Improved time-hardening creep model for investigation on behaviour of pre-tensioned steel strands subject to localised fire
Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numericall...
Saved in:
Published in | Fire safety journal Vol. 116; p. 103191 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0379-7112 1873-7226 |
DOI | 10.1016/j.firesaf.2020.103191 |
Cover
Abstract | Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures. |
---|---|
AbstractList | Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures. Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a growing need to evaluate the damage of such structures whenever subjected to fire. The aim of this research is to experimentally and numerically investigate the behaviour of pre-tensioned steel strands considering the effect of creep strains at elevated temperatures. A charge-coupled device camera (CCDC) system is used to capture the high-temperature creep strain of steel strands accurately. A regression analysis is carried out to develop a set of new parameters for Time-Hardening creep model based on the test results of 1860 MPa strands twisted by 7 wires. The test results show that target temperatures influence the high-temperature creep rate more greatly than pre-stressing ratios. The Time-Hardening creep model with new parameters is used in finite element software ANSYS to investigate the mechanical behaviour of pre-tensioned steel strands subject to localised fires. The influencing factors include the pre-tensile force ratio, span length of steel strands, temperature distribution along strand length and fire location. The numerical results indicate that the tensile force in steel strands reduces more greatly as high temperature creep strain is taken into account. Pre-tensioned steel strands will fail when the rupture strain rather than the ultimate tensile stress is achieved at elevated temperatures. |
ArticleNumber | 103191 |
Author | Richard Liew, J.Y. Jiang, Jian Li, Guo-Qiang Du, Yong |
Author_xml | – sequence: 1 givenname: Yong surname: Du fullname: Du, Yong email: yongdu_mail@njtech.edu.cn organization: College of Civil Engineering, Nanjing Tech University, Nanjing, 211800, China – sequence: 2 givenname: J.Y. surname: Richard Liew fullname: Richard Liew, J.Y. organization: College of Civil Engineering, Nanjing Tech University, Nanjing, 211800, China – sequence: 3 givenname: Jian surname: Jiang fullname: Jiang, Jian organization: School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 4 givenname: Guo-Qiang surname: Li fullname: Li, Guo-Qiang organization: State Key Laboratory for Disaster Reduction in Civil Engineering, Shanghai, 200092, China |
BookMark | eNqFUU1r3DAUFCWBbtL-hIKgl168efqwZdNDKaFNAoFcmrOQpedExpa2knah9M9X280pl4BA4mlmeDNzQc5CDEjIJwZbBqy7mreTT5jNtOXAjzPBBvaObFivRKM4787IBoQaGsUYf08ucp4BmAIYNuTv3bpL8YCOFr9i82ySw-DDE7UJcUfX6HChU0zUhwPm4p9M8THQekZ8Ngcf94nGie4SNgVDrn9VKhesrFySCS7TvB9ntIWWSJdozeJzhRw3_kDOJ7Nk_PhyX5LHnz9-Xd829w83d9ff7xsrFJRGQM-4bUfRqRasxZEpBtKZvpVylGOnpBtBMmaq-171Aob6dnwU3KpKBHFJvpx0q9Pf--pCrz5bXBYTMO6z5kPfDkx2ICv08yvoXB2Gup3mLbSSSdnzimpPKJtizgknvUt-NemPZqCPlehZv1Sij5XoUyWV9_UVz_ryP9AalV_eZH87sbFmdfCYdLYeg0VXwbZoF_0bCv8AezCtQA |
CitedBy_id | crossref_primary_10_1016_j_engfracmech_2023_109479 crossref_primary_10_1061_JMCEE7_MTENG_16144 crossref_primary_10_1016_j_firesaf_2024_104160 crossref_primary_10_1016_j_istruc_2023_105682 crossref_primary_10_1007_s00170_023_12260_w crossref_primary_10_1038_s41598_023_31182_x crossref_primary_10_3390_met12071073 crossref_primary_10_1016_j_jcsr_2023_108302 crossref_primary_10_1007_s11709_023_0981_y crossref_primary_10_1016_j_firesaf_2023_103868 crossref_primary_10_1016_j_conbuildmat_2022_128858 crossref_primary_10_1016_j_ijfatigue_2023_107959 |
Cites_doi | 10.1016/j.firesaf.2012.07.004 10.1016/j.engstruct.2014.12.004 10.1617/s11527-010-9583-y 10.3390/app9081670 10.1016/j.tws.2019.02.017 10.1260/2040-2317.2.3.139 10.1016/j.conbuildmat.2018.06.012 10.2749/101686612X13363929517730 10.1002/fam.2345 10.1016/j.firesaf.2019.01.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7T2 7TB 8FD C1K FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.firesaf.2020.103191 |
DatabaseName | CrossRef Health and Safety Science Abstracts (Full archive) Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Health & Safety Science Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7226 |
ExternalDocumentID | 10_1016_j_firesaf_2020_103191 S0379711219306526 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TAE UHS UNMZH WUQ XPP ZMT ZY4 ~G- ~V8 AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION 7T2 7TB 8FD C1K EFKBS FR3 KR7 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c370t-30812c5b36750cceb17104da8544b4b674db0411a20287830911ad2b32c712c03 |
IEDL.DBID | AIKHN |
ISSN | 0379-7112 |
IngestDate | Sun Sep 28 08:00:42 EDT 2025 Wed Aug 13 04:29:51 EDT 2025 Tue Jul 01 03:06:50 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 Fri Feb 23 02:45:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Material property at elevated temperature Localised fire Pre-tensioned steel strand High-temperature creep model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-30812c5b36750cceb17104da8544b4b674db0411a20287830911ad2b32c712c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2505414482 |
PQPubID | 2045475 |
ParticipantIDs | proquest_miscellaneous_2985914604 proquest_journals_2505414482 crossref_primary_10_1016_j_firesaf_2020_103191 crossref_citationtrail_10_1016_j_firesaf_2020_103191 elsevier_sciencedirect_doi_10_1016_j_firesaf_2020_103191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Fire safety journal |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | BSi (bib20) 2012 BS EN 10291-2000 British Standards Institution (BSI) (bib25) 2000 AS/NZS 4672 (bib18) 2007 Du, Richard Liew, Zhang, Li (bib3) 2018; 14 Dorn (bib15) 1954; 3 Du, Peng, Richard Liew, Li (bib9) 2018; 182 (bib26) 2006 Gales, Bisby, Gillie (bib11) 2011; 2 Gales, Robertson, Bisby (bib8) 2016; 40 (bib27) 2007 Du, Li (bib28) 2012; 54 Du, Yakai Sun, Zhang, Li (bib6) 2019; 104 Day, Jenkinson, Smith (bib14) 1960; 16 ASTM (bib17) 2003 Du, Gou (bib22) 2019; 9 Main, Luecke (bib29) 2010 ASTM (bib19) 2003 Kodur, Dwaikat (bib10) 2010; 43 Harmathy, Stanzak (bib16) 1970; vol. 464 Cheng, Du, Sheng (bib2) 2016 Gales, Bisby, Strafford (bib1) 2012; 22 Clark, Walley (bib13) 1953; 2 EN 1992-1-2 (bib24) 2004 Gales, Bisby, Gillie (bib12) 2011; 2 Du, Zhu, Jiang, Li (bib7) 2019; 138 Kotsovinos, Atalioti, McSwiney, Lugaresi, Rein, Sadowski (bib4) 2019 Fontanari, Benedetti, Monelli, Degasperi (bib5) 2015; 84 Zhou, Nie, Li, Zhang (bib21) 2014; 35 (bib23) 1998 Main (10.1016/j.firesaf.2020.103191_bib29) 2010 Du (10.1016/j.firesaf.2020.103191_bib9) 2018; 182 Clark (10.1016/j.firesaf.2020.103191_bib13) 1953; 2 BS EN 10291-2000 British Standards Institution (BSI) (10.1016/j.firesaf.2020.103191_bib25) 2000 Du (10.1016/j.firesaf.2020.103191_bib7) 2019; 138 ASTM (10.1016/j.firesaf.2020.103191_bib19) 2003 Gales (10.1016/j.firesaf.2020.103191_bib11) 2011; 2 Dorn (10.1016/j.firesaf.2020.103191_bib15) 1954; 3 Kodur (10.1016/j.firesaf.2020.103191_bib10) 2010; 43 BSi (10.1016/j.firesaf.2020.103191_bib20) 2012 (10.1016/j.firesaf.2020.103191_bib27) 2007 Du (10.1016/j.firesaf.2020.103191_bib22) 2019; 9 (10.1016/j.firesaf.2020.103191_bib23) 1998 EN 1992-1-2 (10.1016/j.firesaf.2020.103191_bib24) 2004 Harmathy (10.1016/j.firesaf.2020.103191_bib16) 1970; vol. 464 Gales (10.1016/j.firesaf.2020.103191_bib12) 2011; 2 AS/NZS 4672 (10.1016/j.firesaf.2020.103191_bib18) 2007 Du (10.1016/j.firesaf.2020.103191_bib28) 2012; 54 Kotsovinos (10.1016/j.firesaf.2020.103191_bib4) 2019 Fontanari (10.1016/j.firesaf.2020.103191_bib5) 2015; 84 (10.1016/j.firesaf.2020.103191_bib26) 2006 Du (10.1016/j.firesaf.2020.103191_bib3) 2018; 14 ASTM (10.1016/j.firesaf.2020.103191_bib17) 2003 Du (10.1016/j.firesaf.2020.103191_bib6) 2019; 104 Zhou (10.1016/j.firesaf.2020.103191_bib21) 2014; 35 Day (10.1016/j.firesaf.2020.103191_bib14) 1960; 16 Gales (10.1016/j.firesaf.2020.103191_bib1) 2012; 22 Gales (10.1016/j.firesaf.2020.103191_bib8) 2016; 40 Cheng (10.1016/j.firesaf.2020.103191_bib2) 2016 |
References_xml | – volume: 182 start-page: 52 year: 2018 end-page: 65 ident: bib9 article-title: Mechanical properties of high tensile steel cables at elevated temperatures publication-title: Constr. Build. Mater. – volume: 9 start-page: 1670 year: 2019 ident: bib22 article-title: Application of the non-contact video gauge on the mechanical properties test for steel cable at elevated temperature publication-title: J. Appl. Sci. – volume: 54 start-page: 113 year: 2012 end-page: 120 ident: bib28 article-title: A new temperature–time curve for fire-resistance analysis of structures publication-title: J. Fire Saf. – year: 2003 ident: bib17 article-title: Standard Specification for Steel Strand, Uncoated Seven-Wire for Pre-stressed Concrete – volume: 16 start-page: 55 year: 1960 end-page: 70 ident: bib14 article-title: Effect of elevated temperatures on high-tensile-steel wires for pre-stressed concrete publication-title: ICE Proc. – year: 2007 ident: bib18 article-title: Standards Australia New Zealand. Pre-stressing Strand Standard 4672 – year: 2004 ident: bib24 article-title: Design of Concrete Structures. Part 1. 2 General Rules – Structural Fire Design – volume: 2 start-page: 139 year: 2011 end-page: 153 ident: bib11 article-title: Unbounded post-tensioned concrete slabs in fire – part I – experimental response of unbounded tendons under transient localized heating publication-title: J. Struct. Fire Eng. – year: 2000 ident: bib25 article-title: Metallic Materials – Uniaxial Creep Testing in Tension – Methods of Test – start-page: 1621 year: 2016 end-page: 1632 ident: bib2 article-title: Analytical method of mechanical behaviours for beam string structure exposed to localized fires publication-title: Proc., 8th Int. Conf. on Steel and Aluminium Structures, Hong Kong, China – volume: 40 start-page: 875 year: 2016 end-page: 895 ident: bib8 article-title: Creep of pre-stressing steels in fire publication-title: Fire Mater. – volume: 43 start-page: 1327 year: 2010 end-page: 1341 ident: bib10 article-title: Effect of high temperature creep on the fire response of restrained steel beams publication-title: Mater. Struct. – volume: 2 start-page: 154 year: 2011 end-page: 171 ident: bib12 article-title: Post-tensioned concrete slabs in fire – part II – modelling tendon response and consequences of localized heating publication-title: J. Struct. Fire Eng. – start-page: 1 year: 2019 end-page: 29 ident: bib4 article-title: Analysis of the thermo-mechanical response of structural cables subject to fire publication-title: Fire Technol. – year: 2003 ident: bib19 article-title: Standard Specification for Steel Strand, Uncoated Seven-Wire for Pre-stressed Concrete – volume: 35 start-page: 123 year: 2014 end-page: 129 ident: bib21 article-title: Experimental research on creep properties of pre-stressed steel strand in 1860 MPa at high temperature publication-title: J. Build. Struct. – year: 2010 ident: bib29 article-title: Safety Assessment of Parallel Wire Suspension Bridge Cables under Thermal Effects. Technical Note (NIST TN)-1678 – volume: 84 start-page: 340 year: 2015 end-page: 349 ident: bib5 article-title: Fire behavior of steel wire ropes: experimental investigation and numerical analysis publication-title: Eng. Struct. – volume: 22 start-page: 476 year: 2012 end-page: 486 ident: bib1 article-title: New parameters to describe high-temperature deformation of prestressing steel determined using digital image Correlation publication-title: Struct. Eng. Int. – volume: 3 year: 1954 ident: bib15 article-title: Some fundamental experiments on high temperature creep publication-title: J. Mech. Phys. Solids – year: 2006 ident: bib26 publication-title: CECS 212:2006, Technical Specification for Pre-stressed Steel Structures – volume: 104 start-page: 79 year: 2019 end-page: 89 ident: bib6 article-title: Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire publication-title: Fire Saf. J. – volume: 2 start-page: 107 year: 1953 end-page: 154 ident: bib13 article-title: Creep of high tensile steel wire publication-title: ICE Proc. – volume: 138 start-page: 231 year: 2019 end-page: 242 ident: bib7 article-title: Transient temperature distribution in pre-tensioned anchors of cable-supported structures under ISO834 fire publication-title: Thin Walled Struct. – volume: vol. 464 start-page: 186 year: 1970 end-page: 208 ident: bib16 publication-title: Elevated-temperature Tensile and Creep Properties of Some Structural and Pre-stressing Steels – year: 2012 ident: bib20 article-title: Specification for High Tensile Steel Wire and Strands for the Pre-stressing of Concrete – year: 2007 ident: bib27 publication-title: JTG/T D65-01-2007, Guidelines for Design of Highway Cable-Stayed Bridge – volume: 14 start-page: 106 year: 2018 end-page: 226 ident: bib3 article-title: Pre-tensioned steel cables exposed to localised fires publication-title: Adv. Steel Constr. – year: 1998 ident: bib23 publication-title: CJ 3077-1998, Steel Wire for Construction Cable – start-page: 1 year: 2019 ident: 10.1016/j.firesaf.2020.103191_bib4 article-title: Analysis of the thermo-mechanical response of structural cables subject to fire publication-title: Fire Technol. – volume: 35 start-page: 123 year: 2014 ident: 10.1016/j.firesaf.2020.103191_bib21 article-title: Experimental research on creep properties of pre-stressed steel strand in 1860 MPa at high temperature publication-title: J. Build. Struct. – start-page: 1621 year: 2016 ident: 10.1016/j.firesaf.2020.103191_bib2 article-title: Analytical method of mechanical behaviours for beam string structure exposed to localized fires – volume: 54 start-page: 113 year: 2012 ident: 10.1016/j.firesaf.2020.103191_bib28 article-title: A new temperature–time curve for fire-resistance analysis of structures publication-title: J. Fire Saf. doi: 10.1016/j.firesaf.2012.07.004 – year: 2000 ident: 10.1016/j.firesaf.2020.103191_bib25 – volume: 2 start-page: 154 issue: 3 year: 2011 ident: 10.1016/j.firesaf.2020.103191_bib12 article-title: Post-tensioned concrete slabs in fire – part II – modelling tendon response and consequences of localized heating publication-title: J. Struct. Fire Eng. – volume: 2 start-page: 107 year: 1953 ident: 10.1016/j.firesaf.2020.103191_bib13 article-title: Creep of high tensile steel wire publication-title: ICE Proc. – volume: 84 start-page: 340 year: 2015 ident: 10.1016/j.firesaf.2020.103191_bib5 article-title: Fire behavior of steel wire ropes: experimental investigation and numerical analysis publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2014.12.004 – volume: 43 start-page: 1327 year: 2010 ident: 10.1016/j.firesaf.2020.103191_bib10 article-title: Effect of high temperature creep on the fire response of restrained steel beams publication-title: Mater. Struct. doi: 10.1617/s11527-010-9583-y – volume: 9 start-page: 1670 year: 2019 ident: 10.1016/j.firesaf.2020.103191_bib22 article-title: Application of the non-contact video gauge on the mechanical properties test for steel cable at elevated temperature publication-title: J. Appl. Sci. doi: 10.3390/app9081670 – volume: 3 year: 1954 ident: 10.1016/j.firesaf.2020.103191_bib15 article-title: Some fundamental experiments on high temperature creep publication-title: J. Mech. Phys. Solids – year: 2007 ident: 10.1016/j.firesaf.2020.103191_bib18 – volume: 138 start-page: 231 year: 2019 ident: 10.1016/j.firesaf.2020.103191_bib7 article-title: Transient temperature distribution in pre-tensioned anchors of cable-supported structures under ISO834 fire publication-title: Thin Walled Struct. doi: 10.1016/j.tws.2019.02.017 – year: 2007 ident: 10.1016/j.firesaf.2020.103191_bib27 – volume: vol. 464 start-page: 186 year: 1970 ident: 10.1016/j.firesaf.2020.103191_bib16 – year: 1998 ident: 10.1016/j.firesaf.2020.103191_bib23 – year: 2006 ident: 10.1016/j.firesaf.2020.103191_bib26 – volume: 16 start-page: 55 year: 1960 ident: 10.1016/j.firesaf.2020.103191_bib14 article-title: Effect of elevated temperatures on high-tensile-steel wires for pre-stressed concrete publication-title: ICE Proc. – year: 2010 ident: 10.1016/j.firesaf.2020.103191_bib29 – volume: 14 start-page: 106 year: 2018 ident: 10.1016/j.firesaf.2020.103191_bib3 article-title: Pre-tensioned steel cables exposed to localised fires publication-title: Adv. Steel Constr. – volume: 2 start-page: 139 issue: 3 year: 2011 ident: 10.1016/j.firesaf.2020.103191_bib11 article-title: Unbounded post-tensioned concrete slabs in fire – part I – experimental response of unbounded tendons under transient localized heating publication-title: J. Struct. Fire Eng. doi: 10.1260/2040-2317.2.3.139 – year: 2012 ident: 10.1016/j.firesaf.2020.103191_bib20 – year: 2004 ident: 10.1016/j.firesaf.2020.103191_bib24 – volume: 182 start-page: 52 year: 2018 ident: 10.1016/j.firesaf.2020.103191_bib9 article-title: Mechanical properties of high tensile steel cables at elevated temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.012 – year: 2003 ident: 10.1016/j.firesaf.2020.103191_bib17 – volume: 22 start-page: 476 issue: 4 year: 2012 ident: 10.1016/j.firesaf.2020.103191_bib1 article-title: New parameters to describe high-temperature deformation of prestressing steel determined using digital image Correlation publication-title: Struct. Eng. Int. doi: 10.2749/101686612X13363929517730 – volume: 40 start-page: 875 year: 2016 ident: 10.1016/j.firesaf.2020.103191_bib8 article-title: Creep of pre-stressing steels in fire publication-title: Fire Mater. doi: 10.1002/fam.2345 – year: 2003 ident: 10.1016/j.firesaf.2020.103191_bib19 – volume: 104 start-page: 79 year: 2019 ident: 10.1016/j.firesaf.2020.103191_bib6 article-title: Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2019.01.002 |
SSID | ssj0017009 ssib019627205 |
Score | 2.3343432 |
Snippet | Pre-tensioned steel strands as basic elements have been widely used in hybrid string structures, cable suspension roofs and cable-stayed bridges. There is a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103191 |
SubjectTerms | Cable stayed roof systems Cable-stayed bridges cameras Charge coupled devices computer software Creep rate Damage assessment finite element analysis Finite element method Fire damage fires High temperature High-temperature creep model Investigations Localised fire Material property at elevated temperature Mathematical models Mechanical properties mechanical stress Parameters Pre-tensioned steel strand Prestressing Regression analysis Steel Strain Strands Structural damage Suspension bridges Temperature Temperature distribution Tensile stress |
Title | Improved time-hardening creep model for investigation on behaviour of pre-tensioned steel strands subject to localised fire |
URI | https://dx.doi.org/10.1016/j.firesaf.2020.103191 https://www.proquest.com/docview/2505414482 https://www.proquest.com/docview/2985914604 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB90fTkf5DzvcO88yYGv3U3TNEkfRU5WF3y4U_QtNG0KK0e72N0n4f52Z9p01YNDEAqlbYZ8TDrzy2RmAnCSVLziuuSRM16QtUpFWVqpSJWxNkplPqs6b4srNbuRl3fp3RacDbEw5FYZZH8v0ztpHd5Mw2hOl4vF9DdPdKYRLiAEQT0q1DbsCNT2ZgQ7pxfz2dVmM0Hz3tMDy0dE8BzIM72fVFhLm1MyT9FFoMdZ_D8V9Y-w7jTQ-UfYC9CRnfat24ctX3-C3RcJBQ_gsbcR-JLRmfERRVR5MnwwxIZ-ybpjbxjCVLZ4Tq_R1AyvEK6_fmBNxcg1pPNsb1AIM5wHSEUmkbpsWbt2ZLphq4Z1enDRYhHq3me4Of95fTaLwvEKUZFovooSRAOiSF2CawZeFCi0EW3IMjeplE46pWXpuIzjHIfGaJMgsojzUrhEFBoJefIFRjW24xBYJXyZuTjNK8rApk2uDC3EOIIBL430Y5DDiNoi5B6nIzD-2MHJ7N4GRlhihO0ZMYbJhmzZJ994i8AM7LKvZpFFBfEW6dHAXht-49YSPpTYIyPG8GPzGX9A2lXJa9-ssUxGKQCl4vLr-2v_Bh_oqXdeO4LR6mHtvyPaWblj2J78jY_DnKb7_Nft_AkSuwAN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB-89cHzQdS7w_UzB77WTds0SR9FlPVrX07Bt9C0KaxIu9jdJ_95Z9p01QMRhD61GZJmkplfJvMBcByXvOSq4IHVLiJrlQzSpJSBLEKlpUxdWrbeFhM5vhdXD8nDCpz1sTDkVullfyfTW2nt34z8bI5m0-noH49VqhAuIARBPRrJH7AqqKj1AFZPL6_Hk-VlguKdpwe2D4jgLZBn9HhSYi9NRsk8ozYCPUzDz1TUf8K61UAXm7DhoSM77Ua3BSuu2ob1dwkFf8FLZyNwBaOa8QFFVDkyfDDEhm7G2rI3DGEqm76l16grho8P1188s7pk5BrSerbXKIQZrgOkIpNIVTSsWVgy3bB5zVo9OG2wCf3eb7i_OL87Gwe-vEKQx4rPgxjRQJQnNsYzA89zFNqINkSR6UQIK6xUorBchGGGU6OVjhFZhFkR2TjKFRLy-A8MKhzHDrAyckVqwyQrKQOb0pnUdBDjCAac0MINQfQzanKfe5xKYDyZ3sns0XhGGGKE6RgxhJMl2axLvvEVge7ZZT6sIoMK4ivS_Z69xm_jxhA-xBUldDSEv8vPuAHpViWrXL3ANimlABSSi93v934Ea-O72xtzczm53oOf9KVzZNuHwfx54Q4Q-cztoV_ZrxgVAFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+time-hardening+creep+model+for+investigation+on+behaviour+of+pre-tensioned+steel+strands+subject+to+localised+fire&rft.jtitle=Fire+safety+journal&rft.au=Du%2C+Yong&rft.au=Liew%2C+JY+Richard&rft.au=Jiang%2C+Jian&rft.au=Li%2C+Guo-Qiang&rft.date=2020-09-01&rft.pub=Elsevier+BV&rft.issn=0379-7112&rft.eissn=1873-7226&rft.volume=116&rft.spage=103191&rft_id=info:doi/10.1016%2Fj.firesaf.2020.103191&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-7112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-7112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-7112&client=summon |