Bayesian optimization algorithm‐based Gaussian process regression for in situ state of health prediction of minorly deformed lithium‐ion battery

Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous me...

Full description

Saved in:
Bibliographic Details
Published inEnergy science & engineering Vol. 12; no. 4; pp. 1472 - 1485
Main Authors Liu, Qi, Bao, Xubin, Guo, Dandan, Li, Ling
Format Journal Article
LanguageEnglish
Published Wiley 01.04.2024
Subjects
Online AccessGet full text
ISSN2050-0505
2050-0505
DOI10.1002/ese3.1678

Cover

Abstract Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications. State‐of‐health prediction for minorly deformed battery based on Bayesian Gaussian process regression.
AbstractList Abstract Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications.
Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications. State‐of‐health prediction for minorly deformed battery based on Bayesian Gaussian process regression.
Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination ( R ²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R ² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications.
Author Li, Ling
Guo, Dandan
Bao, Xubin
Liu, Qi
Author_xml – sequence: 1
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Ningbo University of Technology
– sequence: 2
  givenname: Xubin
  surname: Bao
  fullname: Bao, Xubin
  organization: Ningbo University of Technology
– sequence: 3
  givenname: Dandan
  surname: Guo
  fullname: Guo, Dandan
  organization: Geely Automobile Research Institute (Ningbo) Co., Ltd
– sequence: 4
  givenname: Ling
  orcidid: 0000-0002-9280-3171
  surname: Li
  fullname: Li, Ling
  email: lingl@nbut.edu.cn
  organization: Ningbo University of Technology
BookMark eNp9kcFq3DAQhk1IIWmaQ95A1xY2GUm2Yx_bsE0DgR7ansXIGu8qyNYiaQnuKY_QQ5-wT1LZW0IpNAdphuGbbw7_6-J49CMVxQWHSw4griiSvOT1dXNUnAqoYJVfdfxXf1Kcx_gAALzkZQv8tPj5ASeKFkfmd8kO9jsm60eGbuODTdvh19MPjZEMu8V9XLhd8B3FyAJtQq4z3fvA7MiiTXsWEyZivmdbQpe2GSdju0Wah4MdfXATM5R3hqx1-Yjdz2dmQmNKFKY3xaseXaTzP_Ws-PZx_fXm0-r-8-3dzfv7VSevoVmhxL7CigtRYkkALbZgKlM3vSQuyspAKVAbKUwteWVa3WFrqIVG9E1f1508K-4OXuPxQe2CHTBMyqNVy8CHjcKQbOdIcWOM1KAFF7qs66oxJQg5_1rqVsrsendw7ccdTo_o3LOQg5rjUXM8ao4nw28PcBd8jIH6F9mrf9jOpiWlFNC6lzYeraPp_2q1_rKWy8Zv7fm2WQ
CitedBy_id crossref_primary_10_1016_j_jprocont_2024_103337
crossref_primary_10_1002_ese3_1982
Cites_doi 10.1016/j.est.2023.107967
10.1016/j.apenergy.2018.03.053
10.1002/batt.202300140
10.1016/j.energy.2023.128445
10.1016/j.est.2022.104427
10.1177/0734242X20906877
10.1016/j.asoc.2021.107281
10.1016/j.energy.2020.117852
10.1109/TIE.2017.2782224
10.1109/ITEC55900.2023.10186914
10.1016/j.ensm.2019.06.036
10.1016/j.est.2023.107797
10.1016/j.jpowsour.2014.01.085
10.1063/5.0071686
10.1109/JPROC.2015.2494218
10.1016/j.measurement.2021.109057
10.1016/j.energy.2019.03.177
10.1016/j.microrel.2018.06.025
10.1016/j.jpowsour.2017.01.126
10.1016/j.jpowsour.2018.10.069
10.1016/j.est.2022.106517
10.1016/j.jpowsour.2016.07.065
10.1149/1945-7111/ac79d4
10.1016/j.rser.2015.11.042
10.1016/j.jpowsour.2018.03.015
10.1002/ente.202000624
10.1016/j.jpowsour.2014.07.176
10.1149/2.0451608jes
10.1016/j.est.2021.102570
10.1016/j.energy.2021.121986
10.1016/j.tsep.2023.101908
10.1016/j.energy.2021.120160
10.1109/TII.2018.2794997
10.1016/j.applthermaleng.2023.121286
10.1002/er.5126
10.1002/aenm.202003868
10.1109/SIITME53254.2021.9663419
ContentType Journal Article
Copyright 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1002/ese3.1678
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-0505
EndPage 1485
ExternalDocumentID oai_doaj_org_article_1ddd3b0b212b46658d40238d40b3b933
10.1002/ese3.1678
10_1002_ese3_1678
ESE31678
Genre article
GrantInformation_xml – fundername: Zhejiang University Students' Science and Technology Innovation Activity Plan and New Talent Plan Project
  funderid: 2023R482014
– fundername: General Project of Zhejiang Provincial Department of Education
  funderid: Y202250294
GroupedDBID 0R~
1OC
24P
31~
5VS
8-1
8FE
8FG
8FH
AAHHS
AAZKR
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D-9
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
ITC
KQ8
L6V
L8X
LK5
M7R
M7S
M~E
O9-
OK1
PCBAR
PIMPY
PROAC
PTHSS
TUS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IVC
PHGZM
PHGZT
PQGLB
ADTOC
UNPAY
ID FETCH-LOGICAL-c3708-a3af5a51224a4e009a90d5d68f3e1245d042abd32d6315d9bca9de9082f8f66c3
IEDL.DBID 24P
ISSN 2050-0505
IngestDate Tue Oct 14 19:05:39 EDT 2025
Tue Aug 19 19:50:38 EDT 2025
Sat Oct 25 05:27:08 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Jan 22 17:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3708-a3af5a51224a4e009a90d5d68f3e1245d042abd32d6315d9bca9de9082f8f66c3
ORCID 0000-0002-9280-3171
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1678
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1ddd3b0b212b46658d40238d40b3b933
unpaywall_primary_10_1002_ese3_1678
crossref_primary_10_1002_ese3_1678
crossref_citationtrail_10_1002_ese3_1678
wiley_primary_10_1002_ese3_1678_ESE31678
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Energy science & engineering
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2018; 384
2019; 410‐411
2023; 59
2023; 6
2021; 225
2022; 51
2023; 282
2016; 327
2021; 105
2019; 15
2020; 203
2020; 38
2014; 271
2016; 104
2018; 65
2022; 239
2016; 163
2016; 56
2014; 256
2023; 42
2020; 8
2018; 88‐90
2021; 38
2021; 11
2023
2021
2023; 234
2021; 18
2022; 14
2020; 24
2021; 174
2018; 219
2020; 44
2017; 345
2023; 70
2022; 169
2019; 176
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Li L (e_1_2_8_23_1) 2021; 18
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 104
  start-page: 148
  issue: 1
  year: 2016
  end-page: 175
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc IEEE
– volume: 11
  issue: 18
  year: 2021
  article-title: Data‐driven safety risk prediction of lithium‐ion battery
  publication-title: Adv Energy Mater
– volume: 203
  year: 2020
  article-title: State of health estimation for Li‐ion battery via partial incremental capacity analysis based on support vector regression
  publication-title: Energy
– volume: 105
  year: 2021
  article-title: Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members
  publication-title: Appl Soft Comput
– volume: 282
  year: 2023
  article-title: Lithium‐ion battery state of health estimation based on multi‐source health indicators extraction and sparse Bayesian learning
  publication-title: Energy
– volume: 38
  year: 2021
  article-title: Lithium‐ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm
  publication-title: J Energy Storage
– volume: 42
  year: 2023
  article-title: Optimal battery preheating in critical subzero ambient condition using different preheating arrangement and advance pyro linear thermal insulation
  publication-title: Thermal Sci Eng Prog
– volume: 239
  year: 2022
  article-title: State‐of‐health estimation for lithium‐ion batteries by combining model‐based incremental capacity analysis with support vector regression
  publication-title: Energy
– volume: 327
  start-page: 457
  year: 2016
  end-page: 464
  article-title: A novel state of health estimation method of li‐ion battery using group method of data handling
  publication-title: J Power Sources
– year: 2021
– volume: 169
  issue: 6
  year: 2022
  article-title: Effects of minor mechanical deformation on the lifetime and performance of commercial 21700 lithium‐ion battery
  publication-title: J Electrochem Soc
– volume: 56
  start-page: 572
  year: 2016
  end-page: 587
  article-title: Critical review of state of health estimation methods of Li‐ion batteries for real applications
  publication-title: Renew Sustain Energy Rev
– volume: 88‐90
  start-page: 514
  year: 2018
  end-page: 518
  article-title: Degradation estimation using feature increment stepwise linear regression for PWM inverter of electro‐mechanical actuator
  publication-title: Microelectron Reliab
– volume: 410‐411
  start-page: 106
  year: 2019
  end-page: 114
  article-title: State‐of‐health estimation for Li‐ion batteries by combing the incremental capacity analysis method with grey relational analysis
  publication-title: J Power Sources
– volume: 51
  year: 2022
  article-title: Battery management strategies: an essential review for battery state of health monitoring techniques
  publication-title: J Energy Storage
– volume: 219
  start-page: 264
  year: 2018
  end-page: 275
  article-title: An electrochemical model based degradation state identification method of lithium‐ion battery for all‐climate electric vehicles application
  publication-title: Appl Energy
– volume: 14
  issue: 2
  year: 2022
  article-title: Research on methods for extracting aging characteristics and health status of lithium‐ion batteries based on small samples
  publication-title: J Renew Sustain Energy
– volume: 44
  start-page: 2984
  issue: 4
  year: 2020
  end-page: 2997
  article-title: Dynamic behavior and modeling of prismatic lithium‐ion battery
  publication-title: Int J Energy Res
– volume: 70
  year: 2023
  article-title: Thermal behaviour of li‐ion battery: an improved electrothermal model considering the effects of depth of discharge and temperature
  publication-title: J Energy Storage
– volume: 384
  start-page: 387
  year: 2018
  end-page: 395
  article-title: A novel Gaussian process regression model for state‐of‐health estimation of lithium‐ion battery using charging curve
  publication-title: J Power Sources
– volume: 18
  issue: 2
  year: 2021
  article-title: Aging mechanisms and thermal characteristics of commercial 18650 lithium‐ion battery induced by minor mechanical deformation
  publication-title: J Electrochem Energy Convers Storage
– volume: 24
  start-page: 85
  year: 2020
  end-page: 112
  article-title: Safety issues and mechanisms of lithium‐ion battery cell upon mechanical abusive loading: a review
  publication-title: Energy Storage Mater
– volume: 176
  start-page: 91
  year: 2019
  end-page: 102
  article-title: Feature parameter extraction and intelligent estimation of the state‐of‐health of lithium‐ion batteries
  publication-title: Energy
– volume: 8
  issue: 11
  year: 2020
  article-title: An intelligent deformation‐based approach to the state of health estimation of collided lithium‐ion batteries for facilitating battery module safety evaluation
  publication-title: Energy Technol
– volume: 163
  start-page: E223
  issue: 8
  year: 2016
  end-page: E229
  article-title: Resolving a discrepancy in diffusion potentials, with a case study for Li‐ion batteries
  publication-title: J Electrochem Soc
– volume: 65
  start-page: 5634
  issue: 7
  year: 2018
  end-page: 5643
  article-title: Remaining useful life prediction and state of health diagnosis for lithium‐ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans Ind Electron
– year: 2023
– volume: 15
  start-page: 127
  issue: 1
  year: 2019
  end-page: 138
  article-title: Gaussian process regression for in situ capacity estimation of lithium‐ion batteries
  publication-title: IEEE Trans Industr Inform
– volume: 70
  year: 2023
  article-title: Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method
  publication-title: J Energy Storage
– volume: 59
  year: 2023
  article-title: Capacity and degradation mode estimation for lithium‐ion batteries based on partial charging curves at different current rates
  publication-title: J Energy Storage
– volume: 225
  year: 2021
  article-title: Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data
  publication-title: Energy
– volume: 38
  start-page: 840
  issue: 8
  year: 2020
  end-page: 850
  article-title: Estimation of municipal waste generation of Turkey using socio‐economic indicators by Bayesian optimization tuned Gaussian process regression
  publication-title: Waste Manage Res
– volume: 271
  start-page: 114
  year: 2014
  end-page: 123
  article-title: Lithium‐ion battery state of health monitoring and remaining useful life prediction based on support vector regression‐particle filter
  publication-title: J Power Sources
– volume: 256
  start-page: 110
  year: 2014
  end-page: 124
  article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility
  publication-title: J Power Sources
– volume: 234
  year: 2023
  article-title: Thermal management of large‐sized LiFePO4 pouch cell using simplified mini‐channel cold plates
  publication-title: Appl Therm Eng
– volume: 345
  start-page: 21
  year: 2017
  end-page: 29
  article-title: A novel method for identification of lithium‐ion battery equivalent circuit model parameters considering electrochemical properties
  publication-title: J Power Sources
– volume: 6
  issue: 9
  year: 2023
  article-title: An incremental capacity analysis‐based state‐of‐health estimation model for lithium‐ion batteries in high‐power applications
  publication-title: Batter Supercaps
– volume: 174
  year: 2021
  article-title: A review on state of health estimations and remaining useful life prognostics of lithium‐ion batteries
  publication-title: Measurement
– ident: e_1_2_8_4_1
  doi: 10.1016/j.est.2023.107967
– ident: e_1_2_8_15_1
  doi: 10.1016/j.apenergy.2018.03.053
– ident: e_1_2_8_17_1
  doi: 10.1002/batt.202300140
– ident: e_1_2_8_22_1
  doi: 10.1016/j.energy.2023.128445
– ident: e_1_2_8_10_1
  doi: 10.1016/j.est.2022.104427
– ident: e_1_2_8_37_1
  doi: 10.1177/0734242X20906877
– ident: e_1_2_8_36_1
  doi: 10.1016/j.asoc.2021.107281
– ident: e_1_2_8_21_1
  doi: 10.1016/j.energy.2020.117852
– ident: e_1_2_8_28_1
  doi: 10.1109/TIE.2017.2782224
– ident: e_1_2_8_11_1
  doi: 10.1109/ITEC55900.2023.10186914
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ensm.2019.06.036
– ident: e_1_2_8_3_1
  doi: 10.1016/j.est.2023.107797
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jpowsour.2014.01.085
– ident: e_1_2_8_34_1
  doi: 10.1063/5.0071686
– ident: e_1_2_8_35_1
  doi: 10.1109/JPROC.2015.2494218
– ident: e_1_2_8_9_1
  doi: 10.1016/j.measurement.2021.109057
– ident: e_1_2_8_32_1
  doi: 10.1016/j.energy.2019.03.177
– ident: e_1_2_8_39_1
  doi: 10.1016/j.microrel.2018.06.025
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jpowsour.2017.01.126
– ident: e_1_2_8_33_1
  doi: 10.1016/j.jpowsour.2018.10.069
– ident: e_1_2_8_13_1
  doi: 10.1016/j.est.2022.106517
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jpowsour.2016.07.065
– ident: e_1_2_8_24_1
  doi: 10.1149/1945-7111/ac79d4
– ident: e_1_2_8_12_1
  doi: 10.1016/j.rser.2015.11.042
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jpowsour.2018.03.015
– ident: e_1_2_8_8_1
  doi: 10.1002/ente.202000624
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jpowsour.2014.07.176
– volume: 18
  issue: 2
  year: 2021
  ident: e_1_2_8_23_1
  article-title: Aging mechanisms and thermal characteristics of commercial 18650 lithium‐ion battery induced by minor mechanical deformation
  publication-title: J Electrochem Energy Convers Storage
– ident: e_1_2_8_30_1
  doi: 10.1149/2.0451608jes
– ident: e_1_2_8_38_1
  doi: 10.1016/j.est.2021.102570
– ident: e_1_2_8_18_1
  doi: 10.1016/j.energy.2021.121986
– ident: e_1_2_8_7_1
  doi: 10.1016/j.tsep.2023.101908
– ident: e_1_2_8_19_1
  doi: 10.1016/j.energy.2021.120160
– ident: e_1_2_8_31_1
  doi: 10.1109/TII.2018.2794997
– ident: e_1_2_8_5_1
  doi: 10.1016/j.applthermaleng.2023.121286
– ident: e_1_2_8_2_1
  doi: 10.1002/er.5126
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.202003868
– ident: e_1_2_8_14_1
  doi: 10.1109/SIITME53254.2021.9663419
SSID ssj0001414901
Score 2.2880096
Snippet Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for...
Abstract Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1472
SubjectTerms Bayesian optimization
Gaussian process regression
Gray relational analysis
minorly deformed battery
state of health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQNXAF4imWlyyguCacEz82KTm0xwkJGjjpusj2OHcrZZPV7kZoO34CBb-QX8KMnVstEo-GJoU1si3P2PNN7PmGsVfWFw16LZOBCiJT6AMyZ3KXaeWVFiHXzlGg-OGjOTtX7y_0xV6pL3oTluiB08Id5wAgnXB4xDpl0F-CIjeDXycdRuN0-oqy2gum4t8Vhchf5NdUQqI4DusgX-eGyqntOaDI03_Ibg7d0m6_2Lb9FaNGJ3N6h90e0SF_k2Z1l90I3T12uMcZeJ99P7HbQJmPvMfdvhjTKLltL3uM868WP75-I88E_J0d1lFumXIB-CpcpkevHUekyucdX883A48pRbxveEqJRHG6u4mdYuNi3vWrdsshELrFbhG2X80HGoYkXKTn3D5g56ezz2_PsrG0QublVJSZlbbRVtO1mkUlicpWAjSYspEBPb4G3MvWgSzAyFxD5bytIFB59KZsjPHyITvo-i48Ynxqg6ugMaUFrZzPnQmVdIC9-NzrKUzY0fV6137kHafyF22dGJOLmlRTk2om7MVOdJnINn4ndEJK2wkQP3ZsQKupR6up_2U1E_Zyp_K_DXUUjeHPEvXs04y4BMrH_2NWT9itAjFTehj0lB1sVkN4hphn455H8_4JDaMDfQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge0A98I9YRJEFHHrJkqxjb3Jsqy0VEhUSrFROwfY426jZZJVNhJYTj8CBJ-yT1GNnVy0ChMQlB2s0TpzxzJeM5xtCXks9zm3UEgHEJgxiGwMCJSIV8FjHPDQRVwo_FN-fipNZ_O6Mn_V9TrEWxvNDbH-44c5w_ho3-BJy7-f77P74jVkZNoqsv71NdgS3YHxAdmanHw4-Y0u5kGOaN-QbPqHr8jeikCPr3yV3umop119lWd4Eqi7SHN8jXzb36A-YXIy6Vo30t1_oG__jIe6Tuz0KpQfebB6QW6Z6SHavcRM-Ij8P5dpghSWtrVdZ9OWaVJbzuina88Xl9x8YAYG-ld3KyS19zQFtzNwfrq2oRcS0qOiqaDvqSpdonVNfemnFMUfklNrBRVHVTbmmYBBFW7X28-C86HAalFCOBnT9mMyOp5-OToK-hUOg2SRMAslkziXH9J20xhCmMg2Bg0hyZiyy4GB9hlTAxiBYxCFVWqZgsA17nuRCaPaEDKq6Mk8JnUijUshFIoHHSkdKmJQpsFp0pPkEhmR_80oz3fObY5uNMvPMzOMMFzrDhR6Sl1vRpSf1-J3QIdrFVgB5uN1A3cyzfltnEQAwFSoLAFQsLJqDGEGQvSqmUsaG5NXWqv421b4zkj9LZNOPU-QsSJ79k8LnZNA2ndmzeKlVL_o9cQWfVx24
  priority: 102
  providerName: Unpaywall
Title Bayesian optimization algorithm‐based Gaussian process regression for in situ state of health prediction of minorly deformed lithium‐ion battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1678
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ese3.1678
https://doaj.org/article/1ddd3b0b212b46658d40238d40b3b933
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: ADMLS
  dateStart: 20140601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: BENPR
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: 8FG
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2050-0505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001414901
  issn: 2050-0505
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LattAFB3SZNFmUfokbhIztF1ko0bSPCzRVVLshEJDoDWkKzEvOQZZMrZF8S6f0EW_sF_Se0eykkBaupnFcDQDunPnnnncM4S8VybOIWrJwHIXBhxiQKBlpAPBDRehi4TWuFD8ciHPx_zzlbjaIh83uTCNPkS34Yae4edrdHCll8e3oqFu6diHCObaR2QnAh6Dwzvml7cbLBzIv3_-OA4FHviGYqMsFMbH3df34pGX7d8lj-tyrtY_VFHcp6w-5oyekactWaQnjXWfky1XviC7dyQEX5Jfp2rtMBGSVuD8szarkqpiUsGy_3r2--YnBipLz1S99Lh5kxpAF27S3IEtKRBXOi3pcrqqqc8wolVOmwxJgONRjm8UKmfTsloUa2odkl1oFlj89bTGbhChvVrn-hUZj4bfPp0H7UsLgWGDMAkUU7lQAk_ZFNgsTFUaWmFlkjMHBEBYcG2lLYutZJGwqTYqtQ5fS8-TXErDXpPtsirdHqED5XRqc5koK7g2kZYuZdpCKyYyYmB75GjzvzPTypDjaxhF1ggoxxmaJkPT9MjbDjpvtDceAp2i0ToAymX7imoxyVrvyyJrLdOhhjituQTSZTlyFSg10yljPfKuM_m_ujryg-HviGz4dYjSAsmb_4fukycxEKXmNtAB2V4tancIRGel-35AQ5mMzvp-s6BPdsYXlyff_wBRnAFB
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKWZQuEE91eFrAoptQJ35MIrGhaMoAbYVEK3UX-ZXpSJlkNDMRmh2fwIIv5Eu418mkVALEJoqsE1vK9fU9ftxjQl5pmxQQtVTkhGeRgBgQGRWbSAorJPOxNAYniienanwuPl7Iiy3yZpML0-pD9Atu6BlhvEYHxwXpgyvVUL_0_HUMg-0NclMoeEFdZ_H5aoVFAPsP9x8nTOKOL5MbaSGWHPRfXwtIQbd_l-w01Vyvv-qyvM5ZQ9A5ukNud2yRvm3Ne5ds-eoe2f1NQ_A--XGo1x4zIWkN3j_r0iqpLic1zPsvZz-_fcdI5eh73SwDbt7mBtCFn7SHYCsKzJVOK7qcrhoaUoxoXdA2RRLguJcTKoXC2bSqF-WaOo9sF6oFGn85bbAZRJgg17l-QM6PRmfvxlF31UJk-ZClkea6kFriNpsGo7FMZ8xJp9KCe2AA0oFva-N44hSPpcuM1ZnzeF16kRZKWf6QbFd15fcIHWpvMleoVDspjI2N8hk3DmqxsZVDNyD7m_-d206HHK_DKPNWQTnJ0TQ5mmZAXvTQeSu-8SfQIRqtB6BediioF5O8c788ds5xwwwEaiMUsC4nkKzA03CTcT4gL3uT_6up_dAZ_o7IR19GqC2QPvp_6HOyMz47Oc6PP5x-ekxuJcCa2qNBT8j2atH4p8B6VuZZ6Ny_AAluASI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVAJ6QDxFKI8VcOjF1PY-YktcWkgorwoJgqperH05jeTYURKryo2fwIFfyC9hdu24VALExYf157Xk2dn5vLvzDcBzqeMco5YIDLNhwDAGBEpEKuBMMx7aiCvlfhQ_HoujMXt3wk-24OUmF6bRh-gW3Jxn-PnaObidm3z_QjXULi19EeFkewW2MY6HrAfbB1_Hp-OLNRaG_N9XQI7xfuCKtm3EhcJ4v3v-Ukjyyv07cK0u53J9LoviMmv1YWd0E260fJEcNAa-BVu2vA07v6kI3oEfh3JtXS4kqdD_Z21iJZHFpMI__7PZz2_fXawy5I2slx43b7IDyMJOmmOwJUHuSqYlWU5XNfFJRqTKSZMkiXC3m-M7xcbZtKwWxZoY6_gudotE_mxau9c4hPKCneu7MB4Nv7w6CtpiC4GmgzAJJJU5l9xttEk0W5jKNDTciCSnFjkAN-jdUhkaG0EjblKlZWqsK5ieJ7kQmt6DXlmV9j6QgbQqNblIpOFM6UgJm1JlsBcdaT4wfdjbfO9Mt0rkriBGkTUaynHmTJM50_ThaQedN_IbfwIdOqN1AKeY7RuqxSRrHTCLjDFUhQpDtWICeZdhjq7gVVGVUtqHZ53J__WqPT8Y_o7Ihp-HTl0gefD_0Cdw9dPrUfbh7fH7XbgeI21qzgY9hN5qUdtHSHtW6nE7un8BiXkCdg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge0A98I9YRJEFHHrJkqxjb3Jsqy0VEhUSrFROwfY426jZZJVNhJYTj8CBJ-yT1GNnVy0ChMQlB2s0TpzxzJeM5xtCXks9zm3UEgHEJgxiGwMCJSIV8FjHPDQRVwo_FN-fipNZ_O6Mn_V9TrEWxvNDbH-44c5w_ho3-BJy7-f77P74jVkZNoqsv71NdgS3YHxAdmanHw4-Y0u5kGOaN-QbPqHr8jeikCPr3yV3umop119lWd4Eqi7SHN8jXzb36A-YXIy6Vo30t1_oG__jIe6Tuz0KpQfebB6QW6Z6SHavcRM-Ij8P5dpghSWtrVdZ9OWaVJbzuina88Xl9x8YAYG-ld3KyS19zQFtzNwfrq2oRcS0qOiqaDvqSpdonVNfemnFMUfklNrBRVHVTbmmYBBFW7X28-C86HAalFCOBnT9mMyOp5-OToK-hUOg2SRMAslkziXH9J20xhCmMg2Bg0hyZiyy4GB9hlTAxiBYxCFVWqZgsA17nuRCaPaEDKq6Mk8JnUijUshFIoHHSkdKmJQpsFp0pPkEhmR_80oz3fObY5uNMvPMzOMMFzrDhR6Sl1vRpSf1-J3QIdrFVgB5uN1A3cyzfltnEQAwFSoLAFQsLJqDGEGQvSqmUsaG5NXWqv421b4zkj9LZNOPU-QsSJ79k8LnZNA2ndmzeKlVL_o9cQWfVx24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+algorithm%E2%80%90based+Gaussian+process+regression+for+in+situ+state+of+health+prediction+of+minorly+deformed+lithium%E2%80%90ion+battery&rft.jtitle=Energy+science+%26+engineering&rft.au=Liu%2C+Qi&rft.au=Bao%2C+Xubin&rft.au=Guo%2C+Dandan&rft.au=Li%2C+Ling&rft.date=2024-04-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=12&rft.issue=4&rft.spage=1472&rft.epage=1485&rft_id=info:doi/10.1002%2Fese3.1678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ese3_1678
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon