Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems
•It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency. A new evolutionary algo...
Saved in:
Published in | Expert systems with applications Vol. 42; no. 21; pp. 7831 - 7845 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2015.05.050 |
Cover
Abstract | •It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency.
A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, ε-constrained method with fixed control way of ε value and a proposed ε-constrained method with self-adaptive control way of ε value. The proposed method controls ε value according to the properties of current population. This kind of ε value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined ε-constrained method with self-adaptive control way of ε value (BSA-SAε) is the best one. The proposed BSA-SAε also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SAε has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SAε is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SAε. |
---|---|
AbstractList | A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, epsilon -constrained method with fixed control way of epsilon value and a proposed epsilon -constrained method with self-adaptive control way of epsilon value. The proposed method controls epsilon value according to the properties of current population. This kind of epsilon value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined epsilon -constrained method with self-adaptive control way of epsilon value (BSA-SA epsilon ) is the best one. The proposed BSA-SA epsilon also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SA epsilon has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SA epsilon is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SA epsilon . •It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency. A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, ε-constrained method with fixed control way of ε value and a proposed ε-constrained method with self-adaptive control way of ε value. The proposed method controls ε value according to the properties of current population. This kind of ε value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined ε-constrained method with self-adaptive control way of ε value (BSA-SAε) is the best one. The proposed BSA-SAε also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SAε has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SAε is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SAε. |
Author | Gao, Liang Li, Xinyu Zhang, Chunjiang Lin, Qun |
Author_xml | – sequence: 1 givenname: Chunjiang surname: Zhang fullname: Zhang, Chunjiang email: zhchj1989@gmail.com – sequence: 2 givenname: Qun surname: Lin fullname: Lin, Qun email: linqunhust@hotmail.com – sequence: 3 givenname: Liang surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn – sequence: 4 givenname: Xinyu surname: Li fullname: Li, Xinyu email: lixinyu@hust.edu.cn |
BookMark | eNp9UMtKJTEQDeKA18cPuMpyNn2n0o-kG2ajojOC4EJnHdJJtZ1rd3JNojJ-vem5gjALqaIKqs6pxzkk-847JOSUwZoB4z82a4yval0Ca9awOOyRFWtFVXDRVftkBV0jipqJ-oAcxrgBYAJArMjmXOnHFHKw7oHeoQp6pGfTgw82jTN9zZGmMSBS7V3MQOsSHZUz04KfMY3eRDr48NlHQ_022dm-qWS9o9vg-wnneEy-DWqKePKRj8ifq8v7i9_Fze2v64uzm0JXAlJR9qLW2QaouK5aA12nVduzGjQfBOdNxUzJcqvs-4YbrlQFudqamnXtwKA6It93c_Pip2eMSc42apwm5dA_R8nasqk5CN5maLuD6uBjDDhIbdO_q5dPJslALvLKjVzklYu8EhZftpT_UbfBzir8_Zr0c0fC_P-LxSCjtug0GhtQJ2m8_Yr-Dl-KmCI |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_108717 crossref_primary_10_1016_j_asoc_2018_07_051 crossref_primary_10_1016_j_eswa_2021_114898 crossref_primary_10_1016_j_jclepro_2020_124110 crossref_primary_10_1007_s12293_021_00340_x crossref_primary_10_1007_s12652_020_02746_w crossref_primary_10_3390_electronics11213612 crossref_primary_10_1007_s11227_022_04996_1 crossref_primary_10_1016_j_asoc_2019_04_032 crossref_primary_10_1016_j_asoc_2024_112456 crossref_primary_10_1007_s00500_022_07228_z crossref_primary_10_1007_s13369_017_2852_0 crossref_primary_10_1016_j_eswa_2023_119999 crossref_primary_10_1007_s12205_019_2369_z crossref_primary_10_1016_j_amc_2019_124919 crossref_primary_10_1017_aer_2024_30 crossref_primary_10_1016_j_ins_2023_120048 crossref_primary_10_1177_0309524X19849843 crossref_primary_10_1016_j_eswa_2020_113698 crossref_primary_10_1007_s11704_016_5556_9 crossref_primary_10_1016_j_eswa_2020_114021 crossref_primary_10_1016_j_ifacol_2017_12_038 crossref_primary_10_1016_j_ins_2016_10_002 crossref_primary_10_1109_TSMC_2020_3010120 crossref_primary_10_1109_ACCESS_2020_3001194 crossref_primary_10_1007_s00521_017_3329_5 crossref_primary_10_1016_j_apm_2019_10_026 crossref_primary_10_1016_j_swevo_2024_101662 crossref_primary_10_1109_ACCESS_2020_2973197 crossref_primary_10_1007_s00500_018_3355_y crossref_primary_10_1007_s00170_016_9112_4 crossref_primary_10_1155_2019_2482543 crossref_primary_10_1007_s00500_017_2936_5 crossref_primary_10_1007_s13198_017_0640_6 crossref_primary_10_1016_j_eswa_2022_119258 crossref_primary_10_1016_j_eswa_2017_08_018 crossref_primary_10_1016_j_asoc_2019_105653 crossref_primary_10_1080_22797254_2025_2455940 crossref_primary_10_1016_j_ins_2018_09_039 crossref_primary_10_1016_j_asoc_2024_112637 crossref_primary_10_1109_TEVC_2021_3110130 crossref_primary_10_3390_w15142593 crossref_primary_10_1016_j_asoc_2020_106086 crossref_primary_10_1016_j_advengsoft_2025_103868 crossref_primary_10_1016_j_engappai_2019_02_009 crossref_primary_10_1016_j_neucom_2017_05_076 crossref_primary_10_1007_s00500_017_2693_5 crossref_primary_10_1080_0952813X_2021_1872109 crossref_primary_10_1016_j_eswa_2020_113750 crossref_primary_10_1109_TSMC_2024_3520322 crossref_primary_10_1007_s11081_022_09782_9 crossref_primary_10_1109_TSMC_2023_3281550 crossref_primary_10_3390_en12030334 crossref_primary_10_1016_j_asoc_2018_08_027 crossref_primary_10_1016_j_swevo_2017_04_007 crossref_primary_10_1007_s10479_022_04994_9 crossref_primary_10_1016_j_eswa_2022_117820 crossref_primary_10_1007_s44196_022_00114_4 crossref_primary_10_1016_j_ins_2017_04_016 crossref_primary_10_1016_j_asoc_2019_105705 crossref_primary_10_1007_s10462_019_09704_9 crossref_primary_10_1155_2018_9167414 crossref_primary_10_3390_e21080766 crossref_primary_10_3390_math9182335 crossref_primary_10_1051_matecconf_202235502008 crossref_primary_10_32604_cmes_2023_027055 |
Cites_doi | 10.1016/S0045-7825(99)00389-8 10.1115/1.2919393 10.1016/j.camwa.2011.01.029 10.1109/CEC.2007.4424579 10.1016/j.engappai.2006.03.003 10.1162/106365603321828970 10.1109/TEVC.2006.872133 10.1016/j.ijhydene.2014.05.052 10.1016/j.eswa.2008.02.039 10.1109/TEVC.2005.857610 10.1109/TEVC.2004.836819 10.1007/s00500-008-0349-1 10.1007/s10898-007-9149-x 10.1016/j.asoc.2010.12.001 10.1016/j.amc.2006.11.033 10.1016/S1474-0346(02)00011-3 10.1016/j.ins.2013.04.001 10.1016/j.jappgeo.2015.01.002 10.1109/TEVC.2005.850256 10.1007/s00158-008-0238-3 10.1016/j.amc.2013.02.017 10.1016/j.ijepes.2014.09.020 10.1016/j.cnsns.2010.01.009 10.1162/evco.2007.15.1.1 10.1016/j.amc.2013.12.178 10.1016/j.compstruc.2011.08.002 10.1109/TSMCA.2009.2013333 10.1016/j.eswa.2013.04.028 10.1016/S0166-3615(99)00046-9 10.1109/CEC.2010.5586303 10.1016/j.commatsci.2008.04.033 10.1016/j.amc.2006.07.105 10.1504/IJVD.2001.005210 10.1016/j.engappai.2013.02.002 10.1109/4235.873238 10.1016/j.cma.2004.09.007 10.1016/j.amc.2006.07.134 10.1109/NABIC.2009.5393690 10.1080/0305215X.2012.704028 10.1016/j.energy.2014.09.009 10.1016/j.ijepes.2012.01.005 10.1007/s00170-013-4730-6 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2015.05.050 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 7845 |
ExternalDocumentID | 10_1016_j_eswa_2015_05_050 S0957417415003863 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c370t-2b74c4c4f036c38d099ca8b140c6f766531d216c32bb56d6aa306658d4198f103 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Sun Sep 28 13:51:18 EDT 2025 Wed Oct 01 03:51:45 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Backtracking Search Algorithm ε-constrained method Constrained optimization problem Feasibility and dominance rules Engineering optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-2b74c4c4f036c38d099ca8b140c6f766531d216c32bb56d6aa306658d4198f103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825460768 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1825460768 crossref_citationtrail_10_1016_j_eswa_2015_05_050 crossref_primary_10_1016_j_eswa_2015_05_050 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_05_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-30 |
PublicationDateYYYYMMDD | 2015-11-30 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lee, Geem (b0150) 2005; 194 Pulido, G. T., & Coello Coello, C. A. (2004). A constraint-handling mechanism for particle swarm optimization. In Kolkata, India: Jadavpur Univ., Nanyang Technol. Univ. Yang (b0290) 2008 Das, S., & Suganthan, P. (2010). Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In Brest, Greiner, Boskovic, Mernik, Zumer (b0020) 2006; 10 Wang, Cai, Zhou (b0275) 2009; 37 Gandomi, Yang, Alavi (b0065) 2011; 89 Igel, Hansen, Roth (b0115) 2007; 15 Vaisakh, Praveena, Rama Mohana Rao, Meah (b0270) 2012; 39 He, Wang (b0095) 2007; 20 Ullah, Sarker, Cornforth (b0265) 2009; 13 Storn, Price (b0235) 1995 Gu, Yang, Tho, Makowskit, Faruquet, Li (b0075) 2001; 26 Lin (b0160) 2013; 241 Lin (b0165) 2014 He, Wang (b0090) 2007; 186 Deb (b0050) 2000; 186 Mahdavi, Fesanghary, Damangir (b0175) 2007; 188 Guney, Durmus, Basbug (b0080) 2014 (pp. 999–1006). IEEE. Zhang, Li, Gao, Wu (b0305) 2013; 40 Takahama, Sakai (b0240) 2005; 9 Huang, Wang, He (b0110) 2007; 186 . Karaboga, Akay (b0135) 2011; 11 Saha, A., Datta, R., & Deb, K. (2010). Hybrid gradient projection based genetic algorithms for constrained optimization. In Modiri-Delshad, Rahim (b0195) 2014; 77 Kannan, Kramer (b0125) 1994; 116 Wang, Zhong, Yin, Zhao, Wang, Xu (b0280) 2015; 501 Arora (b0005) 1989 Runarsson, Yao (b0215) 2000; 4 Brest (b0015) 2009 Paszkowicz (b0200) 2009; 45 Long, Liang, Huang (b0170) 2014 Wu, B., Yu, X., Liu, L. (2001). Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms. In El-Fergany (b0060) 2015; 64 Kennedy, Eberhart (b0145) 1995 Askarzadeh, dos Santos Coelho (b0010) 2014; 39 Karaboga, Basturk (b0140) 2007; 39 Mezura Montes, Coello Coello (b0185) 2005; 9 Dorigo, M. (1992). Das, Mandal, Ghoshal (b0045) 2014 Mazhoud, Hadj Hamou, Bigeon, Joyeux (b0180) 2013; 26 Takahama, Sakai, Iwane (b0250) 2005; 3809 Takahama, Sakai (b0245) 2010 IEEE. Gholizadeh, Barzegar (b0070) 2013; 45 Ullah, A. S. S. M. B., Sarker, R., & Cornforth, D. (2007). An agent-based memetic algorithm (AMA) for solving constrained optimization problems. In Karaboga, D. (2005). Qin, Suganthan (b0210) 2005 Liang, Qin, Suganthan, Baskar (b0155) 2006; 10 Holland (b0100) 1975 (Ph.D. thesis). Italy: Politecnico di Milano. (pp. 1396–1403), Vol. 1. Tessema, Yen (b0255) 2009; 39 Civicioglu (b0025) 2013; 219 Hansen, Müller, Koumoutsakos (b0085) 2003; 11 Coello Coello (b0035) 2002; 16 Zahara, Kao (b0300) 2009; 36 Sheikhalishahi, Ebrahimipour, Shiri (b0225) 2013; 68 Coello Coello (b0030) 2000; 41 (pp. 2851–2858). Hsieh (b0105) 2014; 231 Jaberipour, Khorram (b0120) 2010; 15 Zou, Liu, Gao, Li (b0310) 2011; 61 Song, Zhang, Zhao, Li (b0230) 2015 Karaboga (10.1016/j.eswa.2015.05.050_b0135) 2011; 11 Takahama (10.1016/j.eswa.2015.05.050_b0240) 2005; 9 Coello Coello (10.1016/j.eswa.2015.05.050_b0030) 2000; 41 10.1016/j.eswa.2015.05.050_b0260 10.1016/j.eswa.2015.05.050_b0220 Jaberipour (10.1016/j.eswa.2015.05.050_b0120) 2010; 15 Deb (10.1016/j.eswa.2015.05.050_b0050) 2000; 186 Hansen (10.1016/j.eswa.2015.05.050_b0085) 2003; 11 Wang (10.1016/j.eswa.2015.05.050_b0275) 2009; 37 Askarzadeh (10.1016/j.eswa.2015.05.050_b0010) 2014; 39 Mezura Montes (10.1016/j.eswa.2015.05.050_b0185) 2005; 9 Brest (10.1016/j.eswa.2015.05.050_b0015) 2009 Wang (10.1016/j.eswa.2015.05.050_b0280) 2015; 501 Kannan (10.1016/j.eswa.2015.05.050_b0125) 1994; 116 Zahara (10.1016/j.eswa.2015.05.050_b0300) 2009; 36 Coello Coello (10.1016/j.eswa.2015.05.050_b0035) 2002; 16 He (10.1016/j.eswa.2015.05.050_b0095) 2007; 20 He (10.1016/j.eswa.2015.05.050_b0090) 2007; 186 Liang (10.1016/j.eswa.2015.05.050_b0155) 2006; 10 10.1016/j.eswa.2015.05.050_b0055 Brest (10.1016/j.eswa.2015.05.050_b0020) 2006; 10 El-Fergany (10.1016/j.eswa.2015.05.050_b0060) 2015; 64 10.1016/j.eswa.2015.05.050_b0130 10.1016/j.eswa.2015.05.050_b0295 Gholizadeh (10.1016/j.eswa.2015.05.050_b0070) 2013; 45 10.1016/j.eswa.2015.05.050_b0205 Gandomi (10.1016/j.eswa.2015.05.050_b0065) 2011; 89 Lin (10.1016/j.eswa.2015.05.050_b0165) 2014 Paszkowicz (10.1016/j.eswa.2015.05.050_b0200) 2009; 45 Storn (10.1016/j.eswa.2015.05.050_b0235) 1995 Karaboga (10.1016/j.eswa.2015.05.050_b0140) 2007; 39 Zhang (10.1016/j.eswa.2015.05.050_b0305) 2013; 40 Lee (10.1016/j.eswa.2015.05.050_b0150) 2005; 194 Vaisakh (10.1016/j.eswa.2015.05.050_b0270) 2012; 39 Guney (10.1016/j.eswa.2015.05.050_b0080) 2014 Arora (10.1016/j.eswa.2015.05.050_b0005) 1989 Sheikhalishahi (10.1016/j.eswa.2015.05.050_b0225) 2013; 68 Runarsson (10.1016/j.eswa.2015.05.050_b0215) 2000; 4 10.1016/j.eswa.2015.05.050_b0040 Zou (10.1016/j.eswa.2015.05.050_b0310) 2011; 61 Takahama (10.1016/j.eswa.2015.05.050_b0245) 2010 10.1016/j.eswa.2015.05.050_b0285 Long (10.1016/j.eswa.2015.05.050_b0170) 2014 Modiri-Delshad (10.1016/j.eswa.2015.05.050_b0195) 2014; 77 Mahdavi (10.1016/j.eswa.2015.05.050_b0175) 2007; 188 Ullah (10.1016/j.eswa.2015.05.050_b0265) 2009; 13 Huang (10.1016/j.eswa.2015.05.050_b0110) 2007; 186 Lin (10.1016/j.eswa.2015.05.050_b0160) 2013; 241 Gu (10.1016/j.eswa.2015.05.050_b0075) 2001; 26 Takahama (10.1016/j.eswa.2015.05.050_b0250) 2005; 3809 Igel (10.1016/j.eswa.2015.05.050_b0115) 2007; 15 Holland (10.1016/j.eswa.2015.05.050_b0100) 1975 Song (10.1016/j.eswa.2015.05.050_b0230) 2015 Tessema (10.1016/j.eswa.2015.05.050_b0255) 2009; 39 Kennedy (10.1016/j.eswa.2015.05.050_b0145) 1995 Das (10.1016/j.eswa.2015.05.050_b0045) 2014 Qin (10.1016/j.eswa.2015.05.050_b0210) 2005 Yang (10.1016/j.eswa.2015.05.050_b0290) 2008 Mazhoud (10.1016/j.eswa.2015.05.050_b0180) 2013; 26 Civicioglu (10.1016/j.eswa.2015.05.050_b0025) 2013; 219 Hsieh (10.1016/j.eswa.2015.05.050_b0105) 2014; 231 |
References_xml | – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b0030 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry – volume: 241 start-page: 119 year: 2013 end-page: 137 ident: b0160 article-title: A rough penalty genetic algorithm for constrained optimization publication-title: Information Sciences – volume: 188 start-page: 1567 year: 2007 end-page: 1579 ident: b0175 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b0095 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence – reference: Saha, A., Datta, R., & Deb, K. (2010). Hybrid gradient projection based genetic algorithms for constrained optimization. In – volume: 219 start-page: 8121 year: 2013 end-page: 8144 ident: b0025 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Applied Mathematics and Computation – volume: 231 start-page: 187 year: 2014 end-page: 204 ident: b0105 article-title: A bacterial gene recombination algorithm for solving constrained optimization problems publication-title: Applied Mathematics and Computation – year: 1995 ident: b0235 article-title: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces – reference: . Kolkata, India: Jadavpur Univ., Nanyang Technol. Univ. – reference: (pp. 2851–2858). – reference: . Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department. – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b0020 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Transactions on Evolutionary Computation – volume: 68 start-page: 317 year: 2013 end-page: 338 ident: b0225 article-title: A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem publication-title: The International Journal of Advanced Manufacturing Technology – reference: Ullah, A. S. S. M. B., Sarker, R., & Cornforth, D. (2007). An agent-based memetic algorithm (AMA) for solving constrained optimization problems. In – start-page: 347 year: 1989 end-page: 425 ident: b0005 article-title: Introduction to optimum design – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b0050 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 186 start-page: 340 year: 2007 end-page: 356 ident: b0110 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation – volume: 26 start-page: 348 year: 2001 end-page: 360 ident: b0075 article-title: Optimisation and robustness for crashworthiness of side impact publication-title: International Journal of Vehicle Design – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: b0150 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2010 ident: b0245 article-title: Constrained optimization by the publication-title: 2010 IEEE congress on evolutionary computation (CEC) – reference: Pulido, G. T., & Coello Coello, C. A. (2004). A constraint-handling mechanism for particle swarm optimization. In – start-page: 1942 year: 1995 end-page: 1948 ident: b0145 article-title: Particle swarm optimization publication-title: Neural Networks – reference: (pp. 1396–1403), Vol. 1. – reference: Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In – reference: Karaboga, D. (2005). – volume: 45 start-page: 77 year: 2009 end-page: 83 ident: b0200 article-title: Properties of a genetic algorithm equipped with a dynamic penalty function publication-title: Computational Materials Science – year: 2009 ident: b0015 article-title: Constrained real-parameter optimization with ε-self-adaptive differential evolution – start-page: 1 year: 2014 end-page: 16 ident: b0170 article-title: An effective hybrid cuckoo search algorithm for constrained global optimization publication-title: Neural Computing and Applications – volume: 9 start-page: 1 year: 2005 end-page: 17 ident: b0185 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation – reference: . – reference: Dorigo, M. (1992). – year: 2014 ident: b0080 article-title: Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays publication-title: International Journal of Antennas and Propagation – year: 2015 ident: b0230 article-title: Backtracking search algorithm for effective and efficient surface wave analysis” publication-title: Journal of Applied Geophysics – reference: Wu, B., Yu, X., Liu, L. (2001). Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms. In – start-page: 1 year: 2014 end-page: 11 ident: b0165 article-title: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems publication-title: Nonlinear Dynamics – volume: 26 start-page: 1263 year: 2013 end-page: 1273 ident: b0180 article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism publication-title: Engineering Applications of Artificial Intelligence – volume: 186 start-page: 1407 year: 2007 end-page: 1422 ident: b0090 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation – volume: 39 start-page: 56 year: 2012 end-page: 67 ident: b0270 article-title: Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm publication-title: International Journal of Electrical Power & Energy Systems – volume: 36 start-page: 3880 year: 2009 end-page: 3886 ident: b0300 article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Systems with Applications – volume: 37 start-page: 395 year: 2009 end-page: 413 ident: b0275 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization – volume: 3809 start-page: 389 year: 2005 end-page: 400 ident: b0250 article-title: Constrained optimization by the epsilon constrained hybrid algorithm of particle swarm optimization and genetic algorithm publication-title: AI 2005: Advances in Artificial Intelligence – volume: 9 start-page: 437 year: 2005 end-page: 451 ident: b0240 article-title: Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations publication-title: IEEE Transactions on Evolutionary Computation – reference: Das, S., & Suganthan, P. (2010). – volume: 501 start-page: 769245 year: 2015 ident: b0280 article-title: A hybrid backtracking search optimization algorithm with differential evolution publication-title: Mathematical Problems in Engineering – volume: 89 start-page: 2325 year: 2011 end-page: 2336 ident: b0065 article-title: Mixed variable structural optimization using firefly algorithm publication-title: Computers & Structures – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: b0215 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b0140 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – reference: (Ph.D. thesis). Italy: Politecnico di Milano. – volume: 16 start-page: 193 year: 2002 end-page: 203 ident: b0035 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics – volume: 11 start-page: 1 year: 2003 end-page: 18 ident: b0085 article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) publication-title: Evolutionary Computation – volume: 15 start-page: 1 year: 2007 end-page: 28 ident: b0115 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evolutionary Computation – volume: 15 start-page: 3316 year: 2010 end-page: 3331 ident: b0120 article-title: Two improved harmony search algorithms for solving engineering optimization problems publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b0155 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b0125 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design – year: 2005 ident: b0210 article-title: Self-adaptive differential evolution algorithm for numerical optimization publication-title: The 2005 IEEE congress on evolutionary computation – reference: (pp. 999–1006). IEEE. – reference: . IEEE. – volume: 39 start-page: 11165 year: 2014 end-page: 11174 ident: b0010 article-title: A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model publication-title: International Journal of Hydrogen Energy – volume: 64 start-page: 1197 year: 2015 end-page: 1205 ident: b0060 article-title: Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems – reference: . – year: 2014 ident: b0045 article-title: Interference suppression of linear antenna arrays with combined backtracking search algorithm and differential evolution publication-title: 2014 International conference on communications and signal processing (ICCSP) – volume: 77 start-page: 372 year: 2014 end-page: 381 ident: b0195 article-title: Solving non-convex economic dispatch problem via backtracking search algorithm publication-title: Energy – volume: 61 start-page: 1608 year: 2011 end-page: 1623 ident: b0310 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Computers and Mathematics with Applications – volume: 13 start-page: 741 year: 2009 end-page: 762 ident: b0265 article-title: AMA: A new approach for solving constrained real-valued optimization problems publication-title: Soft Computing – volume: 11 start-page: 3021 year: 2011 end-page: 3031 ident: b0135 article-title: A modified artificial bee colony (ABC) algorithm for constrained optimization problems publication-title: Applied Soft Computing – volume: 40 start-page: 5621 year: 2013 end-page: 5634 ident: b0305 article-title: An improved electromagnetism-like mechanism algorithm for constrained optimization publication-title: Expert Systems with Applications – year: 1975 ident: b0100 article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence – volume: 45 start-page: 627 year: 2013 end-page: 646 ident: b0070 article-title: Shape optimization of structures for frequency constraints by sequential harmony search algorithm publication-title: Engineering Optimization – volume: 39 start-page: 565 year: 2009 end-page: 578 ident: b0255 article-title: An adaptive penalty formulation for constrained evolutionary optimization publication-title: Systems, Man and Cybernetics – year: 2008 ident: b0290 article-title: Nature-inspired meta-heuristic algorithms – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 10.1016/j.eswa.2015.05.050_b0050 article-title: An efficient constraint handling method for genetic algorithms publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(99)00389-8 – volume: 3809 start-page: 389 year: 2005 ident: 10.1016/j.eswa.2015.05.050_b0250 article-title: Constrained optimization by the epsilon constrained hybrid algorithm of particle swarm optimization and genetic algorithm publication-title: AI 2005: Advances in Artificial Intelligence – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0170 article-title: An effective hybrid cuckoo search algorithm for constrained global optimization publication-title: Neural Computing and Applications – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.eswa.2015.05.050_b0125 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – volume: 61 start-page: 1608 issue: 6 year: 2011 ident: 10.1016/j.eswa.2015.05.050_b0310 article-title: A novel modified differential evolution algorithm for constrained optimization problems publication-title: Computers and Mathematics with Applications doi: 10.1016/j.camwa.2011.01.029 – year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0045 article-title: Interference suppression of linear antenna arrays with combined backtracking search algorithm and differential evolution – ident: 10.1016/j.eswa.2015.05.050_b0260 doi: 10.1109/CEC.2007.4424579 – volume: 501 start-page: 769245 year: 2015 ident: 10.1016/j.eswa.2015.05.050_b0280 article-title: A hybrid backtracking search optimization algorithm with differential evolution publication-title: Mathematical Problems in Engineering – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0095 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 11 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.eswa.2015.05.050_b0085 article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES) publication-title: Evolutionary Computation doi: 10.1162/106365603321828970 – start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2015.05.050_b0145 article-title: Particle swarm optimization publication-title: Neural Networks – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.eswa.2015.05.050_b0020 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2006.872133 – year: 2008 ident: 10.1016/j.eswa.2015.05.050_b0290 – ident: 10.1016/j.eswa.2015.05.050_b0040 – volume: 39 start-page: 11165 issue: 21 year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0010 article-title: A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2014.05.052 – volume: 36 start-page: 3880 issue: 2 year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0300 article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.039 – year: 1975 ident: 10.1016/j.eswa.2015.05.050_b0100 – year: 2005 ident: 10.1016/j.eswa.2015.05.050_b0210 article-title: Self-adaptive differential evolution algorithm for numerical optimization – ident: 10.1016/j.eswa.2015.05.050_b0055 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.eswa.2015.05.050_b0155 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.857610 – volume: 9 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.eswa.2015.05.050_b0185 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.836819 – volume: 13 start-page: 741 issue: 8-9 year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0265 article-title: AMA: A new approach for solving constrained real-valued optimization problems publication-title: Soft Computing doi: 10.1007/s00500-008-0349-1 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0140 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 11 start-page: 3021 issue: 3 year: 2011 ident: 10.1016/j.eswa.2015.05.050_b0135 article-title: A modified artificial bee colony (ABC) algorithm for constrained optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.12.001 – volume: 188 start-page: 1567 issue: 2 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0175 article-title: An improved harmony search algorithm for solving optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.11.033 – volume: 16 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.eswa.2015.05.050_b0035 article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection publication-title: Advanced Engineering Informatics doi: 10.1016/S1474-0346(02)00011-3 – ident: 10.1016/j.eswa.2015.05.050_b0205 – year: 1995 ident: 10.1016/j.eswa.2015.05.050_b0235 – year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0015 – volume: 241 start-page: 119 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0160 article-title: A rough penalty genetic algorithm for constrained optimization publication-title: Information Sciences doi: 10.1016/j.ins.2013.04.001 – year: 2015 ident: 10.1016/j.eswa.2015.05.050_b0230 article-title: Backtracking search algorithm for effective and efficient surface wave analysis” publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2015.01.002 – volume: 9 start-page: 437 issue: 5 year: 2005 ident: 10.1016/j.eswa.2015.05.050_b0240 article-title: Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.850256 – volume: 37 start-page: 395 issue: 4 year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0275 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0238-3 – start-page: 347 year: 1989 ident: 10.1016/j.eswa.2015.05.050_b0005 – year: 2010 ident: 10.1016/j.eswa.2015.05.050_b0245 article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation – volume: 219 start-page: 8121 issue: 15 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0025 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.02.017 – volume: 64 start-page: 1197 year: 2015 ident: 10.1016/j.eswa.2015.05.050_b0060 article-title: Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2014.09.020 – ident: 10.1016/j.eswa.2015.05.050_b0130 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0165 article-title: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems publication-title: Nonlinear Dynamics – volume: 15 start-page: 3316 issue: 11 year: 2010 ident: 10.1016/j.eswa.2015.05.050_b0120 article-title: Two improved harmony search algorithms for solving engineering optimization problems publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2010.01.009 – volume: 15 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0115 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evolutionary Computation doi: 10.1162/evco.2007.15.1.1 – volume: 231 start-page: 187 year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0105 article-title: A bacterial gene recombination algorithm for solving constrained optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2013.12.178 – volume: 89 start-page: 2325 issue: 23 year: 2011 ident: 10.1016/j.eswa.2015.05.050_b0065 article-title: Mixed variable structural optimization using firefly algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2011.08.002 – volume: 39 start-page: 565 issue: 3 year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0255 article-title: An adaptive penalty formulation for constrained evolutionary optimization publication-title: Systems, Man and Cybernetics doi: 10.1109/TSMCA.2009.2013333 – volume: 40 start-page: 5621 issue: 14 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0305 article-title: An improved electromagnetism-like mechanism algorithm for constrained optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.028 – year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0080 article-title: Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays publication-title: International Journal of Antennas and Propagation – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.eswa.2015.05.050_b0030 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry doi: 10.1016/S0166-3615(99)00046-9 – ident: 10.1016/j.eswa.2015.05.050_b0220 doi: 10.1109/CEC.2010.5586303 – ident: 10.1016/j.eswa.2015.05.050_b0285 – volume: 45 start-page: 77 issue: 1 year: 2009 ident: 10.1016/j.eswa.2015.05.050_b0200 article-title: Properties of a genetic algorithm equipped with a dynamic penalty function publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2008.04.033 – volume: 186 start-page: 340 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0110 article-title: An effective co-evolutionary differential evolution for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.105 – volume: 26 start-page: 348 issue: 4 year: 2001 ident: 10.1016/j.eswa.2015.05.050_b0075 article-title: Optimisation and robustness for crashworthiness of side impact publication-title: International Journal of Vehicle Design doi: 10.1504/IJVD.2001.005210 – volume: 26 start-page: 1263 issue: 4 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0180 article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.02.002 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.eswa.2015.05.050_b0215 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.873238 – volume: 194 start-page: 3902 issue: 36–38 year: 2005 ident: 10.1016/j.eswa.2015.05.050_b0150 article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.09.007 – volume: 186 start-page: 1407 issue: 2 year: 2007 ident: 10.1016/j.eswa.2015.05.050_b0090 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.134 – ident: 10.1016/j.eswa.2015.05.050_b0295 doi: 10.1109/NABIC.2009.5393690 – volume: 45 start-page: 627 issue: 6 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0070 article-title: Shape optimization of structures for frequency constraints by sequential harmony search algorithm publication-title: Engineering Optimization doi: 10.1080/0305215X.2012.704028 – volume: 77 start-page: 372 year: 2014 ident: 10.1016/j.eswa.2015.05.050_b0195 article-title: Solving non-convex economic dispatch problem via backtracking search algorithm publication-title: Energy doi: 10.1016/j.energy.2014.09.009 – volume: 39 start-page: 56 issue: 1 year: 2012 ident: 10.1016/j.eswa.2015.05.050_b0270 article-title: Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2012.01.005 – volume: 68 start-page: 317 issue: 1–4 year: 2013 ident: 10.1016/j.eswa.2015.05.050_b0225 article-title: A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-013-4730-6 |
SSID | ssj0017007 |
Score | 2.4283986 |
Snippet | •It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained... A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7831 |
SubjectTerms | Algorithms Backtracking Search Algorithm Boundaries Constrained optimization problem Constraints Engineering optimization Feasibility and dominance rules Handling Optimization Search algorithms Searching Side impact ε-constrained method |
Title | Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems |
URI | https://dx.doi.org/10.1016/j.eswa.2015.05.050 https://www.proquest.com/docview/1825460768 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvXjxLdYXK3iT2Gwem-RYi6Uq9qKF3pbNbqqt2kgb8eZvdybZKIp4kIRAkt2wzO7MN5t5AZyECGpKecLRxkudIEuUkwgzdlxfhyqiwJAyjvtmIPrD4GoUjhrQrWNhyK3Syv5KppfS2j5pW2q2XyaT9i0qBwiHhIhk3hL-Eix7fsK9Jix3Lq_7g09jQuRWUdPY3qEONnamcvPKFm-UfoiHZQJPCr__HZ9-SOoSfnrrsGr1RtaphrYBjWy2CWt1TQZmWXQLpudKPxZzvCAmscqZmHWe7vP5pHh4ZvTblRU4fxnTpBlSgYiClakWqH1VT3rBUJP9ep8ZlqNgebYRm8zWoFlsw7B3cdftO7aegqP9yC0cL40CjccYUUv7sUHlUKs4xS2WFuNICGRH43F85aVpKIxQyifDTGwCnsRj7vo70Jzls2wXGHKyiZM0CDwX93cJV4l2ozQKjeCGc6VbwGsqSm2TjdOQn2TtVTaVRHlJlJcunW4LTj_7vFSpNv5sHdaTI78tGIlY8Ge_43omJXISmUfULMtfF5KXtQHIMrn3z2_vwwrdVZkhD6BZzF-zQ9RZivQIls7e-ZFdmR-G2Ovd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXhjJDYUNc7DScZSgVoeXQCJzXLsFFpKU7Wp-PvcJQ4IhBhQogyxHVln333n3AvgLERQU8oTjjZe6gRZopxEmL7j-jpUEQWGlHHcdz3ReQyun8KnBWjXsTDkVmllfyXTS2lt3zQtNZuTwaB5j8oBwiEhIpm3hL8IS0HoJ3EDllrdm07v05gQuVXUNPZ3aICNnancvLLZO6Uf4mGZwJPC73_Hpx-SuoSfq3VYtXoja1VT24CFbLwJa3VNBmZZdAuGF0q_FlN8ICaxypmYtUbP-XRQvLwx-u3KCly_jGnSDKlARMHKVAvUv6onPWOoyX61Z4blKFjebMQmszVoZtvweHX50O44tp6Co_3ILRwvjQKNVx9RS_uxQeVQqzjFI5YW_UgIZEfjcWzy0jQURijlk2EmNgFP4j53_R1ojPNxtgsMOdnESRoEnovnu4SrRLtRGoVGcMO50nvAaypKbZON05RHsvYqG0qivCTKS5dudw_OP8dMqlQbf_YO68WR3zaMRCz4c9xpvZISOYnMI2qc5fOZ5GVtALJM7v_z2yew3Hm4u5W33d7NAaxQS5Ul8hAaxXSeHaH-UqTHdn9-AEdN7dU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backtracking+Search+Algorithm+with+three+constraint+handling+methods+for+constrained+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Chunjiang&rft.au=Lin%2C+Qun&rft.au=Gao%2C+Liang&rft.au=Li%2C+Xinyu&rft.date=2015-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=42&rft.issue=21&rft.spage=7831&rft.epage=7845&rft_id=info:doi/10.1016%2Fj.eswa.2015.05.050&rft.externalDocID=S0957417415003863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |