Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems

•It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency. A new evolutionary algo...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 42; no. 21; pp. 7831 - 7845
Main Authors Zhang, Chunjiang, Lin, Qun, Gao, Liang, Li, Xinyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.11.2015
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2015.05.050

Cover

Abstract •It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency. A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, ε-constrained method with fixed control way of ε value and a proposed ε-constrained method with self-adaptive control way of ε value. The proposed method controls ε value according to the properties of current population. This kind of ε value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined ε-constrained method with self-adaptive control way of ε value (BSA-SAε) is the best one. The proposed BSA-SAε also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SAε has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SAε is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SAε.
AbstractList A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, epsilon -constrained method with fixed control way of epsilon value and a proposed epsilon -constrained method with self-adaptive control way of epsilon value. The proposed method controls epsilon value according to the properties of current population. This kind of epsilon value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined epsilon -constrained method with self-adaptive control way of epsilon value (BSA-SA epsilon ) is the best one. The proposed BSA-SA epsilon also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SA epsilon has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SA epsilon is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SA epsilon .
•It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained method with self-adapting control ε value (SAε) is proposed.•BSA-SAε can avoid premature convergence and low efficiency. A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are combined with BSA for constrained optimization problems; namely feasibility and dominance (FAD) rules, ε-constrained method with fixed control way of ε value and a proposed ε-constrained method with self-adaptive control way of ε value. The proposed method controls ε value according to the properties of current population. This kind of ε value enables algorithm to sufficiently search boundaries between infeasible regions and feasible regions. It can avoid low search efficiency and premature convergence which happens in fixed control method and FAD rules. The comparison of the above three algorithms demonstrates BSA combined ε-constrained method with self-adaptive control way of ε value (BSA-SAε) is the best one. The proposed BSA-SAε also outperforms other five classic and the latest constrained optimization algorithms. Then, BSA-SAε has been applied to four engineering optimization instances, and the comparison with other algorithms has proven its advantages. Finally, BSA-SAε is used to solve the car side impact design optimization problem, which illustrates the wide application prospects of the proposed BSA-SAε.
Author Gao, Liang
Li, Xinyu
Zhang, Chunjiang
Lin, Qun
Author_xml – sequence: 1
  givenname: Chunjiang
  surname: Zhang
  fullname: Zhang, Chunjiang
  email: zhchj1989@gmail.com
– sequence: 2
  givenname: Qun
  surname: Lin
  fullname: Lin, Qun
  email: linqunhust@hotmail.com
– sequence: 3
  givenname: Liang
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mail.hust.edu.cn
– sequence: 4
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  email: lixinyu@hust.edu.cn
BookMark eNp9UMtKJTEQDeKA18cPuMpyNn2n0o-kG2ajojOC4EJnHdJJtZ1rd3JNojJ-vem5gjALqaIKqs6pxzkk-847JOSUwZoB4z82a4yval0Ca9awOOyRFWtFVXDRVftkBV0jipqJ-oAcxrgBYAJArMjmXOnHFHKw7oHeoQp6pGfTgw82jTN9zZGmMSBS7V3MQOsSHZUz04KfMY3eRDr48NlHQ_022dm-qWS9o9vg-wnneEy-DWqKePKRj8ifq8v7i9_Fze2v64uzm0JXAlJR9qLW2QaouK5aA12nVduzGjQfBOdNxUzJcqvs-4YbrlQFudqamnXtwKA6It93c_Pip2eMSc42apwm5dA_R8nasqk5CN5maLuD6uBjDDhIbdO_q5dPJslALvLKjVzklYu8EhZftpT_UbfBzir8_Zr0c0fC_P-LxSCjtug0GhtQJ2m8_Yr-Dl-KmCI
CitedBy_id crossref_primary_10_1016_j_asoc_2022_108717
crossref_primary_10_1016_j_asoc_2018_07_051
crossref_primary_10_1016_j_eswa_2021_114898
crossref_primary_10_1016_j_jclepro_2020_124110
crossref_primary_10_1007_s12293_021_00340_x
crossref_primary_10_1007_s12652_020_02746_w
crossref_primary_10_3390_electronics11213612
crossref_primary_10_1007_s11227_022_04996_1
crossref_primary_10_1016_j_asoc_2019_04_032
crossref_primary_10_1016_j_asoc_2024_112456
crossref_primary_10_1007_s00500_022_07228_z
crossref_primary_10_1007_s13369_017_2852_0
crossref_primary_10_1016_j_eswa_2023_119999
crossref_primary_10_1007_s12205_019_2369_z
crossref_primary_10_1016_j_amc_2019_124919
crossref_primary_10_1017_aer_2024_30
crossref_primary_10_1016_j_ins_2023_120048
crossref_primary_10_1177_0309524X19849843
crossref_primary_10_1016_j_eswa_2020_113698
crossref_primary_10_1007_s11704_016_5556_9
crossref_primary_10_1016_j_eswa_2020_114021
crossref_primary_10_1016_j_ifacol_2017_12_038
crossref_primary_10_1016_j_ins_2016_10_002
crossref_primary_10_1109_TSMC_2020_3010120
crossref_primary_10_1109_ACCESS_2020_3001194
crossref_primary_10_1007_s00521_017_3329_5
crossref_primary_10_1016_j_apm_2019_10_026
crossref_primary_10_1016_j_swevo_2024_101662
crossref_primary_10_1109_ACCESS_2020_2973197
crossref_primary_10_1007_s00500_018_3355_y
crossref_primary_10_1007_s00170_016_9112_4
crossref_primary_10_1155_2019_2482543
crossref_primary_10_1007_s00500_017_2936_5
crossref_primary_10_1007_s13198_017_0640_6
crossref_primary_10_1016_j_eswa_2022_119258
crossref_primary_10_1016_j_eswa_2017_08_018
crossref_primary_10_1016_j_asoc_2019_105653
crossref_primary_10_1080_22797254_2025_2455940
crossref_primary_10_1016_j_ins_2018_09_039
crossref_primary_10_1016_j_asoc_2024_112637
crossref_primary_10_1109_TEVC_2021_3110130
crossref_primary_10_3390_w15142593
crossref_primary_10_1016_j_asoc_2020_106086
crossref_primary_10_1016_j_advengsoft_2025_103868
crossref_primary_10_1016_j_engappai_2019_02_009
crossref_primary_10_1016_j_neucom_2017_05_076
crossref_primary_10_1007_s00500_017_2693_5
crossref_primary_10_1080_0952813X_2021_1872109
crossref_primary_10_1016_j_eswa_2020_113750
crossref_primary_10_1109_TSMC_2024_3520322
crossref_primary_10_1007_s11081_022_09782_9
crossref_primary_10_1109_TSMC_2023_3281550
crossref_primary_10_3390_en12030334
crossref_primary_10_1016_j_asoc_2018_08_027
crossref_primary_10_1016_j_swevo_2017_04_007
crossref_primary_10_1007_s10479_022_04994_9
crossref_primary_10_1016_j_eswa_2022_117820
crossref_primary_10_1007_s44196_022_00114_4
crossref_primary_10_1016_j_ins_2017_04_016
crossref_primary_10_1016_j_asoc_2019_105705
crossref_primary_10_1007_s10462_019_09704_9
crossref_primary_10_1155_2018_9167414
crossref_primary_10_3390_e21080766
crossref_primary_10_3390_math9182335
crossref_primary_10_1051_matecconf_202235502008
crossref_primary_10_32604_cmes_2023_027055
Cites_doi 10.1016/S0045-7825(99)00389-8
10.1115/1.2919393
10.1016/j.camwa.2011.01.029
10.1109/CEC.2007.4424579
10.1016/j.engappai.2006.03.003
10.1162/106365603321828970
10.1109/TEVC.2006.872133
10.1016/j.ijhydene.2014.05.052
10.1016/j.eswa.2008.02.039
10.1109/TEVC.2005.857610
10.1109/TEVC.2004.836819
10.1007/s00500-008-0349-1
10.1007/s10898-007-9149-x
10.1016/j.asoc.2010.12.001
10.1016/j.amc.2006.11.033
10.1016/S1474-0346(02)00011-3
10.1016/j.ins.2013.04.001
10.1016/j.jappgeo.2015.01.002
10.1109/TEVC.2005.850256
10.1007/s00158-008-0238-3
10.1016/j.amc.2013.02.017
10.1016/j.ijepes.2014.09.020
10.1016/j.cnsns.2010.01.009
10.1162/evco.2007.15.1.1
10.1016/j.amc.2013.12.178
10.1016/j.compstruc.2011.08.002
10.1109/TSMCA.2009.2013333
10.1016/j.eswa.2013.04.028
10.1016/S0166-3615(99)00046-9
10.1109/CEC.2010.5586303
10.1016/j.commatsci.2008.04.033
10.1016/j.amc.2006.07.105
10.1504/IJVD.2001.005210
10.1016/j.engappai.2013.02.002
10.1109/4235.873238
10.1016/j.cma.2004.09.007
10.1016/j.amc.2006.07.134
10.1109/NABIC.2009.5393690
10.1080/0305215X.2012.704028
10.1016/j.energy.2014.09.009
10.1016/j.ijepes.2012.01.005
10.1007/s00170-013-4730-6
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.05.050
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 7845
ExternalDocumentID 10_1016_j_eswa_2015_05_050
S0957417415003863
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c370t-2b74c4c4f036c38d099ca8b140c6f766531d216c32bb56d6aa306658d4198f103
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Sun Sep 28 13:51:18 EDT 2025
Wed Oct 01 03:51:45 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Backtracking Search Algorithm
ε-constrained method
Constrained optimization problem
Feasibility and dominance rules
Engineering optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-2b74c4c4f036c38d099ca8b140c6f766531d216c32bb56d6aa306658d4198f103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825460768
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1825460768
crossref_citationtrail_10_1016_j_eswa_2015_05_050
crossref_primary_10_1016_j_eswa_2015_05_050
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_05_050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-30
PublicationDateYYYYMMDD 2015-11-30
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-30
  day: 30
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Geem (b0150) 2005; 194
Pulido, G. T., & Coello Coello, C. A. (2004). A constraint-handling mechanism for particle swarm optimization. In
Kolkata, India: Jadavpur Univ., Nanyang Technol. Univ.
Yang (b0290) 2008
Das, S., & Suganthan, P. (2010).
Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department.
Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In
Brest, Greiner, Boskovic, Mernik, Zumer (b0020) 2006; 10
Wang, Cai, Zhou (b0275) 2009; 37
Gandomi, Yang, Alavi (b0065) 2011; 89
Igel, Hansen, Roth (b0115) 2007; 15
Vaisakh, Praveena, Rama Mohana Rao, Meah (b0270) 2012; 39
He, Wang (b0095) 2007; 20
Ullah, Sarker, Cornforth (b0265) 2009; 13
Storn, Price (b0235) 1995
Gu, Yang, Tho, Makowskit, Faruquet, Li (b0075) 2001; 26
Lin (b0160) 2013; 241
Lin (b0165) 2014
He, Wang (b0090) 2007; 186
Deb (b0050) 2000; 186
Mahdavi, Fesanghary, Damangir (b0175) 2007; 188
Guney, Durmus, Basbug (b0080) 2014
(pp. 999–1006). IEEE.
Zhang, Li, Gao, Wu (b0305) 2013; 40
Takahama, Sakai (b0240) 2005; 9
Huang, Wang, He (b0110) 2007; 186
.
Karaboga, Akay (b0135) 2011; 11
Saha, A., Datta, R., & Deb, K. (2010). Hybrid gradient projection based genetic algorithms for constrained optimization. In
Modiri-Delshad, Rahim (b0195) 2014; 77
Kannan, Kramer (b0125) 1994; 116
Wang, Zhong, Yin, Zhao, Wang, Xu (b0280) 2015; 501
Arora (b0005) 1989
Runarsson, Yao (b0215) 2000; 4
Brest (b0015) 2009
Paszkowicz (b0200) 2009; 45
Long, Liang, Huang (b0170) 2014
Wu, B., Yu, X., Liu, L. (2001). Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms. In
El-Fergany (b0060) 2015; 64
Kennedy, Eberhart (b0145) 1995
Askarzadeh, dos Santos Coelho (b0010) 2014; 39
Karaboga, Basturk (b0140) 2007; 39
Mezura Montes, Coello Coello (b0185) 2005; 9
Dorigo, M. (1992).
Das, Mandal, Ghoshal (b0045) 2014
Mazhoud, Hadj Hamou, Bigeon, Joyeux (b0180) 2013; 26
Takahama, Sakai, Iwane (b0250) 2005; 3809
Takahama, Sakai (b0245) 2010
IEEE.
Gholizadeh, Barzegar (b0070) 2013; 45
Ullah, A. S. S. M. B., Sarker, R., & Cornforth, D. (2007). An agent-based memetic algorithm (AMA) for solving constrained optimization problems. In
Karaboga, D. (2005).
Qin, Suganthan (b0210) 2005
Liang, Qin, Suganthan, Baskar (b0155) 2006; 10
Holland (b0100) 1975
(Ph.D. thesis). Italy: Politecnico di Milano.
(pp. 1396–1403), Vol. 1.
Tessema, Yen (b0255) 2009; 39
Civicioglu (b0025) 2013; 219
Hansen, Müller, Koumoutsakos (b0085) 2003; 11
Coello Coello (b0035) 2002; 16
Zahara, Kao (b0300) 2009; 36
Sheikhalishahi, Ebrahimipour, Shiri (b0225) 2013; 68
Coello Coello (b0030) 2000; 41
(pp. 2851–2858).
Hsieh (b0105) 2014; 231
Jaberipour, Khorram (b0120) 2010; 15
Zou, Liu, Gao, Li (b0310) 2011; 61
Song, Zhang, Zhao, Li (b0230) 2015
Karaboga (10.1016/j.eswa.2015.05.050_b0135) 2011; 11
Takahama (10.1016/j.eswa.2015.05.050_b0240) 2005; 9
Coello Coello (10.1016/j.eswa.2015.05.050_b0030) 2000; 41
10.1016/j.eswa.2015.05.050_b0260
10.1016/j.eswa.2015.05.050_b0220
Jaberipour (10.1016/j.eswa.2015.05.050_b0120) 2010; 15
Deb (10.1016/j.eswa.2015.05.050_b0050) 2000; 186
Hansen (10.1016/j.eswa.2015.05.050_b0085) 2003; 11
Wang (10.1016/j.eswa.2015.05.050_b0275) 2009; 37
Askarzadeh (10.1016/j.eswa.2015.05.050_b0010) 2014; 39
Mezura Montes (10.1016/j.eswa.2015.05.050_b0185) 2005; 9
Brest (10.1016/j.eswa.2015.05.050_b0015) 2009
Wang (10.1016/j.eswa.2015.05.050_b0280) 2015; 501
Kannan (10.1016/j.eswa.2015.05.050_b0125) 1994; 116
Zahara (10.1016/j.eswa.2015.05.050_b0300) 2009; 36
Coello Coello (10.1016/j.eswa.2015.05.050_b0035) 2002; 16
He (10.1016/j.eswa.2015.05.050_b0095) 2007; 20
He (10.1016/j.eswa.2015.05.050_b0090) 2007; 186
Liang (10.1016/j.eswa.2015.05.050_b0155) 2006; 10
10.1016/j.eswa.2015.05.050_b0055
Brest (10.1016/j.eswa.2015.05.050_b0020) 2006; 10
El-Fergany (10.1016/j.eswa.2015.05.050_b0060) 2015; 64
10.1016/j.eswa.2015.05.050_b0130
10.1016/j.eswa.2015.05.050_b0295
Gholizadeh (10.1016/j.eswa.2015.05.050_b0070) 2013; 45
10.1016/j.eswa.2015.05.050_b0205
Gandomi (10.1016/j.eswa.2015.05.050_b0065) 2011; 89
Lin (10.1016/j.eswa.2015.05.050_b0165) 2014
Paszkowicz (10.1016/j.eswa.2015.05.050_b0200) 2009; 45
Storn (10.1016/j.eswa.2015.05.050_b0235) 1995
Karaboga (10.1016/j.eswa.2015.05.050_b0140) 2007; 39
Zhang (10.1016/j.eswa.2015.05.050_b0305) 2013; 40
Lee (10.1016/j.eswa.2015.05.050_b0150) 2005; 194
Vaisakh (10.1016/j.eswa.2015.05.050_b0270) 2012; 39
Guney (10.1016/j.eswa.2015.05.050_b0080) 2014
Arora (10.1016/j.eswa.2015.05.050_b0005) 1989
Sheikhalishahi (10.1016/j.eswa.2015.05.050_b0225) 2013; 68
Runarsson (10.1016/j.eswa.2015.05.050_b0215) 2000; 4
10.1016/j.eswa.2015.05.050_b0040
Zou (10.1016/j.eswa.2015.05.050_b0310) 2011; 61
Takahama (10.1016/j.eswa.2015.05.050_b0245) 2010
10.1016/j.eswa.2015.05.050_b0285
Long (10.1016/j.eswa.2015.05.050_b0170) 2014
Modiri-Delshad (10.1016/j.eswa.2015.05.050_b0195) 2014; 77
Mahdavi (10.1016/j.eswa.2015.05.050_b0175) 2007; 188
Ullah (10.1016/j.eswa.2015.05.050_b0265) 2009; 13
Huang (10.1016/j.eswa.2015.05.050_b0110) 2007; 186
Lin (10.1016/j.eswa.2015.05.050_b0160) 2013; 241
Gu (10.1016/j.eswa.2015.05.050_b0075) 2001; 26
Takahama (10.1016/j.eswa.2015.05.050_b0250) 2005; 3809
Igel (10.1016/j.eswa.2015.05.050_b0115) 2007; 15
Holland (10.1016/j.eswa.2015.05.050_b0100) 1975
Song (10.1016/j.eswa.2015.05.050_b0230) 2015
Tessema (10.1016/j.eswa.2015.05.050_b0255) 2009; 39
Kennedy (10.1016/j.eswa.2015.05.050_b0145) 1995
Das (10.1016/j.eswa.2015.05.050_b0045) 2014
Qin (10.1016/j.eswa.2015.05.050_b0210) 2005
Yang (10.1016/j.eswa.2015.05.050_b0290) 2008
Mazhoud (10.1016/j.eswa.2015.05.050_b0180) 2013; 26
Civicioglu (10.1016/j.eswa.2015.05.050_b0025) 2013; 219
Hsieh (10.1016/j.eswa.2015.05.050_b0105) 2014; 231
References_xml – volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b0030
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
– volume: 241
  start-page: 119
  year: 2013
  end-page: 137
  ident: b0160
  article-title: A rough penalty genetic algorithm for constrained optimization
  publication-title: Information Sciences
– volume: 188
  start-page: 1567
  year: 2007
  end-page: 1579
  ident: b0175
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: b0095
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
– reference: Saha, A., Datta, R., & Deb, K. (2010). Hybrid gradient projection based genetic algorithms for constrained optimization. In
– volume: 219
  start-page: 8121
  year: 2013
  end-page: 8144
  ident: b0025
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 231
  start-page: 187
  year: 2014
  end-page: 204
  ident: b0105
  article-title: A bacterial gene recombination algorithm for solving constrained optimization problems
  publication-title: Applied Mathematics and Computation
– year: 1995
  ident: b0235
  article-title: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces
– reference: . Kolkata, India: Jadavpur Univ., Nanyang Technol. Univ.
– reference: (pp. 2851–2858).
– reference: . Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b0020
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 68
  start-page: 317
  year: 2013
  end-page: 338
  ident: b0225
  article-title: A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem
  publication-title: The International Journal of Advanced Manufacturing Technology
– reference: Ullah, A. S. S. M. B., Sarker, R., & Cornforth, D. (2007). An agent-based memetic algorithm (AMA) for solving constrained optimization problems. In
– start-page: 347
  year: 1989
  end-page: 425
  ident: b0005
  article-title: Introduction to optimum design
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b0050
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 186
  start-page: 340
  year: 2007
  end-page: 356
  ident: b0110
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Applied Mathematics and Computation
– volume: 26
  start-page: 348
  year: 2001
  end-page: 360
  ident: b0075
  article-title: Optimisation and robustness for crashworthiness of side impact
  publication-title: International Journal of Vehicle Design
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: b0150
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2010
  ident: b0245
  article-title: Constrained optimization by the
  publication-title: 2010 IEEE congress on evolutionary computation (CEC)
– reference: Pulido, G. T., & Coello Coello, C. A. (2004). A constraint-handling mechanism for particle swarm optimization. In
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0145
  article-title: Particle swarm optimization
  publication-title: Neural Networks
– reference: (pp. 1396–1403), Vol. 1.
– reference: Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights. In
– reference: Karaboga, D. (2005).
– volume: 45
  start-page: 77
  year: 2009
  end-page: 83
  ident: b0200
  article-title: Properties of a genetic algorithm equipped with a dynamic penalty function
  publication-title: Computational Materials Science
– year: 2009
  ident: b0015
  article-title: Constrained real-parameter optimization with ε-self-adaptive differential evolution
– start-page: 1
  year: 2014
  end-page: 16
  ident: b0170
  article-title: An effective hybrid cuckoo search algorithm for constrained global optimization
  publication-title: Neural Computing and Applications
– volume: 9
  start-page: 1
  year: 2005
  end-page: 17
  ident: b0185
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: .
– reference: Dorigo, M. (1992).
– year: 2014
  ident: b0080
  article-title: Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays
  publication-title: International Journal of Antennas and Propagation
– year: 2015
  ident: b0230
  article-title: Backtracking search algorithm for effective and efficient surface wave analysis”
  publication-title: Journal of Applied Geophysics
– reference: Wu, B., Yu, X., Liu, L. (2001). Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms. In
– start-page: 1
  year: 2014
  end-page: 11
  ident: b0165
  article-title: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems
  publication-title: Nonlinear Dynamics
– volume: 26
  start-page: 1263
  year: 2013
  end-page: 1273
  ident: b0180
  article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 186
  start-page: 1407
  year: 2007
  end-page: 1422
  ident: b0090
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Applied Mathematics and Computation
– volume: 39
  start-page: 56
  year: 2012
  end-page: 67
  ident: b0270
  article-title: Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– volume: 36
  start-page: 3880
  year: 2009
  end-page: 3886
  ident: b0300
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: b0275
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
– volume: 3809
  start-page: 389
  year: 2005
  end-page: 400
  ident: b0250
  article-title: Constrained optimization by the epsilon constrained hybrid algorithm of particle swarm optimization and genetic algorithm
  publication-title: AI 2005: Advances in Artificial Intelligence
– volume: 9
  start-page: 437
  year: 2005
  end-page: 451
  ident: b0240
  article-title: Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Das, S., & Suganthan, P. (2010).
– volume: 501
  start-page: 769245
  year: 2015
  ident: b0280
  article-title: A hybrid backtracking search optimization algorithm with differential evolution
  publication-title: Mathematical Problems in Engineering
– volume: 89
  start-page: 2325
  year: 2011
  end-page: 2336
  ident: b0065
  article-title: Mixed variable structural optimization using firefly algorithm
  publication-title: Computers & Structures
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: b0215
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0140
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– reference: (Ph.D. thesis). Italy: Politecnico di Milano.
– volume: 16
  start-page: 193
  year: 2002
  end-page: 203
  ident: b0035
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
– volume: 11
  start-page: 1
  year: 2003
  end-page: 18
  ident: b0085
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evolutionary Computation
– volume: 15
  start-page: 1
  year: 2007
  end-page: 28
  ident: b0115
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evolutionary Computation
– volume: 15
  start-page: 3316
  year: 2010
  end-page: 3331
  ident: b0120
  article-title: Two improved harmony search algorithms for solving engineering optimization problems
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b0155
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: b0125
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
– year: 2005
  ident: b0210
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
  publication-title: The 2005 IEEE congress on evolutionary computation
– reference: (pp. 999–1006). IEEE.
– reference: . IEEE.
– volume: 39
  start-page: 11165
  year: 2014
  end-page: 11174
  ident: b0010
  article-title: A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model
  publication-title: International Journal of Hydrogen Energy
– volume: 64
  start-page: 1197
  year: 2015
  end-page: 1205
  ident: b0060
  article-title: Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
– reference: .
– year: 2014
  ident: b0045
  article-title: Interference suppression of linear antenna arrays with combined backtracking search algorithm and differential evolution
  publication-title: 2014 International conference on communications and signal processing (ICCSP)
– volume: 77
  start-page: 372
  year: 2014
  end-page: 381
  ident: b0195
  article-title: Solving non-convex economic dispatch problem via backtracking search algorithm
  publication-title: Energy
– volume: 61
  start-page: 1608
  year: 2011
  end-page: 1623
  ident: b0310
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Computers and Mathematics with Applications
– volume: 13
  start-page: 741
  year: 2009
  end-page: 762
  ident: b0265
  article-title: AMA: A new approach for solving constrained real-valued optimization problems
  publication-title: Soft Computing
– volume: 11
  start-page: 3021
  year: 2011
  end-page: 3031
  ident: b0135
  article-title: A modified artificial bee colony (ABC) algorithm for constrained optimization problems
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 5621
  year: 2013
  end-page: 5634
  ident: b0305
  article-title: An improved electromagnetism-like mechanism algorithm for constrained optimization
  publication-title: Expert Systems with Applications
– year: 1975
  ident: b0100
  article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
– volume: 45
  start-page: 627
  year: 2013
  end-page: 646
  ident: b0070
  article-title: Shape optimization of structures for frequency constraints by sequential harmony search algorithm
  publication-title: Engineering Optimization
– volume: 39
  start-page: 565
  year: 2009
  end-page: 578
  ident: b0255
  article-title: An adaptive penalty formulation for constrained evolutionary optimization
  publication-title: Systems, Man and Cybernetics
– year: 2008
  ident: b0290
  article-title: Nature-inspired meta-heuristic algorithms
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 10.1016/j.eswa.2015.05.050_b0050
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 3809
  start-page: 389
  year: 2005
  ident: 10.1016/j.eswa.2015.05.050_b0250
  article-title: Constrained optimization by the epsilon constrained hybrid algorithm of particle swarm optimization and genetic algorithm
  publication-title: AI 2005: Advances in Artificial Intelligence
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0170
  article-title: An effective hybrid cuckoo search algorithm for constrained global optimization
  publication-title: Neural Computing and Applications
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2015.05.050_b0125
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– volume: 61
  start-page: 1608
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2015.05.050_b0310
  article-title: A novel modified differential evolution algorithm for constrained optimization problems
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2011.01.029
– year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0045
  article-title: Interference suppression of linear antenna arrays with combined backtracking search algorithm and differential evolution
– ident: 10.1016/j.eswa.2015.05.050_b0260
  doi: 10.1109/CEC.2007.4424579
– volume: 501
  start-page: 769245
  year: 2015
  ident: 10.1016/j.eswa.2015.05.050_b0280
  article-title: A hybrid backtracking search optimization algorithm with differential evolution
  publication-title: Mathematical Problems in Engineering
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0095
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 11
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2015.05.050_b0085
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evolutionary Computation
  doi: 10.1162/106365603321828970
– start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2015.05.050_b0145
  article-title: Particle swarm optimization
  publication-title: Neural Networks
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2015.05.050_b0020
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2006.872133
– year: 2008
  ident: 10.1016/j.eswa.2015.05.050_b0290
– ident: 10.1016/j.eswa.2015.05.050_b0040
– volume: 39
  start-page: 11165
  issue: 21
  year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0010
  article-title: A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.05.052
– volume: 36
  start-page: 3880
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0300
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.039
– year: 1975
  ident: 10.1016/j.eswa.2015.05.050_b0100
– year: 2005
  ident: 10.1016/j.eswa.2015.05.050_b0210
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
– ident: 10.1016/j.eswa.2015.05.050_b0055
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2015.05.050_b0155
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.857610
– volume: 9
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2015.05.050_b0185
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.836819
– volume: 13
  start-page: 741
  issue: 8-9
  year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0265
  article-title: AMA: A new approach for solving constrained real-valued optimization problems
  publication-title: Soft Computing
  doi: 10.1007/s00500-008-0349-1
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0140
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 11
  start-page: 3021
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2015.05.050_b0135
  article-title: A modified artificial bee colony (ABC) algorithm for constrained optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.12.001
– volume: 188
  start-page: 1567
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0175
  article-title: An improved harmony search algorithm for solving optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.11.033
– volume: 16
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2015.05.050_b0035
  article-title: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/S1474-0346(02)00011-3
– ident: 10.1016/j.eswa.2015.05.050_b0205
– year: 1995
  ident: 10.1016/j.eswa.2015.05.050_b0235
– year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0015
– volume: 241
  start-page: 119
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0160
  article-title: A rough penalty genetic algorithm for constrained optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.04.001
– year: 2015
  ident: 10.1016/j.eswa.2015.05.050_b0230
  article-title: Backtracking search algorithm for effective and efficient surface wave analysis”
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2015.01.002
– volume: 9
  start-page: 437
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2015.05.050_b0240
  article-title: Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.850256
– volume: 37
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0275
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-008-0238-3
– start-page: 347
  year: 1989
  ident: 10.1016/j.eswa.2015.05.050_b0005
– year: 2010
  ident: 10.1016/j.eswa.2015.05.050_b0245
  article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0025
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.02.017
– volume: 64
  start-page: 1197
  year: 2015
  ident: 10.1016/j.eswa.2015.05.050_b0060
  article-title: Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2014.09.020
– ident: 10.1016/j.eswa.2015.05.050_b0130
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0165
  article-title: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems
  publication-title: Nonlinear Dynamics
– volume: 15
  start-page: 3316
  issue: 11
  year: 2010
  ident: 10.1016/j.eswa.2015.05.050_b0120
  article-title: Two improved harmony search algorithms for solving engineering optimization problems
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2010.01.009
– volume: 15
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0115
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.2007.15.1.1
– volume: 231
  start-page: 187
  year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0105
  article-title: A bacterial gene recombination algorithm for solving constrained optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.12.178
– volume: 89
  start-page: 2325
  issue: 23
  year: 2011
  ident: 10.1016/j.eswa.2015.05.050_b0065
  article-title: Mixed variable structural optimization using firefly algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2011.08.002
– volume: 39
  start-page: 565
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0255
  article-title: An adaptive penalty formulation for constrained evolutionary optimization
  publication-title: Systems, Man and Cybernetics
  doi: 10.1109/TSMCA.2009.2013333
– volume: 40
  start-page: 5621
  issue: 14
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0305
  article-title: An improved electromagnetism-like mechanism algorithm for constrained optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.028
– year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0080
  article-title: Backtracking search optimization algorithm for synthesis of concentric circular antenna arrays
  publication-title: International Journal of Antennas and Propagation
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2015.05.050_b0030
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(99)00046-9
– ident: 10.1016/j.eswa.2015.05.050_b0220
  doi: 10.1109/CEC.2010.5586303
– ident: 10.1016/j.eswa.2015.05.050_b0285
– volume: 45
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2015.05.050_b0200
  article-title: Properties of a genetic algorithm equipped with a dynamic penalty function
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2008.04.033
– volume: 186
  start-page: 340
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0110
  article-title: An effective co-evolutionary differential evolution for constrained optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.105
– volume: 26
  start-page: 348
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2015.05.050_b0075
  article-title: Optimisation and robustness for crashworthiness of side impact
  publication-title: International Journal of Vehicle Design
  doi: 10.1504/IJVD.2001.005210
– volume: 26
  start-page: 1263
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0180
  article-title: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.02.002
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2015.05.050_b0215
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.873238
– volume: 194
  start-page: 3902
  issue: 36–38
  year: 2005
  ident: 10.1016/j.eswa.2015.05.050_b0150
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.09.007
– volume: 186
  start-page: 1407
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2015.05.050_b0090
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.134
– ident: 10.1016/j.eswa.2015.05.050_b0295
  doi: 10.1109/NABIC.2009.5393690
– volume: 45
  start-page: 627
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0070
  article-title: Shape optimization of structures for frequency constraints by sequential harmony search algorithm
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2012.704028
– volume: 77
  start-page: 372
  year: 2014
  ident: 10.1016/j.eswa.2015.05.050_b0195
  article-title: Solving non-convex economic dispatch problem via backtracking search algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.009
– volume: 39
  start-page: 56
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.05.050_b0270
  article-title: Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2012.01.005
– volume: 68
  start-page: 317
  issue: 1–4
  year: 2013
  ident: 10.1016/j.eswa.2015.05.050_b0225
  article-title: A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-013-4730-6
SSID ssj0017007
Score 2.4283986
Snippet •It is the first time that BSA is applied to solve constrained optimization problems.•Three constraint handling methods are adopted by BSA.•A ε-constrained...
A new evolutionary algorithm, Backtracking Search Algorithm (BSA), is applied to solve constrained optimization problems. Three constraint handling methods are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7831
SubjectTerms Algorithms
Backtracking Search Algorithm
Boundaries
Constrained optimization problem
Constraints
Engineering optimization
Feasibility and dominance rules
Handling
Optimization
Search algorithms
Searching
Side impact
ε-constrained method
Title Backtracking Search Algorithm with three constraint handling methods for constrained optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2015.05.050
https://www.proquest.com/docview/1825460768
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvXjxLdYXK3iT2Gwem-RYi6Uq9qKF3pbNbqqt2kgb8eZvdybZKIp4kIRAkt2wzO7MN5t5AZyECGpKecLRxkudIEuUkwgzdlxfhyqiwJAyjvtmIPrD4GoUjhrQrWNhyK3Syv5KppfS2j5pW2q2XyaT9i0qBwiHhIhk3hL-Eix7fsK9Jix3Lq_7g09jQuRWUdPY3qEONnamcvPKFm-UfoiHZQJPCr__HZ9-SOoSfnrrsGr1RtaphrYBjWy2CWt1TQZmWXQLpudKPxZzvCAmscqZmHWe7vP5pHh4ZvTblRU4fxnTpBlSgYiClakWqH1VT3rBUJP9ep8ZlqNgebYRm8zWoFlsw7B3cdftO7aegqP9yC0cL40CjccYUUv7sUHlUKs4xS2WFuNICGRH43F85aVpKIxQyifDTGwCnsRj7vo70Jzls2wXGHKyiZM0CDwX93cJV4l2ozQKjeCGc6VbwGsqSm2TjdOQn2TtVTaVRHlJlJcunW4LTj_7vFSpNv5sHdaTI78tGIlY8Ge_43omJXISmUfULMtfF5KXtQHIMrn3z2_vwwrdVZkhD6BZzF-zQ9RZivQIls7e-ZFdmR-G2Ovd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjXhjJDYUNc7DScZSgVoeXQCJzXLsFFpKU7Wp-PvcJQ4IhBhQogyxHVln333n3AvgLERQU8oTjjZe6gRZopxEmL7j-jpUEQWGlHHcdz3ReQyun8KnBWjXsTDkVmllfyXTS2lt3zQtNZuTwaB5j8oBwiEhIpm3hL8IS0HoJ3EDllrdm07v05gQuVXUNPZ3aICNnancvLLZO6Uf4mGZwJPC73_Hpx-SuoSfq3VYtXoja1VT24CFbLwJa3VNBmZZdAuGF0q_FlN8ICaxypmYtUbP-XRQvLwx-u3KCly_jGnSDKlARMHKVAvUv6onPWOoyX61Z4blKFjebMQmszVoZtvweHX50O44tp6Co_3ILRwvjQKNVx9RS_uxQeVQqzjFI5YW_UgIZEfjcWzy0jQURijlk2EmNgFP4j53_R1ojPNxtgsMOdnESRoEnovnu4SrRLtRGoVGcMO50nvAaypKbZON05RHsvYqG0qivCTKS5dudw_OP8dMqlQbf_YO68WR3zaMRCz4c9xpvZISOYnMI2qc5fOZ5GVtALJM7v_z2yew3Hm4u5W33d7NAaxQS5Ul8hAaxXSeHaH-UqTHdn9-AEdN7dU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Backtracking+Search+Algorithm+with+three+constraint+handling+methods+for+constrained+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Chunjiang&rft.au=Lin%2C+Qun&rft.au=Gao%2C+Liang&rft.au=Li%2C+Xinyu&rft.date=2015-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=42&rft.issue=21&rft.spage=7831&rft.epage=7845&rft_id=info:doi/10.1016%2Fj.eswa.2015.05.050&rft.externalDocID=S0957417415003863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon