22
  start-page: 476
  year: 2012
  end-page: 486
  ident: bib1
  article-title: New parameters to describe high-temperature deformation of prestressing steel determined using digital image Correlation
  publication-title: Struct. Eng. Int.
– volume: 3
  year: 1954
  ident: bib15
  article-title: Some fundamental experiments on high temperature creep
  publication-title: J. Mech. Phys. Solids
– year: 2006
  ident: bib26
  publication-title: CECS 212:2006, Technical Specification for Pre-stressed Steel Structures
– volume: 104
  start-page: 79
  year: 2019
  end-page: 89
  ident: bib6
  article-title: Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire
  publication-title: Fire Saf. J.
– volume: 2
  start-page: 107
  year: 1953
  end-page: 154
  ident: bib13
  article-title: Creep of high tensile steel wire
  publication-title: ICE Proc.
– volume: 138
  start-page: 231
  year: 2019
  end-page: 242
  ident: bib7
  article-title: Transient temperature distribution in pre-tensioned anchors of cable-supported structures under ISO834 fire
  publication-title: Thin Walled Struct.
– volume: vol. 464
  start-page: 186
  year: 1970
  end-page: 208
  ident: bib16
  publication-title: Elevated-temperature Tensile and Creep Properties of Some Structural and Pre-stressing Steels
– year: 2012
  ident: bib20
  article-title: Specification for High Tensile Steel Wire and Strands for the Pre-stressing of Concrete
– year: 2007
  ident: bib27
  publication-title: JTG/T D65-01-2007, Guidelines for Design of Highway Cable-Stayed Bridge
– volume: 14
  start-page: 106
  year: 2018
  end-page: 226
  ident: bib3
  article-title: Pre-tensioned steel cables exposed to localised fires
  publication-title: Adv. Steel Constr.
– year: 1998
  ident: bib23
  publication-title: CJ 3077-1998, Steel Wire for Construction Cable
– start-page: 1
  year: 2019
  ident: 10.1016/j.firesaf.2020.103191_bib4
  article-title: Analysis of the thermo-mechanical response of structural cables subject to fire
  publication-title: Fire Technol.
– volume: 35
  start-page: 123
  year: 2014
  ident: 10.1016/j.firesaf.2020.103191_bib21
  article-title: Experimental research on creep properties of pre-stressed steel strand in 1860 MPa at high temperature
  publication-title: J. Build. Struct.
– start-page: 1621
  year: 2016
  ident: 10.1016/j.firesaf.2020.103191_bib2
  article-title: Analytical method of mechanical behaviours for beam string structure exposed to localized fires
– volume: 54
  start-page: 113
  year: 2012
  ident: 10.1016/j.firesaf.2020.103191_bib28
  article-title: A new temperature–time curve for fire-resistance analysis of structures
  publication-title: J. Fire Saf.
  doi: 10.1016/j.firesaf.2012.07.004
– year: 2000
  ident: 10.1016/j.firesaf.2020.103191_bib25
– volume: 2
  start-page: 154
  issue: 3
  year: 2011
  ident: 10.1016/j.firesaf.2020.103191_bib12
  article-title: Post-tensioned concrete slabs in fire – part II – modelling tendon response and consequences of localized heating
  publication-title: J. Struct. Fire Eng.
– volume: 2
  start-page: 107
  year: 1953
  ident: 10.1016/j.firesaf.2020.103191_bib13
  article-title: Creep of high tensile steel wire
  publication-title: ICE Proc.
– volume: 84
  start-page: 340
  year: 2015
  ident: 10.1016/j.firesaf.2020.103191_bib5
  article-title: Fire behavior of steel wire ropes: experimental investigation and numerical analysis
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2014.12.004
– volume: 43
  start-page: 1327
  year: 2010
  ident: 10.1016/j.firesaf.2020.103191_bib10
  article-title: Effect of high temperature creep on the fire response of restrained steel beams
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-010-9583-y
– volume: 9
  start-page: 1670
  year: 2019
  ident: 10.1016/j.firesaf.2020.103191_bib22
  article-title: Application of the non-contact video gauge on the mechanical properties test for steel cable at elevated temperature
  publication-title: J. Appl. Sci.
  doi: 10.3390/app9081670
– volume: 3
  year: 1954
  ident: 10.1016/j.firesaf.2020.103191_bib15
  article-title: Some fundamental experiments on high temperature creep
  publication-title: J. Mech. Phys. Solids
– year: 2007
  ident: 10.1016/j.firesaf.2020.103191_bib18
– volume: 138
  start-page: 231
  year: 2019
  ident: 10.1016/j.firesaf.2020.103191_bib7
  article-title: Transient temperature distribution in pre-tensioned anchors of cable-supported structures under ISO834 fire
  publication-title: Thin Walled Struct.
  doi: 10.1016/j.tws.2019.02.017
– year: 2007
  ident: 10.1016/j.firesaf.2020.103191_bib27
– volume: vol. 464
  start-page: 186
  year: 1970
  ident: 10.1016/j.firesaf.2020.103191_bib16
– year: 1998
  ident: 10.1016/j.firesaf.2020.103191_bib23
– year: 2006
  ident: 10.1016/j.firesaf.2020.103191_bib26
– volume: 16
  start-page: 55
  year: 1960
  ident: 10.1016/j.firesaf.2020.103191_bib14
  article-title: Effect of elevated temperatures on high-tensile-steel wires for pre-stressed concrete
  publication-title: ICE Proc.
– year: 2010
  ident: 10.1016/j.firesaf.2020.103191_bib29
– volume: 14
  start-page: 106
  year: 2018
  ident: 10.1016/j.firesaf.2020.103191_bib3
  article-title: Pre-tensioned steel cables exposed to localised fires
  publication-title: Adv. Steel Constr.
– volume: 2
  start-page: 139
  issue: 3
  year: 2011
  ident: 10.1016/j.firesaf.2020.103191_bib11
  article-title: Unbounded post-tensioned concrete slabs in fire – part I – experimental response of unbounded tendons under transient localized heating
  publication-title: J. Struct. Fire Eng.
  doi: 10.1260/2040-2317.2.3.139
– year: 2012
  ident: 10.1016/j.firesaf.2020.103191_bib20
– year: 2004
  ident: 10.1016/j.firesaf.2020.103191_bib24
– volume: 182
  start-page: 52
  year: 2018
  ident: 10.1016/j.firesaf.2020.103191_bib9
  article-title: Mechanical properties of high tensile steel cables at elevated temperatures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.012
– year: 2003
  ident: 10.1016/j.firesaf.2020.103191_bib17
– volume: 22
  start-page: 476
  issue: 4
  year: 2012
  ident: 10.1016/j.firesaf.2020.103191_bib1
  article-title: New parameters to describe high-temperature deformation of prestressing steel determined using digital image Correlation
  publication-title: Struct. Eng. Int.
  doi: 10.2749/101686612X13363929517730
– volume: 40
  start-page: 875
  year: 2016
  ident: 10.1016/j.firesaf.2020.103191_bib8
  article-title: Creep of pre-stressing steels in fire
  publication-title: Fire Mater.
  doi: 10.1002/fam.2345
– year: 2003
  ident: 10.1016/j.firesaf.2020.103191_bib19
– volume: 104
  start-page: 79
  year: 2019
  ident: 10.1016/j.firesaf.2020.103191_bib6
  article-title: Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2019.01.002
SSID ssj0017009
ssib019627205
Score 2.3343432
Snippet Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103191
SubjectTerms Cable stayed roof systems
Cable-stayed bridges
cameras
Charge coupled devices
computer software
Creep rate
Damage assessment
finite element analysis
Finite element method
Fire damage
fires
High temperature
High-temperature creep model
Investigations
Localised fire
Material property at elevated temperature
Mathematical models
Mechanical properties
mechanical stress
Parameters
Pre-tensioned steel strand
Prestressing
Regression analysis
Steel
Strain
Strands
Structural damage
Suspension bridges
Temperature
Temperature distribution
Tensile stress
Title Improved time-hardening creep model for investigation on behaviour of pre-tensioned steel strands subject to localised fire
URI https://dx.doi.org/10.1016/j.firesaf.2020.103191
https://www.proquest.com/docview/2505414482
https://www.proquest.com/docview/2985914604
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90fTkf5DzvcO88yYGv3U3TNEkfRU5WF3y4U_QtNG0KK0e72N0n4f52Z9p01YNDEAqlbYZ8TDrzy2RmAnCSVLziuuSRM16QtUpFWVqpSJWxNkplPqs6b4srNbuRl3fp3RacDbEw5FYZZH8v0ztpHd5Mw2hOl4vF9DdPdKYRLiAEQT0q1DbsCNT2ZgQ7pxfz2dVmM0Hz3tMDy0dE8BzIM72fVFhLm1MyT9FFoMdZ_D8V9Y-w7jTQ-UfYC9CRnfat24ctX3-C3RcJBQ_gsbcR-JLRmfERRVR5MnwwxIZ-ybpjbxjCVLZ4Tq_R1AyvEK6_fmBNxcg1pPNsb1AIM5wHSEUmkbpsWbt2ZLphq4Z1enDRYhHq3me4Of95fTaLwvEKUZFovooSRAOiSF2CawZeFCi0EW3IMjeplE46pWXpuIzjHIfGaJMgsojzUrhEFBoJefIFRjW24xBYJXyZuTjNK8rApk2uDC3EOIIBL430Y5DDiNoi5B6nIzD-2MHJ7N4GRlhihO0ZMYbJhmzZJ994i8AM7LKvZpFFBfEW6dHAXht-49YSPpTYIyPG8GPzGX9A2lXJa9-ssUxGKQCl4vLr-2v_Bh_oqXdeO4LR6mHtvyPaWblj2J78jY_DnKb7_Nft_AkSuwAN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB-89cHzQdS7w_UzB77WTds0SR9FlPVrX07Bt9C0KaxIu9jdJ_95Z9p01QMRhD61GZJmkplfJvMBcByXvOSq4IHVLiJrlQzSpJSBLEKlpUxdWrbeFhM5vhdXD8nDCpz1sTDkVullfyfTW2nt34z8bI5m0-noH49VqhAuIARBPRrJH7AqqKj1AFZPL6_Hk-VlguKdpwe2D4jgLZBn9HhSYi9NRsk8ozYCPUzDz1TUf8K61UAXm7DhoSM77Ua3BSuu2ob1dwkFf8FLZyNwBaOa8QFFVDkyfDDEhm7G2rI3DGEqm76l16grho8P1188s7pk5BrSerbXKIQZrgOkIpNIVTSsWVgy3bB5zVo9OG2wCf3eb7i_OL87Gwe-vEKQx4rPgxjRQJQnNsYzA89zFNqINkSR6UQIK6xUorBchGGGU6OVjhFZhFkR2TjKFRLy-A8MKhzHDrAyckVqwyQrKQOb0pnUdBDjCAac0MINQfQzanKfe5xKYDyZ3sns0XhGGGKE6RgxhJMl2axLvvEVge7ZZT6sIoMK4ivS_Z69xm_jxhA-xBUldDSEv8vPuAHpViWrXL3ANimlABSSi93v934Ea-O72xtzczm53oOf9KVzZNuHwfx54Q4Q-cztoV_ZrxgVAFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+time-hardening+creep+model+for+investigation+on+behaviour+of+pre-tensioned+steel+strands+subject+to+localised+fire&rft.jtitle=Fire+safety+journal&rft.au=Du%2C+Yong&rft.au=Liew%2C+JY+Richard&rft.au=Jiang%2C+Jian&rft.au=Li%2C+Guo-Qiang&rft.date=2020-09-01&rft.pub=Elsevier+BV&rft.issn=0379-7112&rft.eissn=1873-7226&rft.volume=116&rft.spage=103191&rft_id=info:doi/10.1016%2Fj.firesaf.2020.103191&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-7112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-7112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-7112&client=summon