Reconstruction of vertical thermal structure from several subsurface temperatures in the China Seas and adjacent waters
Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed bas...
Saved in:
Published in | Chinese journal of oceanology and limnology Vol. 27; no. 2; pp. 218 - 228 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science Press
01.05.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4059 2096-5508 1993-5005 2523-3521 |
DOI | 10.1007/s00343-009-9201-4 |
Cover
Abstract | Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level 〉95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69℃, 0.52℃ and 1.18℃ respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17~C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007℃/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all 〈20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. |
---|---|
AbstractList | Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level >95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69°C, 0.52°C and 1.18°C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17°C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007°C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all <20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level >95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69°C, 0.52°C and 1.18°C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17°C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007°C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all <20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level >95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69°C, 0.52°C and 1.18°C respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17°C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007°C/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all <20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. [PUBLICATION ABSTRACT] Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here referring to Chinese marine territories) and adjacent waters from 1930 to 2002 (510 143 profiles). A good temperature profile is reconstructed based on several subsurface in situ temperature observations and the thermocline was estimated using the model. The results show that: 1) For the study area, the former four principal components can explain 95% of the overall variance, and the vertical distribution of temperature is most stable using the in situ temperature observations near the surface. 2) The model verifications based on the observed CTD data from the East China Sea (ECS), South China Sea (SCS) and the areas around Taiwan Island show that the reconstructed profiles have high correlation with the observed ones with the confidence level 〉95%, especially to describe the characteristics of the thermocline well. The average errors between the reconstructed and observed profiles in these three areas are 0.69℃, 0.52℃ and 1.18℃ respectively. It also shows the model RMS error is less than or close to the climatological error. The statistical model can be used to well estimate the temperature profile vertical structure. 3) Comparing the thermocline characteristics between the reconstructed and observed profiles, the results in the ECS show that the average absolute errors are 1.5m, 1.4 m and 0.17~C/m, and the average relative errors are 24.7%, 8.9% and 22.6% for the upper, lower thermocline boundaries and the gradient, respectively. Although the relative errors are obvious, the absolute error is small. In the SCS, the average absolute errors are 4.1 m, 27.7 m and 0.007℃/m, and the average relative errors are 16.1%, 16.8% and 9.5% for the upper, lower thermocline boundaries and the gradient, respectively. The average relative errors are all 〈20%. Although the average absolute error of the lower thermocline boundary is considerable, but contrast to the spatial scale of average depth of the lower thermocline boundary (165 m), the average relative error is small (16.8%). Therefore the model can be used to well estimate the thermocline. |
Author | 郝佳佳 陈永利 冯俊乔 王凡 |
AuthorAffiliation | Key Lab. of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 China Graduate School of Chinese Academy of Sciences, Beijing 100039, China Yantai Institute of Costal Zone Research for Sustainable Development, CAS, Yantai 264003, China |
Author_xml | – sequence: 1 fullname: 郝佳佳 陈永利 冯俊乔 王凡 |
BookMark | eNp9kU1r3DAQhkVJoZu0P6A30Zzdjr6s1bEs-SgEAml7FrI8znq7K20kOaH_vjIOFALJaWD0PJqR3lNyEmJAQj4z-MoA9LcMIKRoAExjOLBGviMrZoxoFIA6ISvgSjYSlPlATnPeVdpIMCvydIc-hlzS5MsYA40DfcRURu_2tGwxHWpdTqeEdEjxQDNWYm5PXZ7S4DzSgodj7c1MpmOYTbrZjsHRn-gydaGnrt9VMhT65Aqm_JG8H9w-46fnekZ-X1782lw3N7dXPzbfbxovNJSGi14owbkboJctGilB9p3GXniQLQctEbUxDPuOdbg2SjgD3FfJtT1vpTgj58u9xxQfJszF7uKUQh1puWFrkNooXakvr1KgQLLWrCvEFsinmHPCwR7TeHDpr2Vg5xDsEoKtIdg5BDuP1y8cPxY3_3RJbty_afLFzHVKuMf0f6W3pOd3-G0M9w_Vs53zf4Zxj1YwUHptuPgHBPepig |
CitedBy_id | crossref_primary_10_1007_s12237_016_0203_0 |
Cites_doi | 10.1175/1520-0485(0)027<2146:IEITAC>2.0.CO;2 10.1007/BF02842563 10.1175/1520-0426(2000)017<0971:DOVTSF>2.0.CO;2 10.1175/1520-0426(2003)020<0912:UOSDTE>2.0.CO;2 10.1029/JC093iC02p01227 10.1029/JC095iC07p11375 10.1080/15210608409379497 10.1175/1520-0426(1994)011<0551:IOSTSF>2.0.CO;2 10.1175/1520-0485(1982)012<0839:DATWAO>2.0.CO;2 10.1029/JC095iC10p17979 10.1029/97JC00444 10.1029/97JC00628 10.1080/00288330.2001.9516999 |
ContentType | Journal Article |
Copyright | Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2009 Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2009. |
Copyright_xml | – notice: Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2009 – notice: Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2009. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7QH 7QL 7SN 7TN 7U7 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G M2P M7N PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s00343-009-9201-4 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Ecology Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Physics |
DocumentTitleAlternate | Reconstruction of vertical thermal structure from several subsurface temperatures in the China Seas and adjacent waters |
EISSN | 1993-5005 2523-3521 |
EndPage | 228 |
ExternalDocumentID | 1883536371 10_1007_s00343_009_9201_4 31057892 |
GeographicLocations | China South China Sea |
GeographicLocations_xml | – name: China – name: South China Sea |
GroupedDBID | -5A -5G -5~ -BR -Y2 -~C .86 .VR 06D 0R~ 0VY 188 199 1N0 2.D 29B 2B. 2C. 2J2 2KG 2KM 2LR 2RA 2VQ 2WC 2~H 30V 3V. 4.4 408 40D 40E 5GY 5VS 67M 6NX 78A 88I 8CJ 8FE 8FH 8RM 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AAJKR AAPBV AARHV AARTL AATVU AAWCG AAYIU AAYQN AAYTO ABFTV ABJOX ABKCH ABMNI ABNWP ABQBU ABTHY ABTMW ABUWG ACGFS ACGOD ACHXU ACKNC ACOKC ACOMO ACPRK ACSNA ADHHG ADHIR ADINQ ADKPE ADURQ ADYFF ADZKW AEBTG AEGAL AEGNC AEJHL AEKMD AENEX AEOHA AEPYU AETLH AEXYK AFGCZ AFKRA AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIIXL AINHJ AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR ARMRJ AZQEC B-. BA0 BBWZM BENPR BGNMA BHPHI BKSAR BPHCQ C1A CAG CCEZO CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 D1J D1K DU5 DWQXO EBS EJD ESBYG FA0 FEDTE FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNUQQ GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IPNFZ IXD I~X I~Z J-C JBSCW K6- KOV L8X LK5 M2P M4Y M7R MA- N2Q NDZJH NF0 NQJWS NU0 O9- O93 O9G O9I O9J P19 PCBAR PF0 PQEST PQQKQ PQUKI PROAC PT5 Q2X QOK QOS R89 R9I RNI ROL RPX RSV RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SDH SEV SHX SISQX SNX SOJ SPISZ SZN T13 T16 TSG TUC U2A UG4 UZ4 VC2 W48 W94 WK6 WK8 Z5O Z86 ~02 ~A9 ~WA AAHBH ABJNI ABQSL DPUIP AAYXX ADHKG AGQPQ CITATION -SA -S~ 2JN 2JY 406 5VR 5XA 5XB 7QH 7QL 7SN 7TN 7U7 7UA 7XB 8FK AACDK AAHNG AAIAL AAJBT AANZL AAPKM AASML AATNV AAUYE AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABHQN ABMQK ABRTQ ABSXP ABTEG ABTKH ABWNU ABXPI ACAOD ACDTI ACHSB ACMDZ ACMLO ACPIV ACSTC ACZOJ ADKNI ADRFC ADTPH AEFQL AEJRE AEMSY AESKC AEUYN AEVLU AEZWR AFBBN AFDZB AFHIU AFLOW AFQWF AFUIB AGJBK AGMZJ AGQEE AGRTI AHPBZ AHSBF AHWEU AIGIU AILAN AITGF AIXLP AJZVZ AMXSW AMYLF AOCGG ATHPR AXYYD AYFIA BDATZ C1K CAJEA CCPQU DDRTE DNIVK EBLON EIOEI F1W FERAY FFXSO FIGPU FINBP FSGXE GNWQR H96 IKXTQ IWAJR JZLTJ L.G LLZTM M7N NPVJJ PHGZM PHGZT PKEHL PT4 Q-- Q9U SJYHP SNE SNPRN SOHCF SRMVM SSLCW TCJ TGP U1G U5K UOJIU UTJUX UZXMN VFIZW YLTOR ZMTXR |
ID | FETCH-LOGICAL-c370t-23d35322af0d46e94404db7ed3c0462074ee7991edb1be8953a902cd35a6d2643 |
IEDL.DBID | BENPR |
ISSN | 0254-4059 2096-5508 |
IngestDate | Fri Jul 25 23:08:37 EDT 2025 Sat Jul 26 01:00:24 EDT 2025 Tue Jul 01 03:15:07 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Fri Feb 21 02:35:38 EST 2025 Thu Nov 24 20:35:37 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | China Seas reconstruction of vertical thermal structure EOF thermocline |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c370t-23d35322af0d46e94404db7ed3c0462074ee7991edb1be8953a902cd35a6d2643 |
Notes | China Seas reconstruction of vertical thermal structure 37-1150/P therrnocline; EOF; reconstruction of vertical thermal structure; China Seas P7 therrnocline EOF ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 |
PQID | 205041698 |
PQPubID | 54339 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2918047957 proquest_journals_205041698 crossref_primary_10_1007_s00343_009_9201_4 crossref_citationtrail_10_1007_s00343_009_9201_4 springer_journals_10_1007_s00343_009_9201_4 chongqing_backfile_31057892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090500 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 5 year: 2009 text: 20090500 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Chinese journal of oceanology and limnology |
PublicationTitleAbbrev | Chin. J. Ocean. Limnol |
PublicationTitleAlternate | Chinese Journal of Oceanology and Limnology |
PublicationYear | 2009 |
Publisher | SP Science Press Springer Nature B.V |
Publisher_xml | – name: SP Science Press – name: Springer Nature B.V |
References | Hurlburt, Fox, Metzger (CR10) 1990; 95 Qiao, Xia, Shi, Ma, Ge, Yuan (CR13) 2004; 22 Elsberry, Warrenfelt (CR7) 1982; 12 Zhang, Qi, Zuo, Zhang (CR21) 1997; 19 Chu, Fan, Liu (CR5) 2000; 17 Carnes, league, Mitchell (CR2) 1994; 11 Qiu, Zhou, Li (CR14) 1989; 19 Pascual, Gomis (CR12) 2003; 20 Zhao (CR23) 1989; 11 Chiswell (CR3) 2001; 35 Gavart, De Mey (CR8) 1997; 27 Thacker, Long (CR15) 1988; 93 Chu, Tseng, Chang, Chen (CR6) 1997; 102 Wang, Xu, Jin, Zou, Li (CR17) 1997; 19 Hurlburt (CR9) 1984; 8 Yang, Zhou, Zhang (CR19) 1991; 13 Zhang, He (CR22) 1991; 19 Chu, Fralick, Haeger, Carron (CR4) 1997; 102 Lorenz (CR11) 1956 Xu, Qiu, Long (CR18) 1993; 24 Wang, Xu, Zou, Yang, Li (CR16) 1992; 11 Yang, Kuang, Zhang, Zhou (CR20) 1990; 12 Carnes, Mitchel, deWitt (CR1) 1990; 95 P. C. Chu (9201_CR6) 1997; 102 Z. S. Wang (9201_CR16) 1992; 11 B. R. Zhao (9201_CR23) 1989; 11 P. C. Chu (9201_CR4) 1997; 102 R. L. Elsberry (9201_CR7) 1982; 12 D. R. Yang (9201_CR20) 1990; 12 C. Zhang (9201_CR21) 1997; 19 H. E. Hurlburt (9201_CR10) 1990; 95 W. C. Thacker (9201_CR15) 1988; 93 S. M. Chiswell (9201_CR3) 2001; 35 P. C. Chu (9201_CR5) 2000; 17 D. L. Qiu (9201_CR14) 1989; 19 H. E. Hurlburt (9201_CR9) 1984; 8 M. R. Carnes (9201_CR1) 1990; 95 E. N. Lorenz (9201_CR11) 1956 F. L. Qiao (9201_CR13) 2004; 22 M. Gavart (9201_CR8) 1997; 27 Y. K. Zhang (9201_CR22) 1991; 19 Z. S. Wang (9201_CR17) 1997; 19 D. R. Yang (9201_CR19) 1991; 13 X. Z. Xu (9201_CR18) 1993; 24 A. Pascual (9201_CR12) 2003; 20 M. R. Carnes (9201_CR2) 1994; 11 |
References_xml | – volume: 27 start-page: 2 146 year: 1997 end-page: 2 157 ident: CR8 article-title: Isopycnal EOFs in the Azores Current region: A statistical tool for dynamical analysis and data assimilation publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(0)027<2146:IEITAC>2.0.CO;2 – volume: 22 start-page: 299 issue: 3 year: 2004 end-page: 305 ident: CR13 article-title: Seasonal variability of thermocline in the Yellow Sea publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/BF02842563 – volume: 19 start-page: 1 issue: 4 year: 1997 end-page: 9 ident: CR17 article-title: Numerical prediction model for the strong thermocline in the Bohai Sea and Yellow Sea publication-title: Acta Oceanol. Sin. – volume: 17 start-page: 971 year: 2000 end-page: 979 ident: CR5 article-title: Determination of Vertical Thermal Structure from Sea Surface Temperature publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2000)017<0971:DOVTSF>2.0.CO;2 – volume: 11 start-page: 25 issue: 1 year: 1992 end-page: 34 ident: CR16 article-title: A study on the numerical prediction method for the vertical thermal structure in the Bohai Sea and the Huanghai seas I. one-dimensional numerical prediction model publication-title: Acta Oceanol. Sin. – volume: 20 start-page: 912 year: 2003 end-page: 926 ident: CR12 article-title: Use of surface data to estimate geostrophic transport publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2003)020<0912:UOSDTE>2.0.CO;2 – volume: 93 start-page: 1 227 issue: C2 year: 1988 end-page: 1 240 ident: CR15 article-title: Fitting dynamics to data publication-title: J. Geophys. Res. doi: 10.1029/JC093iC02p01227 – volume: 19 start-page: 275 issue: s1 year: 1991 end-page: 283 ident: CR22 article-title: The annual variation and its fore-casting of the intensity of cold water mass of the western-north Yellow Sea in spring publication-title: Periodical of Ocean University of China – volume: 95 start-page: 11 375 year: 1990 end-page: 11 409 ident: CR10 article-title: Statistical inference of weakly correlated subthermocline fields from satellite altimeter data publication-title: J. Geophys. Res. doi: 10.1029/JC095iC07p11375 – volume: 24 start-page: 494 issue: 5 year: 1993 end-page: 502 ident: CR18 article-title: The radical characteristics and the one-dimensional calculated pattern of the South China Sea thermocline publication-title: Oceanol. et Limnol. Sin. – volume: 8 start-page: 17 year: 1984 end-page: 66 ident: CR9 article-title: The potential for ocean prediction and the role of altimeter data publication-title: Mar. Geod. doi: 10.1080/15210608409379497 – volume: 11 start-page: 551 year: 1994 end-page: 566 ident: CR2 article-title: Inference of subsurface thermohaline structure from fields measurable by satellite publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(1994)011<0551:IOSTSF>2.0.CO;2 – volume: 19 start-page: 301 issue: s1 year: 1989 end-page: 310 ident: CR14 article-title: Salinity prediction and its analyses for the southern Huanghai Sea publication-title: Periodical of Ocean University of China – volume: 95 start-page: 17 979 issue: C3 year: 1990 end-page: 17 992 ident: CR1 article-title: Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles publication-title: J. Geophys. Res. – volume: 35 start-page: 289 year: 2001 end-page: 306 ident: CR3 article-title: Determining the internal structure of the ocean off north-east New Zealand from surface measurements publication-title: New Zealand Journal of Marine and Freshwater Research – volume: 102 start-page: 15 761 year: 1997 end-page: 15 771 ident: CR6 article-title: South China Sea warm pool detected from the Navy’s Master Oceanographic Observational Data Set (MOODS) publication-title: J. Geophys. Res. – volume: 12 start-page: 14 issue: 1 year: 1990 end-page: 23 ident: CR20 article-title: A diagnostic study on the thermocline in the Yellow and East China Seas in summer publication-title: Acta Oceanol. Sin. – year: 1956 ident: CR11 publication-title: Empirical orthogonal functions and statistical weather prediction. Statistical Forecasting Project Science Rep. 1 – volume: 19 start-page: 12 issue: 6 year: 1997 end-page: 20 ident: CR21 article-title: A three-dimensional numerical modeling on the thermocline in the Bohai and Huanghai Seas publication-title: Acta Oceanol. Sin. – volume: 13 start-page: 295 issue: 3 year: 1991 end-page: 304 ident: CR19 article-title: A diagnostic study on tidal induced crossing thermocline in shallow sea publication-title: Acta Oceanol. Sin. – volume: 11 start-page: 401 issue: 4 year: 1989 end-page: 410 ident: CR23 article-title: Characteristics and formation mechanism of strong thermocline in the Bohai, Yellow and northern East China Seas publication-title: Acta Oceanol. Sin. – volume: 102 start-page: 10 499 year: 1997 end-page: 10 507 ident: CR4 article-title: A parametric model for the Yellow Sea thermal variability publication-title: J. Geophys. Res. – volume: 12 start-page: 839 year: 1982 end-page: 850 ident: CR7 article-title: Data Assimilation Tests with an Oceanic Mixed-Layer Model publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1982)012<0839:DATWAO>2.0.CO;2 – volume: 11 start-page: 551 year: 1994 ident: 9201_CR2 publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(1994)011<0551:IOSTSF>2.0.CO;2 – volume: 93 start-page: 1 227 issue: C2 year: 1988 ident: 9201_CR15 publication-title: J. Geophys. Res. doi: 10.1029/JC093iC02p01227 – volume: 95 start-page: 17 979 issue: C3 year: 1990 ident: 9201_CR1 publication-title: J. Geophys. Res. doi: 10.1029/JC095iC10p17979 – volume: 19 start-page: 1 issue: 4 year: 1997 ident: 9201_CR17 publication-title: Acta Oceanol. Sin. – volume: 11 start-page: 401 issue: 4 year: 1989 ident: 9201_CR23 publication-title: Acta Oceanol. Sin. – volume-title: Empirical orthogonal functions and statistical weather prediction. Statistical Forecasting Project Science Rep. 1 year: 1956 ident: 9201_CR11 – volume: 12 start-page: 14 issue: 1 year: 1990 ident: 9201_CR20 publication-title: Acta Oceanol. Sin. – volume: 22 start-page: 299 issue: 3 year: 2004 ident: 9201_CR13 publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/BF02842563 – volume: 17 start-page: 971 year: 2000 ident: 9201_CR5 publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2000)017<0971:DOVTSF>2.0.CO;2 – volume: 13 start-page: 295 issue: 3 year: 1991 ident: 9201_CR19 publication-title: Acta Oceanol. Sin. – volume: 24 start-page: 494 issue: 5 year: 1993 ident: 9201_CR18 publication-title: Oceanol. et Limnol. Sin. – volume: 95 start-page: 11 375 year: 1990 ident: 9201_CR10 publication-title: J. Geophys. Res. doi: 10.1029/JC095iC07p11375 – volume: 20 start-page: 912 year: 2003 ident: 9201_CR12 publication-title: J. Atmos. Oceanic Technol. doi: 10.1175/1520-0426(2003)020<0912:UOSDTE>2.0.CO;2 – volume: 11 start-page: 25 issue: 1 year: 1992 ident: 9201_CR16 publication-title: Acta Oceanol. Sin. – volume: 12 start-page: 839 year: 1982 ident: 9201_CR7 publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(1982)012<0839:DATWAO>2.0.CO;2 – volume: 27 start-page: 2 146 year: 1997 ident: 9201_CR8 publication-title: J. Phys. Oceanogr. doi: 10.1175/1520-0485(0)027<2146:IEITAC>2.0.CO;2 – volume: 19 start-page: 275 issue: s1 year: 1991 ident: 9201_CR22 publication-title: Periodical of Ocean University of China – volume: 19 start-page: 12 issue: 6 year: 1997 ident: 9201_CR21 publication-title: Acta Oceanol. Sin. – volume: 102 start-page: 10 499 year: 1997 ident: 9201_CR4 publication-title: J. Geophys. Res. doi: 10.1029/97JC00444 – volume: 102 start-page: 15 761 year: 1997 ident: 9201_CR6 publication-title: J. Geophys. Res. doi: 10.1029/97JC00628 – volume: 19 start-page: 301 issue: s1 year: 1989 ident: 9201_CR14 publication-title: Periodical of Ocean University of China – volume: 35 start-page: 289 year: 2001 ident: 9201_CR3 publication-title: New Zealand Journal of Marine and Freshwater Research doi: 10.1080/00288330.2001.9516999 – volume: 8 start-page: 17 year: 1984 ident: 9201_CR9 publication-title: Mar. Geod. doi: 10.1080/15210608409379497 |
SSID | ssj0039409 ssj0002082055 |
Score | 1.7477231 |
Snippet | Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here... Empirical Orthogonal Function (EOF) analysis is used in this study to generate main eigenvector fields of historical temperature for the China Seas (here... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 218 |
SubjectTerms | Boundaries Confidence intervals Earth and Environmental Science Earth Sciences Eigenvectors Empirical analysis Errors In situ temperature Mathematical models Ocean temperature Oceanography Orthogonal functions Physics Statistical analysis Statistical methods Statistical models Temperature Temperature distribution Temperature profile Temperature profiles Thermal structure Thermocline Vertical distribution Vertical profiles 表面水 表面温度 |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i5AqpD6gFelS5ENPVEHeOMnaR1RBUVHLAZDoKfJjwqtkKdkVUn99Z_LYFQgqccrBdpz4MfONPfMNwGdEo8pcYmxzqeK0dCE2mvZj7nzJANbLxqvyx898_yT9fpqddnHcde_t3l9JNpJ6HuzGVCoq5sN8Q1orTl_CUsb2yQCWdr79OtjtBTDn-m5QL9k-ZB5lpr_MfOwlTKlwPqnO_lCH91XTAm8-uCJtNM_eGzjuv7l1OLnank3dtv_7gM7xmT_1Fl53SFTstEvnHbzAahVWDj3aqqOxXoXlxkHU12twx3bqgm1WTErRZHKmKRaMIa_p2ZbOblFw0IogncsHXqIm2TS7La1HwURYHYtzLS4qbimaDN7iCG0tbBWEDZeWPUbFnWXiz_dwsrd7_HU_7pI2xF6N5TROVFAZSQlbypDmaJh_kCmcg_IcB0uIBXFMoBSDGznUJlPWyMRTI5sHQmfqAwyqSYXrILQOElWw2nmykhJltSwVOjeSNmTS-giG87kjpe-vmMqqUJy5WJskAtnPZuE7vnNOu_G7mDM1N4Nf0OAXPPhFGsHWvMlNS_bxv8rDfokU3b6vi0RmkiCu0RFsPFJqRpop_bNxBF_69bAofrKrj8-qPYRX7ZUXe2VuwIDmHj8Rcpq6zW6n_AO4Pw7F priority: 102 providerName: Springer Nature |
Title | Reconstruction of vertical thermal structure from several subsurface temperatures in the China Seas and adjacent waters |
URI | http://lib.cqvip.com/qk/84119X/20092/31057892.html https://link.springer.com/article/10.1007/s00343-009-9201-4 https://www.proquest.com/docview/205041698 https://www.proquest.com/docview/2918047957 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1993-5005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002082055 issn: 0254-4059 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1993-5005 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0002082055 issn: 0254-4059 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1993-5005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0039409 issn: 0254-4059 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1993-5005 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039409 issn: 0254-4059 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED5t7QtCQowfIuuo_MATyMK1k9R-QKhF7SYQBQGVxlPk2M74MdJt3bR_nzs3STU09uQHx4mUO_s--87fB_AiBKOqXARuc6F4WpWeG43zMS9dRQDWiVhV-XGRHy3T98fZ8Q4s2rswVFbZrolxofYrR2fkr6UZaaJDz8Zvz845qUZRdrWV0LCNtIJ_EynGdqEvSVW5B_3pbPH5S3fqIiniRSlUididIzzXbapTRGZRlSpO-QKDgZGnRLjwY1WfnGMYuRm4tmj0nwRqjEvzh_CgAZRssvGAPdgJ9SO4_8kFWzds1I_hmjaZW6pYtqpYlGFG-zACgH-w3fReXQRGN04YBkw6rWJrXFiuLirrAiMWq4aCec1-1jSSRflt9jXYNbO1Z9b_slTuya4tsXY-geV89u3dEW8UF7hTY3HJpfIqwyluK-HTPBgiDyT-Za8cXWJFuBHCGBFl8OWoDNpkyhohHQ6yuUdopZ5Cr17V4Rkwrb0IyltdOtziSGW1qFQoy5GwPhPWJTDofi1GbPebeKgKRbLD2sgERPuzC9eQlZNmxmnR0SxHWxVoq4JsVaQJvOyGnG2YOu56eNBasGgm7bpAzxCIT41O4OCW3s4BE3jV2nzb_d9P7d_9sgHc2ySoqIbyAHpo7PAccc5lOYT-ZD6dLqg9_P5hNmyceQi7Szn5CzvF_b8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gCqhHiKdAv4ABeQhTdOss6hQjxabWm7IGil3oxjO-VRsm3TasWf47cx43WyAkFvPeXgOJE8Y883Hvv7AJ54X8q6EJ6bQkie1ZXjpcL5WFS2JgBrRThVuTcpxgfZu8P8cAl-dXdh6FhltyaGhdpNLe2Rv0jLoSI69Hz08uSUk2oUVVc7CQ0TpRXcRqAYixc7dvzPGaZw7cb2W7T30zTd2tx_M-ZRZYBbORLnPJVO5ujWphYuK3xJhHnEOeykpYubGGK9HyGK8q4aVl6VuTSlSC12MoVDOCHxu9dgBWGHxFm18npz8uFjv8uTUoQN0qsp5goc0wHVlVZFYDKVmeRUnygxEPOMCB6-TJujUwxbfwbKBfr9q2Ab4uDWLbgZASx7Nfe427Dkmzuw-t5600T267swo6R2QU3LpjULss_oD4wA5w98zlsvzjyjGy4MAzTtjrEWF7KLs9pYz4g1K1I-t-xrQz1ZkPtmn7xpmWkcM-6boeOlbGaIJfQeHFzJ2N-H5Wba-AfAlHLCS2dUZTGlSqVRopa-qobCuFwYm8CgH1pECPY78V5pSTLHqkwTEN1gaxvJ0Umj41j3tM7BVhptpclWOkvgWd_lZM4MctnLg86COi4SrUbPEIiHS5XA-j9ae4dP4Hln80Xzf3-1dvnHHsP18f7ert7dnuwM4Ma8OEbnN9dhGQ3vHyLGOq8eRUdm8Pmq585vPo01rg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrYQQUsWnCFvAB7iALLx2NuscqqrQrloKSwVU6s11bAdaINs2rVb9i_wqZrJOViDoraccHCeSZ-yZ8cy8B_A8hFyVmQjcZkLxtCw8zzXux6xwJTmwTjRVlR8m2fZ--u5geLAEv9peGCqrbM_E5qD2U0d35K9lPtAEh44BfBnLIvY2x-snp5wYpCjT2tJp2Eiz4NcauLHY5LEbLmcYztVrO5so-xdSjre-vN3mkXGAOzUS51wqr4ao4rYUPs1CTuB5hD_slaMmTjS3IYzQowq-GBRB50NlcyEdTrKZR9dC4XdvwPKI-kV7sPxma7L3qbvxkWRtGxpWiXEDx9BAt2lW0aCaqlRxylXkaJR5SmAP36bV11M0YX8azYUn_FfytrGJ4zuwEp1ZtjHXvruwFKp7cPujC7aKSNj3YUYB7gKmlk1L1lBAo24wcj5_4nM-enEWGHW7MDTWdFPGajzULs5K6wIjBK0I_1yzo4pmsob6m30Otma28sz6Y0ulpmxmCTH0Aexfy9o_hF41rcIjYFp7EZS3unAYXklltShVKIqBsH4orEug3y0tegvuO2FgGUWUxzqXCYh2sY2LQOnE1_HDdBDPjawMysqQrEyawMtuyskcJeSql_utBE08MGqDmiHQN851Aqv_GO2UP4FXrcwXw__91eOrP_YMbuIeMu93Jrt9uDXPk1Ep5yr0UO7hCbpb58XTqMcMDq976_wG2Ag56A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+vertical+thermal+structure+from+several+subsurface+temperatures+in+the+China+Seas+and+adjacent+waters&rft.jtitle=Chinese+journal+of+oceanology+and+limnology&rft.au=%E9%83%9D%E4%BD%B3%E4%BD%B3+%E9%99%88%E6%B0%B8%E5%88%A9+%E5%86%AF%E4%BF%8A%E4%B9%94+%E7%8E%8B%E5%87%A1&rft.date=2009-05-01&rft.issn=0254-4059&rft.eissn=1993-5005&rft.volume=27&rft.issue=2&rft.spage=218&rft.epage=228&rft_id=info:doi/10.1007%2Fs00343-009-9201-4&rft.externalDocID=31057892 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84119X%2F84119X.jpg |