Analysis of particle deposition of nanofluid flow through porous media
•Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The b...
Saved in:
| Published in | International journal of heat and mass transfer Vol. 161; p. 120227 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.11.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0017-9310 1879-2189 |
| DOI | 10.1016/j.ijheatmasstransfer.2020.120227 |
Cover
| Abstract | •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The brownian force was the most dominant effect on the particle deposition.
A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium. |
|---|---|
| AbstractList | •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average deposition rate for the clear case was found to be minimal.•Increasing the porous matrix permeability reduces the particle deposition.•The brownian force was the most dominant effect on the particle deposition.
A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium. A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is presented. The discrete particle model (DPM) is utilized for the simulations. The Brinkman-Forchheimer extended Darcy model is used for the flow inside a saturated porous matrix. The effect of porous permeability (Da = 10−8–10−4), Reynolds number (Re = 500–2000), volume concentration (0%, 0.3% and 3%) and different particle forces on the deposition rate have been documented. The particle adhesion/detachment is solved with respect to the force balance considering drag, Saffman lift, Brownian, thermophoresis, gravity and Van Der Waals. Our results reveal that the mass deposition rate can be omitted when there is no porous media inside the channel. In addition, no heat transfer enhancement is noticed for low particle loading <1% of nanofluid compared to water for Da ≤ 10−5. It is found that, the porous permeability has a substantial role on nanoparticle mobility and a critical Reynolds number (500 ≤ Re ≤ 1000) exists where the entrapment rate is maximized. On the other hand, the particle velocities and mass deposition rates are high for volume concentration of 3% while accompanied by an increased rate of heat transfer and pressure drop, particularly for Da ≥ 10−5 when compared to 0.3% volume fraction. It was observed that increasing porous permeability to Da ≥ 10−4 decreases the deposition rate. The impact of different pertinent forces on the deposition was also considered, and our results establish that Brownian motion had the most dominant effect on the deposition rate in the presence of a porous medium. |
| ArticleNumber | 120227 |
| Author | Albojamal, Ahmed Vafai, Kambiz |
| Author_xml | – sequence: 1 givenname: Ahmed orcidid: 0000-0002-2322-8388 surname: Albojamal fullname: Albojamal, Ahmed – sequence: 2 givenname: Kambiz surname: Vafai fullname: Vafai, Kambiz email: vafai@engr.ucr.edu |
| BookMark | eNqVkE1PwyAYgImZidv0PzTx4qUTKKPl5rI4P7LEi54JpeBoOqhANf57aepJL3p5v_Mk77MAM-usAuAKwRWCiF63K9MelIhHEUL0wgat_ApDnNYp4vIEzFFVshyjis3AHEJU5qxA8AwsQmjHFhI6B7uNFd1nMCFzOuuFj0Z2KmtU74KJxtlxbIV1uhtMk-nOfWTx4N3wesh6l3LIjqox4hycatEFdfGdl-Bld_u8vc_3T3cP280-l0UJY46pgCXCgsKSVIJJKBtck0biikJJdElTpQihlGq2lqQp1qxWDDFW1aKmel0sweXE7b17G1SIvHWDTy8EjgmFCNICVulqN11J70LwSnNpohjfSaZMxxHko0Pe8t8O-eiQTw4T6OYHqPfmKPznfxCPE0IlLe8mbYM0yspkzSsZeePM32FfjBmfWQ |
| CitedBy_id | crossref_primary_10_1002_zamm_202300306 crossref_primary_10_1016_j_applthermaleng_2022_118117 crossref_primary_10_1007_s10973_023_12130_3 crossref_primary_10_1080_15567036_2022_2095460 crossref_primary_10_1002_mma_10479 crossref_primary_10_1016_j_tsep_2021_100860 crossref_primary_10_1038_s41598_021_90671_z crossref_primary_10_1115_1_4051031 crossref_primary_10_1016_j_icheatmasstransfer_2022_106420 crossref_primary_10_1016_j_powtec_2022_117110 crossref_primary_10_1166_jon_2023_2093 crossref_primary_10_1007_s40571_024_00836_6 crossref_primary_10_1016_j_aej_2021_06_104 crossref_primary_10_1142_S0217979221501782 crossref_primary_10_1016_j_cplett_2022_139666 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121010 crossref_primary_10_1016_j_matcom_2022_06_001 crossref_primary_10_1007_s10661_023_11314_6 crossref_primary_10_1016_j_enceco_2024_12_008 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121474 crossref_primary_10_1016_j_egyr_2021_10_083 crossref_primary_10_1063_5_0060860 crossref_primary_10_1002_zamm_202200152 crossref_primary_10_1016_j_powtec_2024_120572 crossref_primary_10_3390_su14137757 crossref_primary_10_1108_HFF_10_2020_0671 crossref_primary_10_1029_2023WR035456 crossref_primary_10_1016_j_powtec_2021_07_068 crossref_primary_10_1016_j_ijthermalsci_2023_108318 crossref_primary_10_1063_5_0197047 crossref_primary_10_1109_ACCESS_2024_3496786 crossref_primary_10_1007_s40997_023_00679_1 crossref_primary_10_1016_j_ijthermalsci_2022_108058 crossref_primary_10_1016_j_cej_2021_132321 crossref_primary_10_1080_02286203_2024_2338580 crossref_primary_10_1016_j_molliq_2022_118948 crossref_primary_10_1016_j_est_2023_107233 crossref_primary_10_1080_10407782_2022_2147609 crossref_primary_10_1016_j_ijmecsci_2021_106465 crossref_primary_10_1016_j_icheatmasstransfer_2021_105341 |
| Cites_doi | 10.1080/10407782.2017.1412679 10.1016/j.ijheatmasstransfer.2017.06.030 10.1016/j.ijthermalsci.2019.106057 10.1016/j.ijheatmasstransfer.2016.11.074 10.1115/1.3250779 10.1080/02786829208959550 10.1016/j.ijheatmasstransfer.2015.04.112 10.1016/j.ijmultiphaseflow.2007.10.005 10.1016/0017-9310(88)90013-0 10.1017/S002211208400207X 10.1016/j.ijheatmasstransfer.2011.04.048 10.1201/b18324 10.1007/s10973-018-7720-y 10.1007/s002310050208 10.1115/1.3248083 10.1016/j.petrol.2019.01.001 10.1016/j.rser.2015.10.042 10.1023/A:1012593318108 10.1007/s00231-013-1182-3 10.1016/j.ijheatmasstransfer.2009.02.006 10.1016/j.ijheatmasstransfer.2018.04.153 10.1016/0021-9797(73)90225-7 10.1007/s00231-016-1871-9 10.1016/j.ijheatmasstransfer.2009.12.007 10.1016/j.applthermaleng.2016.08.038 10.1021/cr00088a006 10.1177/1757482X17716045 10.1016/j.jcp.2008.03.004 10.1016/j.ijheatmasstransfer.2012.06.082 10.1016/j.applthermaleng.2018.12.008 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Nov 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Nov 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2020.120227 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_120227 S001793102033163X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABDMP ABDPE ABFNM ABJNI ABMAC ABNUV ABTAH ABWVN ABXDB ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ACRPL ADBBV ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSH SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c370t-26a0712a60748a9c0cd2b4dc2860c4f76c28e44666f95c4d359be91998bab6f53 |
| IEDL.DBID | .~1 |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 08:02:35 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Oct 01 05:17:52 EDT 2025 Sun Apr 06 06:52:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Porous media Nanoparticles Forced convection Nanofluids Discrete-particle model Deposition User-defined functions |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c370t-26a0712a60748a9c0cd2b4dc2860c4f76c28e44666f95c4d359be91998bab6f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2322-8388 |
| PQID | 2460106308 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2460106308 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_120227 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120227 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_120227 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mahdavi, Sharifpur, Meyer (bib0017) 2018; 125 Wee, Yap (bib0030) 2019; 176 ANSYS® Academic Research, Release 19.2, (2019). Ghanbarpour, Khodabandeh, Vafai (bib0004) 2017; 53 Mahdavi, Garbadeen, Sharifpur, Ahmadi, Meyer (bib0008) 2019; 135 Vafai (bib0014) 1984; 147 Burdick, Berman, Beaudoin (bib0016) 2001; 3 Emani, Ramasamy, Shaari (bib0009) 2019; 149 Chen, Huang (bib0012) 2012; 55 Albojamal, Hamzah, Haghighi, Vafai (bib0001) 2017; 72 Davalath, Bayazitoglu (bib0032) 1987; 109 Chikh, Boumedien, Bouhadef, Lauriat (bib0011) 1998; 33 Mojarrad, Keshavarz, Shokouhi (bib0023) 2013; 49 Kakaç, Pramuanjaroenkij (bib0003) 2009; 52 Vanaki, Ganesan, Mohammed (bib0019) 2016; 54 Van Oss, Chaudhury, Good (bib0029) 1988; 88 Vafai, Kim (bib0013) 1989; 111 Albojamal, Vafai (bib0002) 2017; 114 Hunt, Tien (bib0020) 1988; 31 Mahdavi, Sharifpur, Meyer (bib0007) 2015; 88 ANSYS® Academic Research, Release 19.2, Help System, Chapter: 23 Modeling Discrete Phase, ANSYS, Inc., (2019). Li, Ahmadi (bib0025) 1992; 16 Minkowycz, Sparrow, Murthy, Abraham (bib0026) 2009 Apte, Mahesh, Lundgren (bib0031) 2008; 34 . Kasaeian, Daneshazarian, Mahian, Kolsi, Chamkha, Wongwises, Pop (bib0018) 2017; 107 Shafahi, Bianco, Vafai, Manca (bib0006) 2010; 53 Khanafer, Vafai (bib0005) 2011; 54 Kumar, Puranik (bib0021) 2017; 111 McNab, Meisen (bib0024) 1973; 44 Kaufmann, Moreau, Simonin, Helie (bib0033) 2008; 227 Haghighi, Albojamal, Vafai (bib0010) 2020; 149 Rabbani, Sassi, Shamim (bib0015) 2017; 9 V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat transfer enhancement with nanofluids, 2015. Albojamal (10.1016/j.ijheatmasstransfer.2020.120227_bib0002) 2017; 114 Vanaki (10.1016/j.ijheatmasstransfer.2020.120227_bib0019) 2016; 54 Wee (10.1016/j.ijheatmasstransfer.2020.120227_bib0030) 2019; 176 Rabbani (10.1016/j.ijheatmasstransfer.2020.120227_bib0015) 2017; 9 Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0007) 2015; 88 Mojarrad (10.1016/j.ijheatmasstransfer.2020.120227_bib0023) 2013; 49 Minkowycz (10.1016/j.ijheatmasstransfer.2020.120227_bib0026) 2009 Kaufmann (10.1016/j.ijheatmasstransfer.2020.120227_bib0033) 2008; 227 Chikh (10.1016/j.ijheatmasstransfer.2020.120227_bib0011) 1998; 33 Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0017) 2018; 125 Ghanbarpour (10.1016/j.ijheatmasstransfer.2020.120227_bib0004) 2017; 53 Van Oss (10.1016/j.ijheatmasstransfer.2020.120227_bib0029) 1988; 88 Shafahi (10.1016/j.ijheatmasstransfer.2020.120227_bib0006) 2010; 53 Mahdavi (10.1016/j.ijheatmasstransfer.2020.120227_bib0008) 2019; 135 McNab (10.1016/j.ijheatmasstransfer.2020.120227_bib0024) 1973; 44 Kakaç (10.1016/j.ijheatmasstransfer.2020.120227_bib0003) 2009; 52 Haghighi (10.1016/j.ijheatmasstransfer.2020.120227_bib0010) 2020; 149 Apte (10.1016/j.ijheatmasstransfer.2020.120227_bib0031) 2008; 34 Davalath (10.1016/j.ijheatmasstransfer.2020.120227_bib0032) 1987; 109 Albojamal (10.1016/j.ijheatmasstransfer.2020.120227_bib0001) 2017; 72 Kasaeian (10.1016/j.ijheatmasstransfer.2020.120227_bib0018) 2017; 107 Vafai (10.1016/j.ijheatmasstransfer.2020.120227_bib0014) 1984; 147 Li (10.1016/j.ijheatmasstransfer.2020.120227_bib0025) 1992; 16 Khanafer (10.1016/j.ijheatmasstransfer.2020.120227_bib0005) 2011; 54 Vafai (10.1016/j.ijheatmasstransfer.2020.120227_bib0013) 1989; 111 Burdick (10.1016/j.ijheatmasstransfer.2020.120227_bib0016) 2001; 3 Hunt (10.1016/j.ijheatmasstransfer.2020.120227_bib0020) 1988; 31 Kumar (10.1016/j.ijheatmasstransfer.2020.120227_bib0021) 2017; 111 Chen (10.1016/j.ijheatmasstransfer.2020.120227_bib0012) 2012; 55 10.1016/j.ijheatmasstransfer.2020.120227_bib0027 10.1016/j.ijheatmasstransfer.2020.120227_bib0028 Emani (10.1016/j.ijheatmasstransfer.2020.120227_bib0009) 2019; 149 10.1016/j.ijheatmasstransfer.2020.120227_bib0022 |
| References_xml | – volume: 9 start-page: 157 year: 2017 end-page: 168 ident: bib0015 article-title: Modeling of hydrodynamics of fine particles deposition in packed-bed reactors publication-title: J. Comput. Multiph. Flows. – volume: 125 start-page: 959 year: 2018 end-page: 971 ident: bib0017 article-title: Exploration of nanofluid pool boiling and deposition on a horizontal cylinder in Eulerian and Lagrangian frames publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 339 year: 1973 end-page: 346 ident: bib0024 article-title: Thermophoresis in liquids publication-title: J. Colloid Interface Sci – volume: 88 start-page: 927 year: 1988 end-page: 941 ident: bib0029 article-title: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems publication-title: Chem. Rev. – volume: 34 start-page: 260 year: 2008 end-page: 271 ident: bib0031 article-title: Accounting for finite-size effects in simulations of disperse particle-laden flows publication-title: Int. J. Multiph. Flow. – volume: 53 start-page: 973 year: 2017 end-page: 983 ident: bib0004 article-title: An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid publication-title: Heat Mass Transf – volume: 33 start-page: 405 year: 1998 end-page: 413 ident: bib0011 article-title: Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks publication-title: Heat Mass Transf – volume: 52 start-page: 3187 year: 2009 end-page: 3196 ident: bib0003 article-title: Review of convective heat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 149 year: 2020 ident: bib0010 article-title: Heat removal enhancement in a channel with a single or an array of metallic foam obstacles publication-title: Int. J. Therm. Sci. – year: 2009 ident: bib0026 article-title: Handbook of Numerical Heat Transfer – reference: ANSYS® Academic Research, Release 19.2, Help System, Chapter: 23 Modeling Discrete Phase, ANSYS, Inc., (2019). – volume: 55 start-page: 6734 year: 2012 end-page: 6756 ident: bib0012 article-title: Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks publication-title: Int. J. Heat Mass Transf. – volume: 88 start-page: 803 year: 2015 end-page: 813 ident: bib0007 article-title: CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches publication-title: Int. J. Heat Mass Transf. – volume: 3 start-page: 453 year: 2001 end-page: 465 ident: bib0016 article-title: Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number publication-title: J. Nanoparticle Res – volume: 227 start-page: 6448 year: 2008 end-page: 6472 ident: bib0033 article-title: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence publication-title: J. Comput. Phys. – volume: 54 start-page: 4410 year: 2011 end-page: 4428 ident: bib0005 article-title: A critical synthesis of thermophysical characteristics of nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 49 start-page: 1333 year: 2013 end-page: 1343 ident: bib0023 article-title: Nanofluids thermal behavior analysis using a new dispersion model along with single-phase publication-title: Heat Mass Transf – volume: 54 start-page: 1212 year: 2016 end-page: 1239 ident: bib0019 article-title: Numerical study of convective heat transfer of nanofluids: a review publication-title: Renew. Sustain. Energy Rev. – volume: 111 start-page: 1674 year: 2017 end-page: 1681 ident: bib0021 article-title: Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach publication-title: Appl. Therm. Eng. – volume: 107 start-page: 778 year: 2017 end-page: 791 ident: bib0018 article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 301 year: 1988 end-page: 309 ident: bib0020 article-title: Effects of thermal dispersion on forced convection in fibrous media publication-title: Int. J. Heat Mass Transf. – volume: 109 start-page: 321 year: 1987 end-page: 328 ident: bib0032 article-title: Forced Convection Cooling Across Rectangular Blocks publication-title: J. Heat Transfer – volume: 53 start-page: 1438 year: 2010 end-page: 1445 ident: bib0006 article-title: Thermal performance of flat-shaped heat pipes using nanofluids publication-title: Int. J. Heat Mass Transf. – volume: 114 start-page: 225 year: 2017 end-page: 237 ident: bib0002 article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport publication-title: Int. J. Heat Mass Transf. – volume: 16 start-page: 209 year: 1992 end-page: 226 ident: bib0025 article-title: Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow publication-title: Aerosol Sci. Technol. – reference: . – volume: 147 start-page: 233 year: 1984 ident: bib0014 article-title: Convective flow and heat transfer in variable-porosity media publication-title: J. Fluid Mech – reference: V. Bianco, O. Manca, S. Nardini, K. Vafai, Heat transfer enhancement with nanofluids, 2015. – reference: ANSYS® Academic Research, Release 19.2, (2019). – volume: 72 start-page: 869 year: 2017 end-page: 890 ident: bib0001 article-title: Analysis of nanofluid transport through a wavy channel publication-title: Numer. Heat Transf. Part A Appl. – volume: 149 start-page: 105 year: 2019 end-page: 118 ident: bib0009 article-title: Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers publication-title: Appl. Therm. Eng. – volume: 111 start-page: 1103 year: 1989 end-page: 1106 ident: bib0013 article-title: Forced Convection in a Channel Filled With a Porous Medium: an Exact Solution publication-title: J. Heat Transfer – volume: 176 start-page: 269 year: 2019 end-page: 278 ident: bib0030 article-title: CFD study of sand erosion in pipeline publication-title: J. Pet. Sci. Eng. – volume: 135 start-page: 1563 year: 2019 end-page: 1575 ident: bib0008 article-title: Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles publication-title: J. Therm. Anal. Calorim. – volume: 72 start-page: 869 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0001 article-title: Analysis of nanofluid transport through a wavy channel publication-title: Numer. Heat Transf. Part A Appl. doi: 10.1080/10407782.2017.1412679 – volume: 114 start-page: 225 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0002 article-title: Analysis of single phase, discrete and mixture models, in predicting nanofluid transport publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.06.030 – volume: 149 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0010 article-title: Heat removal enhancement in a channel with a single or an array of metallic foam obstacles publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.106057 – volume: 107 start-page: 778 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0018 article-title: Nanofluid flow and heat transfer in porous media: a review of the latest developments publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.074 – ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0027 – volume: 111 start-page: 1103 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0013 article-title: Forced Convection in a Channel Filled With a Porous Medium: an Exact Solution publication-title: J. Heat Transfer doi: 10.1115/1.3250779 – volume: 16 start-page: 209 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0025 article-title: Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow publication-title: Aerosol Sci. Technol. doi: 10.1080/02786829208959550 – volume: 88 start-page: 803 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0007 article-title: CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.04.112 – volume: 34 start-page: 260 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0031 article-title: Accounting for finite-size effects in simulations of disperse particle-laden flows publication-title: Int. J. Multiph. Flow. doi: 10.1016/j.ijmultiphaseflow.2007.10.005 – volume: 31 start-page: 301 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0020 article-title: Effects of thermal dispersion on forced convection in fibrous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(88)90013-0 – volume: 147 start-page: 233 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0014 article-title: Convective flow and heat transfer in variable-porosity media publication-title: J. Fluid Mech doi: 10.1017/S002211208400207X – volume: 54 start-page: 4410 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0005 article-title: A critical synthesis of thermophysical characteristics of nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.04.048 – ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0022 doi: 10.1201/b18324 – volume: 135 start-page: 1563 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0008 article-title: Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7720-y – volume: 33 start-page: 405 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0011 article-title: Analysis of fluid flow and heat transfer in a channel with intermittent heated porous blocks publication-title: Heat Mass Transf doi: 10.1007/s002310050208 – volume: 109 start-page: 321 year: 1987 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0032 article-title: Forced Convection Cooling Across Rectangular Blocks publication-title: J. Heat Transfer doi: 10.1115/1.3248083 – volume: 176 start-page: 269 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0030 article-title: CFD study of sand erosion in pipeline publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2019.01.001 – year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0026 – volume: 54 start-page: 1212 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0019 article-title: Numerical study of convective heat transfer of nanofluids: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.10.042 – volume: 3 start-page: 453 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0016 article-title: Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number publication-title: J. Nanoparticle Res doi: 10.1023/A:1012593318108 – volume: 49 start-page: 1333 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0023 article-title: Nanofluids thermal behavior analysis using a new dispersion model along with single-phase publication-title: Heat Mass Transf doi: 10.1007/s00231-013-1182-3 – volume: 52 start-page: 3187 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0003 article-title: Review of convective heat transfer enhancement with nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.02.006 – ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0028 – volume: 125 start-page: 959 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0017 article-title: Exploration of nanofluid pool boiling and deposition on a horizontal cylinder in Eulerian and Lagrangian frames publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.153 – volume: 44 start-page: 339 year: 1973 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0024 article-title: Thermophoresis in liquids publication-title: J. Colloid Interface Sci doi: 10.1016/0021-9797(73)90225-7 – volume: 53 start-page: 973 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0004 article-title: An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid publication-title: Heat Mass Transf doi: 10.1007/s00231-016-1871-9 – volume: 53 start-page: 1438 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0006 article-title: Thermal performance of flat-shaped heat pipes using nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.12.007 – volume: 111 start-page: 1674 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0021 article-title: Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.038 – volume: 88 start-page: 927 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0029 article-title: Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems publication-title: Chem. Rev. doi: 10.1021/cr00088a006 – volume: 9 start-page: 157 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0015 article-title: Modeling of hydrodynamics of fine particles deposition in packed-bed reactors publication-title: J. Comput. Multiph. Flows. doi: 10.1177/1757482X17716045 – volume: 227 start-page: 6448 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0033 article-title: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.03.004 – volume: 55 start-page: 6734 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0012 article-title: Numerical study of heat transfer enhancement for a novel flat-plate solar water collector using metal-foam blocks publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.06.082 – volume: 149 start-page: 105 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.120227_bib0009 article-title: Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.008 |
| SSID | ssj0017046 |
| Score | 2.5133471 |
| Snippet | •Two types of nanoparticle mass deposition were studied, clear case and porous media.•The 3D frame was employed to track large number of particles.•The average... A numerical investigation of nanoparticle deposition for flow through a partially filled channel subject to a constant heat flux boundary condition is... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120227 |
| SubjectTerms | Boundary conditions Brownian motion Computational fluid dynamics Deposition Discrete-particle model Entrapment Fluid flow Forced convection Heat flux Heat transfer Nanofluids Nanoparticles Particle deposition Permeability Porous media Pressure drop Reynolds number Thermophoresis User-defined functions |
| Title | Analysis of particle deposition of nanofluid flow through porous media |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120227 https://www.proquest.com/docview/2460106308 |
| Volume | 161 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9DUbyInzidIwcPXur6kabNScZwTIc7iMPdQpqk0DHb4Ta8-beb16YTFQ8DT21Dm7YvL-_9Qt7vPYSuaOoLolXohIwqx3h85iTETHfpCxYnkgSxAqLw44gOxuRhEk4aqFdzYSCs0tr-yqaX1tq2dKw0O_MsA44vKJcHW2mBQRUTYLCTCKoY3Hyswzy8yK3IOmCN4e5ddP0V45VNweK9Gpi6LGGihgyhPqRcgMx6f7mqH0a79ET9A7RvISTuVl95iBo6P0I7ZSinXByjfp1nBBcpntt_wUrX4VnQnIu8SGerTOF0VrxjW6wHGyxerBa4ZJOcoHH_7rk3cGy1BEcGkbt0fCoMXPAFNaAgFky6UvkJUdKPqStJGlFzpmH3lqYslEQFIUs0A4pdIhKahsEp2sqLXJ8hTGJPSlhIBTIliY4YlcaeKg8Wd4oJ2US3tWC4tKnEoaLFjNcxY1P-W7QcRMsr0TYRW_cwr9JqbPBsrx4L_k1VuPECG_TSqoeR22m74D4pt50DNz7_l5dcoD24qriLLbS1fFvpSwNilkm71NI22u7eDwcjOA6fXoafj2L3GQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6VIh4L4inK0wMDSyB1HCeeEKqoynNqpW5WYjtSq5JUtBUbvx1f4oAAMSCxRU7iOGf7u8_yfWeAM57RhBkdeqHg2rMeX3gps9Nd0UTEqWJBrFEo_PjEewN2NwyHDejUWhgMq3TYX2F6idau5NJZ83I6GqHGFwdXG7fSAssqhkuwzEIa4Qrs4u0jzqMd-ZVaB-EYH1-F888gr9EYIe_Z8tR5yRMNpgilmHMBU-v95qu-oXbpirqbsOE4JLmumrkFDZNvw0oZy6lmO9CtE42QIiNT9zNEmzo-C4vzJC-yyWKkSTYpXok7rYdYMl4sZqSUk-zCoHvT7_Q8d1yCp4LIn3uUJ5Yv0IRbVhAnQvlK05RpRWPuK5ZF3F4Z3L7lmQgV00EoUiNQY5cmKc_CYA-aeZGbfSAsbiuFK6lAZSw1keDKAqpu4-pOi0S14Ko2jFQulzgeaTGRddDYWP40rUTTysq0LRAfNUyrvBp_eLdT94X8MlakdQN_qOWo7kbp5u1MUlbuOwd-fPAvHzmFtV7_8UE-3D7dH8I63qmEjEfQnL8szLFlNPP0pByx74j_9ws |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+particle+deposition+of+nanofluid+flow+through+porous+media&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Albojamal%2C+Ahmed&rft.au=Vafai%2C+Kambiz&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=161&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.120227&rft.externalDocID=S001793102033163X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |