Sentinel-1 based Inland water dynamics Mapping System (SIMS)

This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of inland water dynamics using Sentinel-1 radar imagery. SIMS relies on a novel framework built using Python and Google Earth Engine. The underlying...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 149; p. 105305
Main Authors Soman, Manu K., Indu, J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN1364-8152
1873-6726
DOI10.1016/j.envsoft.2022.105305

Cover

Abstract This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of inland water dynamics using Sentinel-1 radar imagery. SIMS relies on a novel framework built using Python and Google Earth Engine. The underlying algorithm involves a simple binary thresholding technique and an outlier removal method tailored to perform efficiently across complicated flow regimes. Results can be downloaded as numerical data or as time-series of shapefiles representing the variation of inland water extents. Exported geospatial datasets aid the pre-launch study of future Surface Water and Ocean Topography (SWOT) mission which is expected to deliver hydrological measurements at unprecedented spatial resolutions. Classification metrics are evaluated at 20 validation sites across the globe using Sentinel-2 based Modified Normalized Difference Water Index (MNDWI) images as reference. Results indicated high overall accuracy ranging from 84.16% to 99.47% for lakes and 87.23%–98.96% for rivers. •A new open-source web app for mapping dynamic inland water extents is presented.•Application is programmed in Python using Sentinel-1 data from Google Earth Engine.•Backend algorithm involves a novel framework configurable for rivers and lakes.•Derived outputs can be exported as time series of surface water extent shapefiles.•Results have huge potential to improve the pre-launch study of future SWOT mission.
AbstractList This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of inland water dynamics using Sentinel-1 radar imagery. SIMS relies on a novel framework built using Python and Google Earth Engine. The underlying algorithm involves a simple binary thresholding technique and an outlier removal method tailored to perform efficiently across complicated flow regimes. Results can be downloaded as numerical data or as time-series of shapefiles representing the variation of inland water extents. Exported geospatial datasets aid the pre-launch study of future Surface Water and Ocean Topography (SWOT) mission which is expected to deliver hydrological measurements at unprecedented spatial resolutions. Classification metrics are evaluated at 20 validation sites across the globe using Sentinel-2 based Modified Normalized Difference Water Index (MNDWI) images as reference. Results indicated high overall accuracy ranging from 84.16% to 99.47% for lakes and 87.23%–98.96% for rivers.
This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of inland water dynamics using Sentinel-1 radar imagery. SIMS relies on a novel framework built using Python and Google Earth Engine. The underlying algorithm involves a simple binary thresholding technique and an outlier removal method tailored to perform efficiently across complicated flow regimes. Results can be downloaded as numerical data or as time-series of shapefiles representing the variation of inland water extents. Exported geospatial datasets aid the pre-launch study of future Surface Water and Ocean Topography (SWOT) mission which is expected to deliver hydrological measurements at unprecedented spatial resolutions. Classification metrics are evaluated at 20 validation sites across the globe using Sentinel-2 based Modified Normalized Difference Water Index (MNDWI) images as reference. Results indicated high overall accuracy ranging from 84.16% to 99.47% for lakes and 87.23%–98.96% for rivers. •A new open-source web app for mapping dynamic inland water extents is presented.•Application is programmed in Python using Sentinel-1 data from Google Earth Engine.•Backend algorithm involves a novel framework configurable for rivers and lakes.•Derived outputs can be exported as time series of surface water extent shapefiles.•Results have huge potential to improve the pre-launch study of future SWOT mission.
ArticleNumber 105305
Author Soman, Manu K.
Indu, J.
Author_xml – sequence: 1
  givenname: Manu K.
  orcidid: 0000-0001-7069-8393
  surname: Soman
  fullname: Soman, Manu K.
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
– sequence: 2
  givenname: J.
  orcidid: 0000-0003-4276-6138
  surname: Indu
  fullname: Indu, J.
  email: indusj@civil.iitb.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
BookMark eNqFkE1rAjEQhkOxULX9CYWFXuxhbT52s7u0UIr0Q1B6sD2HbDJbImvWJtHiv29ET16cywzD8w7DM0A921lA6JbgMcGEPyzHYLe-a8KYYkrjLmc4v0B9UhYs5QXlvTgznqUlyekVGni_xBjHOeujpwXYYCy0KUlq6UEnU9tKq5M_GcAlemflyiifzOV6bexPstj5AKtktJjOF_fX6LKRrYebYx-i77fXr8lHOvt8n05eZqliBQ4pJbTmRQF5DbVugOZcSVLnTVZmOtO6YIzVWVExQssqU3UsVXKutMIcqMwZG6LR4e7adb8b8EGsjFfQxkeh23hBOeOspFVFI3p3gi67jbPxuz1VYVbxsozU44FSrvPeQSOUCTKYzgYnTSsIFnuzYimOZsXerDiYjen8JL12ZiXd7mzu-ZCD6GprwAmvDFgF2jhQQejOnLnwD4mJliY
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100630
crossref_primary_10_1016_j_jhydrol_2024_131913
crossref_primary_10_1080_02626667_2024_2368755
crossref_primary_10_1038_s44221_024_00372_w
crossref_primary_10_1186_s40562_024_00321_1
crossref_primary_10_3390_rs15153861
crossref_primary_10_1016_j_jconhyd_2024_104388
crossref_primary_10_1016_j_jenvman_2024_120202
crossref_primary_10_1016_j_ecolind_2023_109965
crossref_primary_10_1007_s11356_023_28127_2
crossref_primary_10_1109_MGRS_2022_3174624
crossref_primary_10_1029_2022AV000680
crossref_primary_10_1016_j_scitotenv_2025_178695
crossref_primary_10_1038_s43247_025_02058_x
crossref_primary_10_3390_rs14184485
crossref_primary_10_1016_j_jenvman_2024_122075
crossref_primary_10_1016_j_asr_2022_05_001
Cites_doi 10.1175/JHM-D-16-0155.1
10.1016/j.envsoft.2021.105030
10.3390/rs8070570
10.1016/S0034-4257(96)00067-3
10.1080/01431161.2019.1577999
10.3390/rs9090890
10.1016/j.isprsjprs.2019.10.017
10.1109/JSTARS.2013.2289301
10.1109/TSMC.1979.4310076
10.21105/joss.02305
10.3390/rs13091663
10.3390/rs8040285
10.1016/j.rse.2020.111664
10.1016/j.rse.2005.08.016
10.1088/1748-9326/9/3/035002
10.1109/TGRS.2019.2950705
10.1016/j.rse.2018.11.008
10.1029/2008GL033857
10.1016/j.rse.2011.05.028
10.1029/2002JD002597
10.1029/2018WR023060
10.3390/s19224873
10.1016/j.rse.2017.06.031
10.3390/rs8040354
10.1016/j.rse.2020.111792
10.1016/j.rse.2015.10.031
10.1080/01431160310001619562
10.3390/w13070945
10.1038/nature20584
10.3390/rs12233896
10.5194/hess-15-2349-2011
10.5194/hess-17-651-2013
10.1007/s10712-015-9346-y
10.1007/s100400050178
10.3390/rs70607615
10.3390/rs10050797
10.1080/01431161.2015.1060647
10.1016/j.rse.2017.06.045
10.1017/S0376892902000218
10.5589/m09-025
10.1109/JSTARS.2010.2085032
10.1109/TGRS.2009.2029236
10.3390/rs4102923
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier Science Ltd. Mar 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Mar 2022
DBID AAYXX
CITATION
7QH
7SC
7ST
7UA
8FD
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
DOI 10.1016/j.envsoft.2022.105305
DatabaseName CrossRef
Aqualine
Computer and Information Systems Abstracts
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
ExternalDocumentID 10_1016_j_envsoft_2022_105305
S1364815222000111
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7SC
7ST
7UA
8FD
AGCQF
C1K
FR3
JQ2
KR7
L7M
L~C
L~D
SOI
7S9
L.6
ID FETCH-LOGICAL-c370t-212b677e5bebdfe256ca1b5f484d4dd7333b479312894cbbbbc866cdc06e2a533
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Wed Oct 01 13:41:27 EDT 2025
Wed Aug 13 11:35:50 EDT 2025
Wed Oct 29 21:48:44 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Fri Feb 23 02:40:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inland water dynamics
Google earth engine
Sentinel-1
Web application
SWOT
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c370t-212b677e5bebdfe256ca1b5f484d4dd7333b479312894cbbbbc866cdc06e2a533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7069-8393
0000-0003-4276-6138
PQID 2639039688
PQPubID 2047471
ParticipantIDs proquest_miscellaneous_2636382992
proquest_journals_2639039688
crossref_citationtrail_10_1016_j_envsoft_2022_105305
crossref_primary_10_1016_j_envsoft_2022_105305
elsevier_sciencedirect_doi_10_1016_j_envsoft_2022_105305
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Brisco, Short, Van Der Sanden, Landry, Raymond (bib6) 2009; 35
Wan, Liu, Wang, Zhang, You (bib51) 2019; 40
Giustarini, Matgen, Hostache, Montanari, Plaza, Pauwels, De Lannoy, De Keyser, Pfister, Hoffmann, Savenije (bib19) 2011; 15
Ji, Gong, Wang, Shi, Zhu (bib23) 2018; 54
Irwin, Beaulne, Braun, Fotopoulos (bib22) 2017; 9
Wang (bib52) 2004; 25
Liang, Liu (bib27) 2020; 159
Jiang, Wang, Hu, Xu (bib24) 2021; 13
Schmitt (bib45) 2020; 883 88
Brönmark, Hansson (bib7) 2002
Torres, Snoeij, Geudtner, Bibby, Davidson, Attema, Potin, Rommen, Floury, Brown, Traver, Deghaye, Duesmann, Rosich, Miranda, Bruno, L'Abbate, Croci, Pietropaolo, Huchler, Rostan (bib48) 2012; 120
Schlaffer, Chini, Pöppl, Hostache, Matgen (bib44) 2018
Huang, DeVries, Huang, Lang, Jones, Creed, Carroll (bib21) 2018; 10
Xu (bib57) 2007; vol. 27
Tsai, Klein, Dietz, Oppelt (bib49) 2020; 12
Gorelick, Hancher, Dixon, Ilyushchenko, Thau, Moore (bib20) 2017; 202
Santoro, Wegmüller (bib41) 2014; 7
Pham-Duc, Prigent, Aires (bib36) 2017; 9
Gao (bib18) 1996
(bib32) 2019
Bolanos, Stiff, Brisco, Pietroniro (bib5) 2016; 8
DeVries, Huang, Armston, Huang, Jones, Lang (bib12) 2020; 240
Reschke, Bartsch, Schlaffer, Schepaschenko (bib40) 2012; 4
Druce, Tong, Lei, Guo, Kittel, Grogan, Tottrup (bib14) 2021; 13
Ahmad, Hossain, Eldardiry, Pavelsky (bib1) 2020; 58
Long, Fatoyinbo, Policelli (bib28) 2014; 9
Santoro, Wegmüller, Wiesmann, Lamarche, Bontemps, Defourny, Arino (bib43) 2015
Rad, Kreitler, Sadegh (bib38) 2021; 140
Du, Zhang, Ling, Wang, Li, Li (bib15) 2016; 8
Martinis, Kuenzer, Wendleder, Huth, Twele, Roth, Dech (bib29) 2015; 36
Winter (bib55) 1999; 7
Krinner (bib26) 2003; 108
Shen, Anagnostou, Allen, Robert Brakenridge, Kettner (bib46) 2019; 221
Wu (bib56) 2020; 5
Ahmad, Kim (bib2) 2019; 83
Cazals, Rapinel, Frison, Bonis, Mercier, Mallet, Corgne, Rudant (bib9) 2016; 8
Westerhoff, Kleuskens, Winsemius, Huizinga, Brakenridge, Bishop (bib53) 2013; 17
Rao, Lou, Jiang, Wang, Wang, Cao (bib39) 2019; 19
Klein, Gessner, Dietz, Kuenzer (bib25) 2017; 198
White, Brisco, Dabboor, Schmitt, Pratt (bib54) 2015; 7
Nair, Indu (bib31) 2020
Department of Water Resource (bib11) 2018
Frappart, Seyler, Martinez, León, Cazenave (bib17) 2005; 99
Dasari, Anjaneyulu, Jayasri, Prasad (bib10) 2016
Aires, Miolane, Prigent, Pham, Fluet-Chouinard, Lehner, Papa (bib3) 2017; 18
Bullock, Acreman (bib8) 2003
Twele, Cao, Plank, Martinis (bib50) 2016
Elmer, Hain, Hossain, Desroches, Pottier (bib16) 2020; 31
Biancamaria, Lettenmaier, Pavelsky (bib4) 2016; 37
Mason, Speck, Devereux, Schumann, Neal, Bates (bib30) 2010; 48
Otsu (bib33) 1979; 9
Papa, Günther, Frappart, Prigent, Rossow (bib34) 2008; 35
Pekel, Cottam, Gorelick, Belward (bib35) 2016; 540
Santoro, Wegmüller, Lamarche, Bontemps, Defourny, Arino (bib42) 2015; 171
Subramaniam, Suresh Babu, Roy (bib47) 2011; 4
Ding, Li (bib13) 2011; 13
Pickens, Hansen, Hancher, Stehman, Tyukavina, Potapov, Marroquin, Sherani (bib37) 2020; 243
Gorelick (10.1016/j.envsoft.2022.105305_bib20) 2017; 202
Otsu (10.1016/j.envsoft.2022.105305_bib33) 1979; 9
Ding (10.1016/j.envsoft.2022.105305_bib13) 2011; 13
Subramaniam (10.1016/j.envsoft.2022.105305_bib47) 2011; 4
Brönmark (10.1016/j.envsoft.2022.105305_bib7) 2002
Torres (10.1016/j.envsoft.2022.105305_bib48) 2012; 120
Santoro (10.1016/j.envsoft.2022.105305_bib43) 2015
Klein (10.1016/j.envsoft.2022.105305_bib25) 2017; 198
Long (10.1016/j.envsoft.2022.105305_bib28) 2014; 9
Rad (10.1016/j.envsoft.2022.105305_bib38) 2021; 140
Irwin (10.1016/j.envsoft.2022.105305_bib22) 2017; 9
Pickens (10.1016/j.envsoft.2022.105305_bib37) 2020; 243
Reschke (10.1016/j.envsoft.2022.105305_bib40) 2012; 4
Pekel (10.1016/j.envsoft.2022.105305_bib35) 2016; 540
Ahmad (10.1016/j.envsoft.2022.105305_bib1) 2020; 58
Papa (10.1016/j.envsoft.2022.105305_bib34) 2008; 35
Wan (10.1016/j.envsoft.2022.105305_bib51) 2019; 40
Brisco (10.1016/j.envsoft.2022.105305_bib6) 2009; 35
Bolanos (10.1016/j.envsoft.2022.105305_bib5) 2016; 8
Druce (10.1016/j.envsoft.2022.105305_bib14) 2021; 13
Nair (10.1016/j.envsoft.2022.105305_bib31) 2020
Gao (10.1016/j.envsoft.2022.105305_bib18) 1996
Biancamaria (10.1016/j.envsoft.2022.105305_bib4) 2016; 37
Giustarini (10.1016/j.envsoft.2022.105305_bib19) 2011; 15
Huang (10.1016/j.envsoft.2022.105305_bib21) 2018; 10
Santoro (10.1016/j.envsoft.2022.105305_bib41) 2014; 7
Winter (10.1016/j.envsoft.2022.105305_bib55) 1999; 7
DeVries (10.1016/j.envsoft.2022.105305_bib12) 2020; 240
Wang (10.1016/j.envsoft.2022.105305_bib52) 2004; 25
Ji (10.1016/j.envsoft.2022.105305_bib23) 2018; 54
Bullock (10.1016/j.envsoft.2022.105305_bib8) 2003
Du (10.1016/j.envsoft.2022.105305_bib15) 2016; 8
Tsai (10.1016/j.envsoft.2022.105305_bib49) 2020; 12
Schmitt (10.1016/j.envsoft.2022.105305_bib45) 2020; 883 88
Ahmad (10.1016/j.envsoft.2022.105305_bib2) 2019; 83
White (10.1016/j.envsoft.2022.105305_bib54) 2015; 7
Liang (10.1016/j.envsoft.2022.105305_bib27) 2020; 159
Wu (10.1016/j.envsoft.2022.105305_bib56) 2020; 5
Xu (10.1016/j.envsoft.2022.105305_bib57) 2007; vol. 27
Dasari (10.1016/j.envsoft.2022.105305_bib10) 2016
Rao (10.1016/j.envsoft.2022.105305_bib39) 2019; 19
Westerhoff (10.1016/j.envsoft.2022.105305_bib53) 2013; 17
Aires (10.1016/j.envsoft.2022.105305_bib3) 2017; 18
Santoro (10.1016/j.envsoft.2022.105305_bib42) 2015; 171
Department of Water Resource (10.1016/j.envsoft.2022.105305_bib11)
Mason (10.1016/j.envsoft.2022.105305_bib30) 2010; 48
Shen (10.1016/j.envsoft.2022.105305_bib46) 2019; 221
Krinner (10.1016/j.envsoft.2022.105305_bib26) 2003; 108
Martinis (10.1016/j.envsoft.2022.105305_bib29) 2015; 36
Jiang (10.1016/j.envsoft.2022.105305_bib24) 2021; 13
Pham-Duc (10.1016/j.envsoft.2022.105305_bib36) 2017; 9
Elmer (10.1016/j.envsoft.2022.105305_bib16) 2020; 31
Frappart (10.1016/j.envsoft.2022.105305_bib17) 2005; 99
Cazals (10.1016/j.envsoft.2022.105305_bib9) 2016; 8
Schlaffer (10.1016/j.envsoft.2022.105305_bib44) 2018
Twele (10.1016/j.envsoft.2022.105305_bib50) 2016
References_xml – volume: 8
  start-page: 354
  year: 2016
  ident: bib15
  article-title: Water bodies' mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by Sharpening the SWIR band
  publication-title: Rem. Sens.
– start-page: 349
  year: 2016
  end-page: 352
  ident: bib10
  article-title: Importance of speckle filtering in image classification of SAR data
  publication-title: 2015 International Conference on Microwave, Optical and Communication Engineering, ICMOCE 2015
– volume: 35
  start-page: 1
  year: 2008
  end-page: 5
  ident: bib34
  article-title: Variations of surface water extent and water storage in large river basins: a comparison of different global data sources
  publication-title: Geophys. Res. Lett.
– volume: 171
  start-page: 185
  year: 2015
  end-page: 201
  ident: bib42
  article-title: Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 2349
  year: 2011
  end-page: 2365
  ident: bib19
  article-title: Hydrology and Earth System Sciences Assimilating SAR-derived water level data into a hydraulic model: a case study
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 159
  start-page: 53
  year: 2020
  end-page: 62
  ident: bib27
  article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: vol. 27
  start-page: 3025
  year: 2007
  end-page: 3033
  ident: bib57
  publication-title: Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery
– volume: 83
  start-page: 101930
  year: 2019
  ident: bib2
  article-title: Estimation of flow in various sizes of streams using the sentinel-1 synthetic aperture radar (SAR) data in han River basin, Korea
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 37
  start-page: 307
  year: 2016
  end-page: 337
  ident: bib4
  article-title: The SWOT mission and its capabilities for land hydrology
  publication-title: Surv. Geophys.
– volume: 4
  start-page: 205
  year: 2011
  end-page: 215
  ident: bib47
  article-title: Automated water spread mapping using ResourceSat-1 AWiFS data for water bodies information system
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 13
  start-page: 945
  year: 2021
  ident: bib24
  article-title: Evaluating the performance of sentinel-1A and sentinel-2 in small waterbody mapping over urban and mountainous regions
  publication-title: Water
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bib20
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 120
  start-page: 9
  year: 2012
  end-page: 24
  ident: bib48
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
– volume: 198
  start-page: 345
  year: 2017
  end-page: 362
  ident: bib25
  article-title: Global WaterPack – a 250 m resolution dataset revealing the daily dynamics of global inland water bodies
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 10,270
  year: 2018
  end-page: 10,292
  ident: bib23
  article-title: Construction of the 500-m resolution daily global surface water change database (2001–2016)
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 30
  ident: bib49
  article-title: Monitoring large-scale inland water dynamics by fusing sentinel-1 sar and sentinel-3 altimetry data and by analyzing causal effects of snowmelt
  publication-title: Rem. Sens.
– volume: 13
  start-page: 894
  year: 2011
  end-page: 901
  ident: bib13
  article-title: Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 7615
  year: 2015
  end-page: 7645
  ident: bib54
  article-title: A collection of SAR methodologies for monitoring wetlands
  publication-title: Rem. Sens.
– volume: 221
  start-page: 302
  year: 2019
  end-page: 315
  ident: bib46
  article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: bib50
  article-title: International Journal of Remote Sensing Sentinel-1-based Flood Mapping: a Fully Automated Processing Chain Sentinel-1-based Flood Mapping: a Fully Automated Processing Chain
– volume: 140
  start-page: 105030
  year: 2021
  ident: bib38
  article-title: Augmented normalized difference water index for improved surface water monitoring
  publication-title: Environ. Model. Software
– volume: 18
  start-page: 1305
  year: 2017
  end-page: 1325
  ident: bib3
  article-title: A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations
  publication-title: J. Hydrometeorol.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib21
  article-title: Automated extraction of surface water extent from Sentinel-1 data
  publication-title: Rem. Sens.
– volume: 48
  start-page: 882
  year: 2010
  end-page: 894
  ident: bib30
  article-title: Flood detection in Urban areas using TerraSAR-X
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 25
  start-page: 2497
  year: 2004
  end-page: 2508
  ident: bib52
  article-title: Seasonal change in the extent of inundation on floodplains detected by JERS-1 Synthetic Aperture Radar data
  publication-title: Int. J. Rem. Sens.
– volume: 19
  start-page: 4873
  year: 2019
  ident: bib39
  article-title: Continuous dynamics monitoring of multi-lake water extent using a spatial and temporal adaptive fusion method based on two sets of MODIS products
  publication-title: Sensors
– volume: 8
  start-page: 285
  year: 2016
  ident: bib5
  article-title: Operational surface water detection and monitoring using Radarsat 2
  publication-title: Rem. Sens.
– volume: 35
  start-page: 336
  year: 2009
  end-page: 344
  ident: bib6
  article-title: A semi-automated tool for surface water mapping with RADARSAT-1
  publication-title: Can. J. Rem. Sens.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 21
  ident: bib36
  article-title: Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations
  publication-title: Water (Switzerland)
– start-page: 160
  year: 2020
  end-page: 163
  ident: bib31
  article-title: Reservoir water surface area detection using satellite observations for synthetic SWOT data simulation
  publication-title: Proceedings of the 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing, ICSIDEMPC 2020
– start-page: 6588
  year: 2018
  end-page: 6591
  ident: bib44
  article-title: Monitoring of inundation dynamics in the north-American Prairie Pothole Region using Sentinel-1 time series
  publication-title: International Geoscience and Remote Sensing Symposium (IGARSS)
– volume: 5
  start-page: 2305
  year: 2020
  ident: bib56
  article-title: geemap: a Python package for interactive mapping with Google Earth Engine
  publication-title: J. Open Source Softw.
– volume: 58
  start-page: 2471
  year: 2020
  end-page: 2480
  ident: bib1
  article-title: A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for South Asian conditions
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: bib35
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– volume: 4
  start-page: 2923
  year: 2012
  end-page: 2943
  ident: bib40
  article-title: Capability of C-band SAR for operational wetland monitoring at high latitudes
  publication-title: Rem. Sens.
– volume: 883 88
  start-page: 271
  year: 2020
  end-page: 289
  ident: bib45
  article-title: Potential of large-scale inland water body mapping from sentinel-1/2 data on the example of bavaria's lakes and rivers
  publication-title: PFG – J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 9
  start-page: 890
  year: 2017
  ident: bib22
  article-title: Fusion of SAR, optical imagery and airborne LiDAR for surface water detection
  publication-title: Rem. Sens.
– volume: 8
  start-page: 570
  year: 2016
  ident: bib9
  article-title: Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images
  publication-title: Rem. Sens.
– volume: 108
  start-page: 4520
  year: 2003
  ident: bib26
  article-title: Impact of lakes and wetlands on boreal climate
  publication-title: J. Geophys. Res. Atmos.
– volume: 31
  year: 2020
  ident: bib16
  article-title: Generating proxy SWOT water surface elevations using WRF-hhydro and the CNES SWOT hydrology simulator
  publication-title: Earth Sp. Sci. Open Arch.
– volume: 9
  year: 2014
  ident: bib28
  article-title: Flood extent mapping for Namibia using change detection and thresholding with SAR
  publication-title: Environ. Res. Lett.
– volume: 7
  start-page: 3225
  year: 2014
  end-page: 3238
  ident: bib41
  article-title: Multi-temporal synthetic aperture radar metrics applied to map open water bodies
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
– volume: 36
  start-page: 3519
  year: 2015
  end-page: 3543
  ident: bib29
  article-title: Comparing four operational SAR-based water and flood detection approaches
  publication-title: Int. J. Rem. Sens.
– year: 2002
  ident: bib7
  article-title: Environmental issues in lakes and ponds: current state and perspectives
  publication-title: Environ. Conserv.
– volume: 17
  start-page: 651
  year: 2013
  end-page: 663
  ident: bib53
  article-title: Automated global water mapping based on wide-swath orbital synthetic-aperture radar
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 40
  start-page: 5050
  year: 2019
  end-page: 5077
  ident: bib51
  article-title: Automatic extraction of flood inundation areas from SAR images: a case study of Jilin, China during the 2017 flood disaster
  publication-title: Int. J. Rem. Sens.
– start-page: 614
  year: 2015
  end-page: 619
  ident: bib43
  article-title: Assessing Envisat ASAR and Sentinel-1 multi-temporal observations to map open water bodies
  publication-title: Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2015
– volume: 13
  start-page: 1663
  year: 2021
  ident: bib14
  article-title: An optical and SAR based fusion approach for mapping surface water dynamics over mainland China
  publication-title: Rem. Sens.
– volume: 7
  start-page: 28
  year: 1999
  end-page: 45
  ident: bib55
  article-title: Relation of streams, lakes, and wetlands to groundwater flow systems
  publication-title: Hydrogeol. J.
– year: 2018
  ident: bib11
  article-title: Narmada control authority [WWW document]
– year: 2003
  ident: bib8
  article-title: The Role of Wetlands in the Hydrological Cycle, Hydrology and Earth System Sciences
– year: 1996
  ident: bib18
  article-title: NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 243
  start-page: 111792
  year: 2020
  ident: bib37
  article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series
  publication-title: Remote Sens. Environ.
– volume: 99
  start-page: 387
  year: 2005
  end-page: 399
  ident: bib17
  article-title: Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels
  publication-title: Remote Sens. Environ.
– volume: 240
  start-page: 111664
  year: 2020
  ident: bib12
  article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: bib32
  article-title: Water body information system (WBIS) [WWW document]
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib33
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 18
  start-page: 1305
  year: 2017
  ident: 10.1016/j.envsoft.2022.105305_bib3
  article-title: A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-16-0155.1
– volume: 140
  start-page: 105030
  year: 2021
  ident: 10.1016/j.envsoft.2022.105305_bib38
  article-title: Augmented normalized difference water index for improved surface water monitoring
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2021.105030
– volume: 8
  start-page: 570
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib9
  article-title: Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images
  publication-title: Rem. Sens.
  doi: 10.3390/rs8070570
– year: 1996
  ident: 10.1016/j.envsoft.2022.105305_bib18
  article-title: NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 40
  start-page: 5050
  year: 2019
  ident: 10.1016/j.envsoft.2022.105305_bib51
  article-title: Automatic extraction of flood inundation areas from SAR images: a case study of Jilin, China during the 2017 flood disaster
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2019.1577999
– volume: 83
  start-page: 101930
  year: 2019
  ident: 10.1016/j.envsoft.2022.105305_bib2
  article-title: Estimation of flow in various sizes of streams using the sentinel-1 synthetic aperture radar (SAR) data in han River basin, Korea
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 890
  issue: 890 9
  year: 2017
  ident: 10.1016/j.envsoft.2022.105305_bib22
  article-title: Fusion of SAR, optical imagery and airborne LiDAR for surface water detection
  publication-title: Rem. Sens.
  doi: 10.3390/rs9090890
– volume: 159
  start-page: 53
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib27
  article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.10.017
– start-page: 160
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib31
  article-title: Reservoir water surface area detection using satellite observations for synthetic SWOT data simulation
– volume: 7
  start-page: 3225
  year: 2014
  ident: 10.1016/j.envsoft.2022.105305_bib41
  article-title: Multi-temporal synthetic aperture radar metrics applied to map open water bodies
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2013.2289301
– ident: 10.1016/j.envsoft.2022.105305_bib11
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.envsoft.2022.105305_bib33
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.envsoft.2022.105305_bib36
  article-title: Surface water monitoring within Cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations
  publication-title: Water (Switzerland)
– volume: 5
  start-page: 2305
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib56
  article-title: geemap: a Python package for interactive mapping with Google Earth Engine
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02305
– volume: vol. 27
  start-page: 3025
  year: 2007
  ident: 10.1016/j.envsoft.2022.105305_bib57
– volume: 13
  start-page: 894
  year: 2011
  ident: 10.1016/j.envsoft.2022.105305_bib13
  article-title: Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 1663
  issue: 1663 13
  year: 2021
  ident: 10.1016/j.envsoft.2022.105305_bib14
  article-title: An optical and SAR based fusion approach for mapping surface water dynamics over mainland China
  publication-title: Rem. Sens.
  doi: 10.3390/rs13091663
– start-page: 349
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib10
  article-title: Importance of speckle filtering in image classification of SAR data
– volume: 8
  start-page: 285
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib5
  article-title: Operational surface water detection and monitoring using Radarsat 2
  publication-title: Rem. Sens.
  doi: 10.3390/rs8040285
– year: 2003
  ident: 10.1016/j.envsoft.2022.105305_bib8
– volume: 240
  start-page: 111664
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib12
  article-title: Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111664
– volume: 99
  start-page: 387
  year: 2005
  ident: 10.1016/j.envsoft.2022.105305_bib17
  article-title: Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.08.016
– volume: 883 88
  start-page: 271
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib45
  article-title: Potential of large-scale inland water body mapping from sentinel-1/2 data on the example of bavaria's lakes and rivers
  publication-title: PFG – J. Photogramm. Remote Sens. Geoinf. Sci.
– volume: 9
  year: 2014
  ident: 10.1016/j.envsoft.2022.105305_bib28
  article-title: Flood extent mapping for Namibia using change detection and thresholding with SAR
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/3/035002
– volume: 58
  start-page: 2471
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib1
  article-title: A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for South Asian conditions
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2019.2950705
– volume: 221
  start-page: 302
  year: 2019
  ident: 10.1016/j.envsoft.2022.105305_bib46
  article-title: Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.008
– volume: 35
  start-page: 1
  year: 2008
  ident: 10.1016/j.envsoft.2022.105305_bib34
  article-title: Variations of surface water extent and water storage in large river basins: a comparison of different global data sources
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL033857
– volume: 120
  start-page: 9
  year: 2012
  ident: 10.1016/j.envsoft.2022.105305_bib48
  article-title: GMES Sentinel-1 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– start-page: 614
  year: 2015
  ident: 10.1016/j.envsoft.2022.105305_bib43
  article-title: Assessing Envisat ASAR and Sentinel-1 multi-temporal observations to map open water bodies
– volume: 108
  start-page: 4520
  year: 2003
  ident: 10.1016/j.envsoft.2022.105305_bib26
  article-title: Impact of lakes and wetlands on boreal climate
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2002JD002597
– volume: 54
  start-page: 10,270
  year: 2018
  ident: 10.1016/j.envsoft.2022.105305_bib23
  article-title: Construction of the 500-m resolution daily global surface water change database (2001–2016)
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023060
– volume: 19
  start-page: 4873
  issue: 4873 19
  year: 2019
  ident: 10.1016/j.envsoft.2022.105305_bib39
  article-title: Continuous dynamics monitoring of multi-lake water extent using a spatial and temporal adaptive fusion method based on two sets of MODIS products
  publication-title: Sensors
  doi: 10.3390/s19224873
– start-page: 6588
  year: 2018
  ident: 10.1016/j.envsoft.2022.105305_bib44
  article-title: Monitoring of inundation dynamics in the north-American Prairie Pothole Region using Sentinel-1 time series
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.envsoft.2022.105305_bib20
  article-title: Google earth engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 8
  start-page: 354
  issue: 354 8
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib15
  article-title: Water bodies' mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by Sharpening the SWIR band
  publication-title: Rem. Sens.
  doi: 10.3390/rs8040354
– volume: 243
  start-page: 111792
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib37
  article-title: Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111792
– volume: 171
  start-page: 185
  year: 2015
  ident: 10.1016/j.envsoft.2022.105305_bib42
  article-title: Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.031
– volume: 25
  start-page: 2497
  year: 2004
  ident: 10.1016/j.envsoft.2022.105305_bib52
  article-title: Seasonal change in the extent of inundation on floodplains detected by JERS-1 Synthetic Aperture Radar data
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431160310001619562
– volume: 13
  start-page: 945
  issue: 945 13
  year: 2021
  ident: 10.1016/j.envsoft.2022.105305_bib24
  article-title: Evaluating the performance of sentinel-1A and sentinel-2 in small waterbody mapping over urban and mountainous regions
  publication-title: Water
  doi: 10.3390/w13070945
– volume: 540
  start-page: 418
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib35
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib49
  article-title: Monitoring large-scale inland water dynamics by fusing sentinel-1 sar and sentinel-3 altimetry data and by analyzing causal effects of snowmelt
  publication-title: Rem. Sens.
  doi: 10.3390/rs12233896
– volume: 15
  start-page: 2349
  year: 2011
  ident: 10.1016/j.envsoft.2022.105305_bib19
  article-title: Hydrology and Earth System Sciences Assimilating SAR-derived water level data into a hydraulic model: a case study
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-2349-2011
– volume: 17
  start-page: 651
  year: 2013
  ident: 10.1016/j.envsoft.2022.105305_bib53
  article-title: Automated global water mapping based on wide-swath orbital synthetic-aperture radar
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-651-2013
– volume: 37
  start-page: 307
  year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib4
  article-title: The SWOT mission and its capabilities for land hydrology
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-015-9346-y
– volume: 7
  start-page: 28
  year: 1999
  ident: 10.1016/j.envsoft.2022.105305_bib55
  article-title: Relation of streams, lakes, and wetlands to groundwater flow systems
  publication-title: Hydrogeol. J.
  doi: 10.1007/s100400050178
– volume: 7
  start-page: 7615
  year: 2015
  ident: 10.1016/j.envsoft.2022.105305_bib54
  article-title: A collection of SAR methodologies for monitoring wetlands
  publication-title: Rem. Sens.
  doi: 10.3390/rs70607615
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.envsoft.2022.105305_bib21
  article-title: Automated extraction of surface water extent from Sentinel-1 data
  publication-title: Rem. Sens.
  doi: 10.3390/rs10050797
– volume: 36
  start-page: 3519
  year: 2015
  ident: 10.1016/j.envsoft.2022.105305_bib29
  article-title: Comparing four operational SAR-based water and flood detection approaches
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2015.1060647
– volume: 198
  start-page: 345
  year: 2017
  ident: 10.1016/j.envsoft.2022.105305_bib25
  article-title: Global WaterPack – a 250 m resolution dataset revealing the daily dynamics of global inland water bodies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.045
– year: 2002
  ident: 10.1016/j.envsoft.2022.105305_bib7
  article-title: Environmental issues in lakes and ponds: current state and perspectives
  publication-title: Environ. Conserv.
  doi: 10.1017/S0376892902000218
– volume: 35
  start-page: 336
  year: 2009
  ident: 10.1016/j.envsoft.2022.105305_bib6
  article-title: A semi-automated tool for surface water mapping with RADARSAT-1
  publication-title: Can. J. Rem. Sens.
  doi: 10.5589/m09-025
– volume: 4
  start-page: 205
  year: 2011
  ident: 10.1016/j.envsoft.2022.105305_bib47
  article-title: Automated water spread mapping using ResourceSat-1 AWiFS data for water bodies information system
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens.
  doi: 10.1109/JSTARS.2010.2085032
– volume: 48
  start-page: 882
  year: 2010
  ident: 10.1016/j.envsoft.2022.105305_bib30
  article-title: Flood detection in Urban areas using TerraSAR-X
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2009.2029236
– volume: 4
  start-page: 2923
  year: 2012
  ident: 10.1016/j.envsoft.2022.105305_bib40
  article-title: Capability of C-band SAR for operational wetland monitoring at high latitudes
  publication-title: Rem. Sens.
  doi: 10.3390/rs4102923
– volume: 31
  year: 2020
  ident: 10.1016/j.envsoft.2022.105305_bib16
  article-title: Generating proxy SWOT water surface elevations using WRF-hhydro and the CNES SWOT hydrology simulator
  publication-title: Earth Sp. Sci. Open Arch.
– year: 2016
  ident: 10.1016/j.envsoft.2022.105305_bib50
SSID ssj0001524
Score 2.473195
Snippet This work introduces Sentinel-1 based Inland water dynamics Mapping System (SIMS), an open-source web application developed to enable automated mapping of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105305
SubjectTerms Algorithms
Applications programs
automation
computer software
Google earth engine
Hydrologic measurement
Hydrology
Inland water dynamics
Inland waters
Internet
Lakes
Mapping
Outliers (statistics)
Python
radar
Radar imaging
Sentinel-1
shapefile
Surface water
SWOT
time series analysis
topography
Web application
Title Sentinel-1 based Inland water dynamics Mapping System (SIMS)
URI https://dx.doi.org/10.1016/j.envsoft.2022.105305
https://www.proquest.com/docview/2639039688
https://www.proquest.com/docview/2636382992
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: ACRLP
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AIKHN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6726
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001524
  issn: 1364-8152
  databaseCode: AKRWK
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hUKX2ACUUkTZFW6kHODjxY722JS4IBSWtwiUgcVvty1UQMogkVFz47Z2x14QiJCR88mN3bc3uzjfrnZkP4GeYZ07lWgUFRxXIixDPnNWBdrgWKCi4U9GO7uRMjC74r8v0cg1O2lgYcqv0ur_R6bW29ncGXpqD29lsMI0SQZlGEOBqw6aOYOcZsRj0H1duHligIbYVPKDSqyiewVXfVfdz1Ha4TIxjYrxNiMXudXx6oalr-Dn9DJvebmTHzadtw5qrOrDVcjIwP0U78GFYp6F-6MCnZ6kGO7A7XEW0YTu-_HwHjqbkL1S56yBiBGmWjSvydmR_FTVsG8b6OZsoyuTwhzUpztnBdDyZHn6Bi9Ph-cko8JQKgUmycBEgUGmRZS7VTtvSob1jVKTTkufccmuzJEk0_WtD1Cq40XiYXAhjTShcrNA03IX16qZye8DiyJa4HAmdRquvSE1exjayJuWlUKGJiy7wVpDS-HzjRHtxLVvHsivp5S9J_rKRfxf6T9Vum4Qbb1XI216S_40ciaDwVtVe26vST925jNFmC5NC5HkXfjw9xklHOymqcjfLugzqLUTy-Ov73_4NPtJV49DWg_XF3dJ9RwtnoffrIbwPG8fj36Ozf85p-Vw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EIq0Prb1WvGp1C31oH3KXbDabBPoicnJnPV9OwbdlvyKKROmdLX3p3-5MsvFqKQjmKWRnN2F2d34z2fkA-BwXudeF0VEpUASKMsY770xkPNoCJQV3ajrRnZ7I8Zk4Os_OV-Cgi4Uht8og-1uZ3kjr8GQYuDm8vbwczpJUUqYRBLhGsUET6IXIeE4W2ODP0s8DKdrKtlJERL4M4xleDXz9c47iDu1EzqnkbUpl7P4PUP-I6gZ_DjfgdVAc2X77bW9hxdc9eNMVZWBhj_ZgbdTkof7dg_W_cg32YHO0DGnDcQL9_B18m5HDUO2vo4QRpjk2qcndkf3SNLBrS9bP2VRTKocL1uY4Z19mk-ns63s4OxydHoyjUFMhsmkeLyJEKiPz3GfGG1d5VHisTkxWiUI44Vyepqmhn20IW6WwBi9bSGmdjaXnGnXDTVitb2q_BYwnrkJ7JPYG1b4ys0XFXeJsJiqpY8vLPoiOkcqGhONU9-JadZ5lVyrwXxH_Vcv_Pgweut22GTee6lB0s6QeLR2FqPBU151uVlXYu3PFUWmL01IWRR8-PTTjrqOjFF37m7uGBgUXQjn_8Py378HL8en0WB1PTr5vwytqab3bdmB18ePOf0R1Z2F2m-V8D48t-vE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentinel-1+based+Inland+water+dynamics+Mapping+System+%28SIMS%29&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Soman%2C+Manu+K.&rft.au=Indu%2C+J.&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=1364-8152&rft.eissn=1873-6726&rft.volume=149&rft_id=info:doi/10.1016%2Fj.envsoft.2022.105305&rft.externalDocID=S1364815222000111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon