Analysis of particle deposition of nanofluid flow through porous media

•Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 161; p. 120227
Main Authors Albojamal, Ahmed, Vafai, Kambiz
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2020.120227

Cover

Abstract •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The brownian force was the most dominant effect on the particle deposition. A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium.
AbstractList •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The brownian force was the most dominant effect on the particle deposition. A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium.
A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium.
ArticleNumber 120227
Author Albojamal, Ahmed
Vafai, Kambiz
Author_xml – sequence: 1
  givenname: Ahmed
  orcidid: 0000-0002-2322-8388
  surname: Albojamal
  fullname: Albojamal, Ahmed
– sequence: 2
  givenname: Kambiz
  surname: Vafai
  fullname: Vafai, Kambiz
  email: vafai@engr.ucr.edu
BookMark eNqVkE1PwyAYgImZidv0PzTx4qUTKKPl5rI4P7LEi54JpeBoOqhANf57aepJL3p5v_Mk77MAM-usAuAKwRWCiF63K9MelIhHEUL0wgat_ApDnNYp4vIEzFFVshyjis3AHEJU5qxA8AwsQmjHFhI6B7uNFd1nMCFzOuuFj0Z2KmtU74KJxtlxbIV1uhtMk-nOfWTx4N3wesh6l3LIjqox4hycatEFdfGdl-Bld_u8vc_3T3cP280-l0UJY46pgCXCgsKSVIJJKBtck0biikJJdElTpQihlGq2lqQp1qxWDDFW1aKmel0sweXE7b17G1SIvHWDTy8EjgmFCNICVulqN11J70LwSnNpohjfSaZMxxHko0Pe8t8O-eiQTw4T6OYHqPfmKPznfxCPE0IlLe8mbYM0yspkzSsZeePM32FfjBmfWQ
CitedBy_id crossref_primary_10_1002_zamm_202300306
crossref_primary_10_1016_j_applthermaleng_2022_118117
crossref_primary_10_1007_s10973_023_12130_3
crossref_primary_10_1080_15567036_2022_2095460
crossref_primary_10_1002_mma_10479
crossref_primary_10_1016_j_tsep_2021_100860
crossref_primary_10_1038_s41598_021_90671_z
crossref_primary_10_1115_1_4051031
crossref_primary_10_1016_j_icheatmasstransfer_2022_106420
crossref_primary_10_1016_j_powtec_2022_117110
crossref_primary_10_1166_jon_2023_2093
crossref_primary_10_1007_s40571_024_00836_6
crossref_primary_10_1016_j_aej_2021_06_104
crossref_primary_10_1142_S0217979221501782
crossref_primary_10_1016_j_cplett_2022_139666
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121010
crossref_primary_10_1016_j_matcom_2022_06_001
crossref_primary_10_1007_s10661_023_11314_6
crossref_primary_10_1016_j_enceco_2024_12_008
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121474
crossref_primary_10_1016_j_egyr_2021_10_083
crossref_primary_10_1063_5_0060860
crossref_primary_10_1002_zamm_202200152
crossref_primary_10_1016_j_powtec_2024_120572
crossref_primary_10_3390_su14137757
crossref_primary_10_1108_HFF_10_2020_0671
crossref_primary_10_1029_2023WR035456
crossref_primary_10_1016_j_powtec_2021_07_068
crossref_primary_10_1016_j_ijthermalsci_2023_108318
crossref_primary_10_1063_5_0197047
crossref_primary_10_1109_ACCESS_2024_3496786
crossref_primary_10_1007_s40997_023_00679_1
crossref_primary_10_1016_j_ijthermalsci_2022_108058
crossref_primary_10_1016_j_cej_2021_132321
crossref_primary_10_1080_02286203_2024_2338580
crossref_primary_10_1016_j_molliq_2022_118948
crossref_primary_10_1016_j_est_2023_107233
crossref_primary_10_1080_10407782_2022_2147609
crossref_primary_10_1016_j_ijmecsci_2021_106465
crossref_primary_10_1016_j_icheatmasstransfer_2021_105341
Cites_doi 10.1080/10407782.2017.1412679
10.1016/j.ijheatmasstransfer.2017.06.030
10.1016/j.ijthermalsci.2019.106057
10.1016/j.ijheatmasstransfer.2016.11.074
10.1115/1.3250779
10.1080/02786829208959550
10.1016/j.ijheatmasstransfer.2015.04.112
10.1016/j.ijmultiphaseflow.2007.10.005
10.1016/0017-9310(88)90013-0
10.1017/S002211208400207X
10.1016/j.ijheatmasstransfer.2011.04.048
10.1201/b18324
10.1007/s10973-018-7720-y
10.1007/s002310050208
10.1115/1.3248083
10.1016/j.petrol.2019.01.001
10.1016/j.rser.2015.10.042
10.1023/A:1012593318108
10.1007/s00231-013-1182-3
10.1016/j.ijheatmasstransfer.2009.02.006
10.1016/j.ijheatmasstransfer.2018.04.153
10.1016/0021-9797(73)90225-7
10.1007/s00231-016-1871-9
10.1016/j.ijheatmasstransfer.2009.12.007
10.1016/j.applthermaleng.2016.08.038
10.1021/cr00088a006
10.1177/1757482X17716045
10.1016/j.jcp.2008.03.004
10.1016/j.ijheatmasstransfer.2012.06.082
10.1016/j.applthermaleng.2018.12.008
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.120227
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_120227
S001793102033163X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABDMP
ABDPE
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACRPL
ADBBV
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c370t-26a0712a60748a9c0cd2b4dc2860c4f76c28e44666f95c4d359be91998bab6f53
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 08:02:35 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Oct 01 05:17:52 EDT 2025
Sun Apr 06 06:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Nanoparticles
Forced convection
Nanofluids
Discrete-particle model
Deposition
User-defined functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-26a0712a60748a9c0cd2b4dc2860c4f76c28e44666f95c4d359be91998bab6f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2322-8388
PQID 2460106308
PQPubID 2045464
ParticipantIDs proquest_journals_2460106308
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_120227
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120227
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_120227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mahdavi, Sharifpur, Meyer (bib0017) 2018; 125
Wee, Yap (bib0030) 2019; 176
ANSYS® Academic Research, Release 19.2, (2019).
Ghanbarpour, Khodabandeh, Vafai (bib0004) 2017; 53
Mahdavi, Garbadeen, Sharifpur, Ahmadi, Meyer (bib0008) 2019; 135
Vafai (bib0014) 1984; 147
Burdick, Berman, Beaudoin (bib0016) 2001; 3
Emani, Ramasamy, Shaari (bib0009) 2019; 149
Chen, Huang (bib0012) 2012; 55
Albojamal, Hamzah, Haghighi, Vafai (bib0001) 2017; 72
Davalath, Bayazitoglu (bib0032) 1987; 109
Chikh, Boumedien, Bouhadef, Lauriat (bib0011) 1998; 33
Mojarrad, Keshavarz, Shokouhi (bib0023) 2013; 49
Kakaç, Pramuanjaroenkij (bib0003) 2009; 52
Vanaki, Ganesan, Mohammed (bib0019) 2016; 54
Van Oss, Chaudhury, Good (bib0029) 1988; 88
Vafai, Kim (bib0013) 1989; 111
Albojamal, Vafai (bib0002) 2017; 114
Hunt, Tien (bib0020) 1988; 31
Mahdavi, Sharifpur, Meyer (bib0007) 2015; 88
ANSYS® Academic Research, Release 19.2, Help System, Chapter: 23 Modeling Discrete Phase, ANSYS, Inc., (2019).
Li, Ahmadi (bib0025) 1992; 16
Minkowycz, Sparrow, Murthy, Abraham (bib0026) 2009
Apte, Mahesh, Lundgren (bib0031) 2008; 34
.
Kasaeian, Daneshazarian, Mahian, Kolsi, Chamkha, Wongwises, Pop (bib0018) 2017; 107
Shafahi, Bianco, Vafai, Manca (bib0006) 2010; 53
Khanafer, Vafai (bib0005) 2011; 54
Kumar, Puranik (bib0021) 2017; 111
McNab, Meisen (bib0024) 1973; 44
Kaufmann, Moreau, Simonin, Helie (bib0033) 2008; 227
Haghighi, Albojamal, Vafai (bib0010) 2020; 149
Rabbani, Sassi, Shamim (bib0015) 2017; 9
V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat transfer enhancement with nanofluids, 2015.
Albojamal (10.1016/j.ijheatmasstransfer.2020.120227_bib0002) 2017; 114
Vanaki (10.1016/j.ijheatmasstransfer.2020.120227_bib0019) 2016; 54
Wee (10.1016/j.ijheatmasstransfer.2020.120227_bib0030) 2019; 176
Rabbani (10.1016/j.ijheatmasstransfer.2020.120227_bib0015) 2017; 9
Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0007) 2015; 88
Mojarrad (10.1016/j.ijheatmasstransfer.2020.120227_bib0023) 2013; 49
Minkowycz (10.1016/j.ijheatmasstransfer.2020.120227_bib0026) 2009
Kaufmann (10.1016/j.ijheatmasstransfer.2020.120227_bib0033) 2008; 227
Chikh (10.1016/j.ijheatmasstransfer.2020.120227_bib0011) 1998; 33
Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0017) 2018; 125
Ghanbarpour (10.1016/j.ijheatmasstransfer.2020.120227_bib0004) 2017; 53
Van Oss (10.1016/j.ijheatmasstransfer.2020.120227_bib0029) 1988; 88
Shafahi (10.1016/j.ijheatmasstransfer.2020.120227_bib0006) 2010; 53
Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0008) 2019; 135
McNab (10.1016/j.ijheatmasstransfer.2020.120227_bib0024) 1973; 44
Kakaç (10.1016/j.ijheatmasstransfer.2020.120227_bib0003) 2009; 52
Haghighi (10.1016/j.ijheatmasstransfer.2020.120227_bib0010) 2020; 149
Apte (10.1016/j.ijheatmasstransfer.2020.120227_bib0031) 2008; 34
Davalath (10.1016/j.ijheatmasstransfer.2020.120227_bib0032) 1987; 109
Albojamal (10.1016/j.ijheatmasstransfer.2020.120227_bib0001) 2017; 72
Kasaeian (10.1016/j.ijheatmasstransfer.2020.120227_bib0018) 2017; 107
Vafai (10.1016/j.ijheatmasstransfer.2020.120227_bib0014) 1984; 147
Li (10.1016/j.ijheatmasstransfer.2020.120227_bib0025) 1992; 16
Khanafer (10.1016/j.ijheatmasstransfer.2020.120227_bib0005) 2011; 54
Vafai (10.1016/j.ijheatmasstransfer.2020.120227_bib0013) 1989; 111
Burdick (10.1016/j.ijheatmasstransfer.2020.120227_bib0016) 2001; 3
Hunt (10.1016/j.ijheatmasstransfer.2020.120227_bib0020) 1988; 31
Kumar (10.1016/j.ijheatmasstransfer.2020.120227_bib0021) 2017; 111
Chen (10.1016/j.ijheatmasstransfer.2020.120227_bib0012) 2012; 55
10.1016/j.ijheatmasstransfer.2020.120227_bib0027
10.1016/j.ijheatmasstransfer.2020.120227_bib0028
Emani (10.1016/j.ijheatmasstransfer.2020.120227_bib0009) 2019; 149
10.1016/j.ijheatmasstransfer.2020.120227_bib0022
References_xml – volume: 9
  start-page: 157
  year: 2017
  end-page: 168
  ident: bib0015
  article-title: Modeling of hydrodynamics of fine particles deposition in packed-bed reactors
  publication-title: J. Comput. Multiph. Flows.
– volume: 125
  start-page: 959
  year: 2018
  end-page: 971
  ident: bib0017
  article-title: Exploration of nanofluid pool boiling and deposition on a horizontal cylinder in Eulerian and Lagrangian frames
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 339
  year: 1973
  end-page: 346
  ident: bib0024
  article-title: Thermophoresis in liquids
  publication-title: J. Colloid Interface Sci
– volume: 88
  start-page: 927
  year: 1988
  end-page: 941
  ident: bib0029
  article-title: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems
  publication-title: Chem. Rev.
– volume: 34
  start-page: 260
  year: 2008
  end-page: 271
  ident: bib0031
  article-title: Accounting for finite-size effects in simulations of disperse particle-laden flows
  publication-title: Int. J. Multiph. Flow.
– volume: 53
  start-page: 973
  year: 2017
  end-page: 983
  ident: bib0004
  article-title: An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
  publication-title: Heat Mass Transf
– volume: 33
  start-page: 405
  year: 1998
  end-page: 413
  ident: bib0011
  article-title: Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks
  publication-title: Heat Mass Transf
– volume: 52
  start-page: 3187
  year: 2009
  end-page: 3196
  ident: bib0003
  article-title: Review of convective heat transfer enhancement with nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 149
  year: 2020
  ident: bib0010
  article-title: Heat removal enhancement in a channel with a single or an array of metallic foam obstacles
  publication-title: Int. J. Therm. Sci.
– year: 2009
  ident: bib0026
  article-title: Handbook of Numerical Heat Transfer
– reference: ANSYS® Academic Research, Release 19.2, Help System, Chapter: 23 Modeling Discrete Phase, ANSYS, Inc., (2019).
– volume: 55
  start-page: 6734
  year: 2012
  end-page: 6756
  ident: bib0012
  article-title: Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks
  publication-title: Int. J. Heat Mass Transf.
– volume: 88
  start-page: 803
  year: 2015
  end-page: 813
  ident: bib0007
  article-title: CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches
  publication-title: Int. J. Heat Mass Transf.
– volume: 3
  start-page: 453
  year: 2001
  end-page: 465
  ident: bib0016
  article-title: Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number
  publication-title: J. Nanoparticle Res
– volume: 227
  start-page: 6448
  year: 2008
  end-page: 6472
  ident: bib0033
  article-title: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 4410
  year: 2011
  end-page: 4428
  ident: bib0005
  article-title: A critical synthesis of thermophysical characteristics of nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 49
  start-page: 1333
  year: 2013
  end-page: 1343
  ident: bib0023
  article-title: Nanofluids thermal behavior analysis using a new dispersion model along with single-phase
  publication-title: Heat Mass Transf
– volume: 54
  start-page: 1212
  year: 2016
  end-page: 1239
  ident: bib0019
  article-title: Numerical study of convective heat transfer of nanofluids: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 111
  start-page: 1674
  year: 2017
  end-page: 1681
  ident: bib0021
  article-title: Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach
  publication-title: Appl. Therm. Eng.
– volume: 107
  start-page: 778
  year: 2017
  end-page: 791
  ident: bib0018
  article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 301
  year: 1988
  end-page: 309
  ident: bib0020
  article-title: Effects of thermal dispersion on forced convection in fibrous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 109
  start-page: 321
  year: 1987
  end-page: 328
  ident: bib0032
  article-title: Forced Convection Cooling Across Rectangular Blocks
  publication-title: J. Heat Transfer
– volume: 53
  start-page: 1438
  year: 2010
  end-page: 1445
  ident: bib0006
  article-title: Thermal performance of flat-shaped heat pipes using nanofluids
  publication-title: Int. J. Heat Mass Transf.
– volume: 114
  start-page: 225
  year: 2017
  end-page: 237
  ident: bib0002
  article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
  publication-title: Int. J. Heat Mass Transf.
– volume: 16
  start-page: 209
  year: 1992
  end-page: 226
  ident: bib0025
  article-title: Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow
  publication-title: Aerosol Sci. Technol.
– reference: .
– volume: 147
  start-page: 233
  year: 1984
  ident: bib0014
  article-title: Convective flow and heat transfer in variable-porosity media
  publication-title: J. Fluid Mech
– reference: V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat transfer enhancement with nanofluids, 2015.
– reference: ANSYS® Academic Research, Release 19.2, (2019).
– volume: 72
  start-page: 869
  year: 2017
  end-page: 890
  ident: bib0001
  article-title: Analysis of nanofluid transport through a wavy channel
  publication-title: Numer. Heat Transf. Part A Appl.
– volume: 149
  start-page: 105
  year: 2019
  end-page: 118
  ident: bib0009
  article-title: Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers
  publication-title: Appl. Therm. Eng.
– volume: 111
  start-page: 1103
  year: 1989
  end-page: 1106
  ident: bib0013
  article-title: Forced Convection in a Channel Filled With a Porous Medium: an Exact Solution
  publication-title: J. Heat Transfer
– volume: 176
  start-page: 269
  year: 2019
  end-page: 278
  ident: bib0030
  article-title: CFD study of sand erosion in pipeline
  publication-title: J. Pet. Sci. Eng.
– volume: 135
  start-page: 1563
  year: 2019
  end-page: 1575
  ident: bib0008
  article-title: Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles
  publication-title: J. Therm. Anal. Calorim.
– volume: 72
  start-page: 869
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0001
  article-title: Analysis of nanofluid transport through a wavy channel
  publication-title: Numer. Heat Transf. Part A Appl.
  doi: 10.1080/10407782.2017.1412679
– volume: 114
  start-page: 225
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0002
  article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.06.030
– volume: 149
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0010
  article-title: Heat removal enhancement in a channel with a single or an array of metallic foam obstacles
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.106057
– volume: 107
  start-page: 778
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0018
  article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.074
– ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0027
– volume: 111
  start-page: 1103
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0013
  article-title: Forced Convection in a Channel Filled With a Porous Medium: an Exact Solution
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3250779
– volume: 16
  start-page: 209
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0025
  article-title: Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786829208959550
– volume: 88
  start-page: 803
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0007
  article-title: CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.04.112
– volume: 34
  start-page: 260
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0031
  article-title: Accounting for finite-size effects in simulations of disperse particle-laden flows
  publication-title: Int. J. Multiph. Flow.
  doi: 10.1016/j.ijmultiphaseflow.2007.10.005
– volume: 31
  start-page: 301
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0020
  article-title: Effects of thermal dispersion on forced convection in fibrous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(88)90013-0
– volume: 147
  start-page: 233
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0014
  article-title: Convective flow and heat transfer in variable-porosity media
  publication-title: J. Fluid Mech
  doi: 10.1017/S002211208400207X
– volume: 54
  start-page: 4410
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0005
  article-title: A critical synthesis of thermophysical characteristics of nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.04.048
– ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0022
  doi: 10.1201/b18324
– volume: 135
  start-page: 1563
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0008
  article-title: Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7720-y
– volume: 33
  start-page: 405
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0011
  article-title: Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks
  publication-title: Heat Mass Transf
  doi: 10.1007/s002310050208
– volume: 109
  start-page: 321
  year: 1987
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0032
  article-title: Forced Convection Cooling Across Rectangular Blocks
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3248083
– volume: 176
  start-page: 269
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0030
  article-title: CFD study of sand erosion in pipeline
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.01.001
– year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0026
– volume: 54
  start-page: 1212
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0019
  article-title: Numerical study of convective heat transfer of nanofluids: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.042
– volume: 3
  start-page: 453
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0016
  article-title: Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number
  publication-title: J. Nanoparticle Res
  doi: 10.1023/A:1012593318108
– volume: 49
  start-page: 1333
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0023
  article-title: Nanofluids thermal behavior analysis using a new dispersion model along with single-phase
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-013-1182-3
– volume: 52
  start-page: 3187
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0003
  article-title: Review of convective heat transfer enhancement with nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.02.006
– ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0028
– volume: 125
  start-page: 959
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0017
  article-title: Exploration of nanofluid pool boiling and deposition on a horizontal cylinder in Eulerian and Lagrangian frames
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.153
– volume: 44
  start-page: 339
  year: 1973
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0024
  article-title: Thermophoresis in liquids
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/0021-9797(73)90225-7
– volume: 53
  start-page: 973
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0004
  article-title: An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-016-1871-9
– volume: 53
  start-page: 1438
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0006
  article-title: Thermal performance of flat-shaped heat pipes using nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.12.007
– volume: 111
  start-page: 1674
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0021
  article-title: Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.08.038
– volume: 88
  start-page: 927
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0029
  article-title: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a006
– volume: 9
  start-page: 157
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0015
  article-title: Modeling of hydrodynamics of fine particles deposition in packed-bed reactors
  publication-title: J. Comput. Multiph. Flows.
  doi: 10.1177/1757482X17716045
– volume: 227
  start-page: 6448
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0033
  article-title: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.03.004
– volume: 55
  start-page: 6734
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0012
  article-title: Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.06.082
– volume: 149
  start-page: 105
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0009
  article-title: Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.12.008
SSID ssj0017046
Score 2.5133471
Snippet •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average...
A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120227
SubjectTerms Boundary conditions
Brownian motion
Computational fluid dynamics
Deposition
Discrete-particle model
Entrapment
Fluid flow
Forced convection
Heat flux
Heat transfer
Nanofluids
Nanoparticles
Particle deposition
Permeability
Porous media
Pressure drop
Reynolds number
Thermophoresis
User-defined functions
Title Analysis of particle deposition of nanofluid flow through porous media
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120227
https://www.proquest.com/docview/2460106308
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9DUbyInzidIwcPXur6kabNScZwTIc7iMPdQpqk0DHb4Ta8-beb16YTFQ8DT21Dm7YvL-_9Qt7vPYSuaOoLolXohIwqx3h85iTETHfpCxYnkgSxAqLw44gOxuRhEk4aqFdzYSCs0tr-yqaX1tq2dKw0O_MsA44vKJcHW2mBQRUTYLCTCKoY3Hyswzy8yK3IOmCN4e5ddP0V45VNweK9Gpi6LGGihgyhPqRcgMx6f7mqH0a79ET9A7RvISTuVl95iBo6P0I7ZSinXByjfp1nBBcpntt_wUrX4VnQnIu8SGerTOF0VrxjW6wHGyxerBa4ZJOcoHH_7rk3cGy1BEcGkbt0fCoMXPAFNaAgFky6UvkJUdKPqStJGlFzpmH3lqYslEQFIUs0A4pdIhKahsEp2sqLXJ8hTGJPSlhIBTIliY4YlcaeKg8Wd4oJ2US3tWC4tKnEoaLFjNcxY1P-W7QcRMsr0TYRW_cwr9JqbPBsrx4L_k1VuPECG_TSqoeR22m74D4pt50DNz7_l5dcoD24qriLLbS1fFvpSwNilkm71NI22u7eDwcjOA6fXoafj2L3GQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VIh4L4inK0wMDSyB1HCeeEKqoynNqpW5WYjtSq5JUtBUbvx1f4oAAMSCxRU7iOGf7u8_yfWeAM57RhBkdeqHg2rMeX3gps9Nd0UTEqWJBrFEo_PjEewN2NwyHDejUWhgMq3TYX2F6idau5NJZ83I6GqHGFwdXG7fSAssqhkuwzEIa4Qrs4u0jzqMd-ZVaB-EYH1-F888gr9EYIe_Z8tR5yRMNpgilmHMBU-v95qu-oXbpirqbsOE4JLmumrkFDZNvw0oZy6lmO9CtE42QIiNT9zNEmzo-C4vzJC-yyWKkSTYpXok7rYdYMl4sZqSUk-zCoHvT7_Q8d1yCp4LIn3uUJ5Yv0IRbVhAnQvlK05RpRWPuK5ZF3F4Z3L7lmQgV00EoUiNQY5cmKc_CYA-aeZGbfSAsbiuFK6lAZSw1keDKAqpu4-pOi0S14Ko2jFQulzgeaTGRddDYWP40rUTTysq0LRAfNUyrvBp_eLdT94X8MlakdQN_qOWo7kbp5u1MUlbuOwd-fPAvHzmFtV7_8UE-3D7dH8I63qmEjEfQnL8szLFlNPP0pByx74j_9ws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+particle+deposition+of+nanofluid+flow+through+porous+media&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Albojamal%2C+Ahmed&rft.au=Vafai%2C+Kambiz&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=161&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.120227&rft.externalDocID=S001793102033163X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon