Bayesian optimization algorithm‐based Gaussian process regression for in situ state of health prediction of minorly deformed lithium‐ion battery
Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous me...
Saved in:
| Published in | Energy science & engineering Vol. 12; no. 4; pp. 1472 - 1485 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2050-0505 2050-0505 |
| DOI | 10.1002/ese3.1678 |
Cover
| Abstract | Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications.
State‐of‐health prediction for minorly deformed battery based on Bayesian Gaussian process regression. |
|---|---|
| AbstractList | Abstract Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications. Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination (R²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications. State‐of‐health prediction for minorly deformed battery based on Bayesian Gaussian process regression. Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for minorly deformed battery SOH, utilizing a Gaussian process regression (GPR) model tuned by a Bayesian optimization algorithm. Unlike previous methods that interpret voltage–time data as incremental capacitance curves, our approach directly operates on raw voltage–time data. We apply gray relational analysis to select feature variables as inputs and train the Bayesian Gaussian process regression (BGPR) model using experimental data from batteries under different working conditions. To demonstrate the performance of the BGPR model, we compare it with stepwise linear regression, neural network, and Bayesian support vector machine (BSVM) models. The performance of these four models is evaluated using different performance indicators: mean absolute percentage error (MAPE), root‐mean‐squared percentage error (RMSPE), and coefficient of determination ( R ²). The results demonstrate that the BGPR model exhibits superior prediction performance with the lowest MAPE (0.11%), RMSPE (0.12%), and the highest R ² (0.9915) for minorly deformed batteries. Furthermore, the BGPR model exhibits excellent robustness for SOH prediction of normal batteries under different conditions. This study provides an effective and robust method for accurate on‐board SOH prediction in lithium‐ion battery applications. |
| Author | Li, Ling Guo, Dandan Bao, Xubin Liu, Qi |
| Author_xml | – sequence: 1 givenname: Qi surname: Liu fullname: Liu, Qi organization: Ningbo University of Technology – sequence: 2 givenname: Xubin surname: Bao fullname: Bao, Xubin organization: Ningbo University of Technology – sequence: 3 givenname: Dandan surname: Guo fullname: Guo, Dandan organization: Geely Automobile Research Institute (Ningbo) Co., Ltd – sequence: 4 givenname: Ling orcidid: 0000-0002-9280-3171 surname: Li fullname: Li, Ling email: lingl@nbut.edu.cn organization: Ningbo University of Technology |
| BookMark | eNp9kcFq3DAQhk1IIWmaQ95A1xY2GUm2Yx_bsE0DgR7ansXIGu8qyNYiaQnuKY_QQ5-wT1LZW0IpNAdphuGbbw7_6-J49CMVxQWHSw4griiSvOT1dXNUnAqoYJVfdfxXf1Kcx_gAALzkZQv8tPj5ASeKFkfmd8kO9jsm60eGbuODTdvh19MPjZEMu8V9XLhd8B3FyAJtQq4z3fvA7MiiTXsWEyZivmdbQpe2GSdju0Wah4MdfXATM5R3hqx1-Yjdz2dmQmNKFKY3xaseXaTzP_Ws-PZx_fXm0-r-8-3dzfv7VSevoVmhxL7CigtRYkkALbZgKlM3vSQuyspAKVAbKUwteWVa3WFrqIVG9E1f1508K-4OXuPxQe2CHTBMyqNVy8CHjcKQbOdIcWOM1KAFF7qs66oxJQg5_1rqVsrsendw7ccdTo_o3LOQg5rjUXM8ao4nw28PcBd8jIH6F9mrf9jOpiWlFNC6lzYeraPp_2q1_rKWy8Zv7fm2WQ |
| CitedBy_id | crossref_primary_10_1016_j_jprocont_2024_103337 crossref_primary_10_1002_ese3_1982 |
| Cites_doi | 10.1016/j.est.2023.107967 10.1016/j.apenergy.2018.03.053 10.1002/batt.202300140 10.1016/j.energy.2023.128445 10.1016/j.est.2022.104427 10.1177/0734242X20906877 10.1016/j.asoc.2021.107281 10.1016/j.energy.2020.117852 10.1109/TIE.2017.2782224 10.1109/ITEC55900.2023.10186914 10.1016/j.ensm.2019.06.036 10.1016/j.est.2023.107797 10.1016/j.jpowsour.2014.01.085 10.1063/5.0071686 10.1109/JPROC.2015.2494218 10.1016/j.measurement.2021.109057 10.1016/j.energy.2019.03.177 10.1016/j.microrel.2018.06.025 10.1016/j.jpowsour.2017.01.126 10.1016/j.jpowsour.2018.10.069 10.1016/j.est.2022.106517 10.1016/j.jpowsour.2016.07.065 10.1149/1945-7111/ac79d4 10.1016/j.rser.2015.11.042 10.1016/j.jpowsour.2018.03.015 10.1002/ente.202000624 10.1016/j.jpowsour.2014.07.176 10.1149/2.0451608jes 10.1016/j.est.2021.102570 10.1016/j.energy.2021.121986 10.1016/j.tsep.2023.101908 10.1016/j.energy.2021.120160 10.1109/TII.2018.2794997 10.1016/j.applthermaleng.2023.121286 10.1002/er.5126 10.1002/aenm.202003868 10.1109/SIITME53254.2021.9663419 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2024 The Authors. published by Society of Chemical Industry and John Wiley & Sons Ltd. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1002/ese3.1678 |
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2050-0505 |
| EndPage | 1485 |
| ExternalDocumentID | oai_doaj_org_article_1ddd3b0b212b46658d40238d40b3b933 10.1002/ese3.1678 10_1002_ese3_1678 ESE31678 |
| Genre | article |
| GrantInformation_xml | – fundername: Zhejiang University Students' Science and Technology Innovation Activity Plan and New Talent Plan Project funderid: 2023R482014 – fundername: General Project of Zhejiang Provincial Department of Education funderid: Y202250294 |
| GroupedDBID | 0R~ 1OC 24P 31~ 5VS 8-1 8FE 8FG 8FH AAHHS AAZKR ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU D-9 EBS EJD GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS ITC KQ8 L6V L8X LK5 M7R M7S M~E O9- OK1 PCBAR PIMPY PROAC PTHSS TUS WIN AAMMB AAYXX ADMLS AEFGJ AGXDD AIDQK AIDYY CITATION IVC PHGZM PHGZT PQGLB ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3708-a3af5a51224a4e009a90d5d68f3e1245d042abd32d6315d9bca9de9082f8f66c3 |
| IEDL.DBID | 24P |
| ISSN | 2050-0505 |
| IngestDate | Tue Oct 14 19:05:39 EDT 2025 Tue Aug 19 19:50:38 EDT 2025 Sat Oct 25 05:27:08 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Wed Jan 22 17:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3708-a3af5a51224a4e009a90d5d68f3e1245d042abd32d6315d9bca9de9082f8f66c3 |
| ORCID | 0000-0002-9280-3171 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1678 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ddd3b0b212b46658d40238d40b3b933 unpaywall_primary_10_1002_ese3_1678 crossref_primary_10_1002_ese3_1678 crossref_citationtrail_10_1002_ese3_1678 wiley_primary_10_1002_ese3_1678_ESE31678 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy science & engineering |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2018; 384 2019; 410‐411 2023; 59 2023; 6 2021; 225 2022; 51 2023; 282 2016; 327 2021; 105 2019; 15 2020; 203 2020; 38 2014; 271 2016; 104 2018; 65 2022; 239 2016; 163 2016; 56 2014; 256 2023; 42 2020; 8 2018; 88‐90 2021; 38 2021; 11 2023 2021 2023; 234 2021; 18 2022; 14 2020; 24 2021; 174 2018; 219 2020; 44 2017; 345 2023; 70 2022; 169 2019; 176 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Li L (e_1_2_8_23_1) 2021; 18 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 104 start-page: 148 issue: 1 year: 2016 end-page: 175 article-title: Taking the human out of the loop: a review of Bayesian optimization publication-title: Proc IEEE – volume: 11 issue: 18 year: 2021 article-title: Data‐driven safety risk prediction of lithium‐ion battery publication-title: Adv Energy Mater – volume: 203 year: 2020 article-title: State of health estimation for Li‐ion battery via partial incremental capacity analysis based on support vector regression publication-title: Energy – volume: 105 year: 2021 article-title: Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members publication-title: Appl Soft Comput – volume: 282 year: 2023 article-title: Lithium‐ion battery state of health estimation based on multi‐source health indicators extraction and sparse Bayesian learning publication-title: Energy – volume: 38 year: 2021 article-title: Lithium‐ion battery state of health estimation using the incremental capacity and wavelet neural networks with genetic algorithm publication-title: J Energy Storage – volume: 42 year: 2023 article-title: Optimal battery preheating in critical subzero ambient condition using different preheating arrangement and advance pyro linear thermal insulation publication-title: Thermal Sci Eng Prog – volume: 239 year: 2022 article-title: State‐of‐health estimation for lithium‐ion batteries by combining model‐based incremental capacity analysis with support vector regression publication-title: Energy – volume: 327 start-page: 457 year: 2016 end-page: 464 article-title: A novel state of health estimation method of li‐ion battery using group method of data handling publication-title: J Power Sources – year: 2021 – volume: 169 issue: 6 year: 2022 article-title: Effects of minor mechanical deformation on the lifetime and performance of commercial 21700 lithium‐ion battery publication-title: J Electrochem Soc – volume: 56 start-page: 572 year: 2016 end-page: 587 article-title: Critical review of state of health estimation methods of Li‐ion batteries for real applications publication-title: Renew Sustain Energy Rev – volume: 88‐90 start-page: 514 year: 2018 end-page: 518 article-title: Degradation estimation using feature increment stepwise linear regression for PWM inverter of electro‐mechanical actuator publication-title: Microelectron Reliab – volume: 410‐411 start-page: 106 year: 2019 end-page: 114 article-title: State‐of‐health estimation for Li‐ion batteries by combing the incremental capacity analysis method with grey relational analysis publication-title: J Power Sources – volume: 51 year: 2022 article-title: Battery management strategies: an essential review for battery state of health monitoring techniques publication-title: J Energy Storage – volume: 219 start-page: 264 year: 2018 end-page: 275 article-title: An electrochemical model based degradation state identification method of lithium‐ion battery for all‐climate electric vehicles application publication-title: Appl Energy – volume: 14 issue: 2 year: 2022 article-title: Research on methods for extracting aging characteristics and health status of lithium‐ion batteries based on small samples publication-title: J Renew Sustain Energy – volume: 44 start-page: 2984 issue: 4 year: 2020 end-page: 2997 article-title: Dynamic behavior and modeling of prismatic lithium‐ion battery publication-title: Int J Energy Res – volume: 70 year: 2023 article-title: Thermal behaviour of li‐ion battery: an improved electrothermal model considering the effects of depth of discharge and temperature publication-title: J Energy Storage – volume: 384 start-page: 387 year: 2018 end-page: 395 article-title: A novel Gaussian process regression model for state‐of‐health estimation of lithium‐ion battery using charging curve publication-title: J Power Sources – volume: 18 issue: 2 year: 2021 article-title: Aging mechanisms and thermal characteristics of commercial 18650 lithium‐ion battery induced by minor mechanical deformation publication-title: J Electrochem Energy Convers Storage – volume: 24 start-page: 85 year: 2020 end-page: 112 article-title: Safety issues and mechanisms of lithium‐ion battery cell upon mechanical abusive loading: a review publication-title: Energy Storage Mater – volume: 176 start-page: 91 year: 2019 end-page: 102 article-title: Feature parameter extraction and intelligent estimation of the state‐of‐health of lithium‐ion batteries publication-title: Energy – volume: 8 issue: 11 year: 2020 article-title: An intelligent deformation‐based approach to the state of health estimation of collided lithium‐ion batteries for facilitating battery module safety evaluation publication-title: Energy Technol – volume: 163 start-page: E223 issue: 8 year: 2016 end-page: E229 article-title: Resolving a discrepancy in diffusion potentials, with a case study for Li‐ion batteries publication-title: J Electrochem Soc – volume: 65 start-page: 5634 issue: 7 year: 2018 end-page: 5643 article-title: Remaining useful life prediction and state of health diagnosis for lithium‐ion batteries using particle filter and support vector regression publication-title: IEEE Trans Ind Electron – year: 2023 – volume: 15 start-page: 127 issue: 1 year: 2019 end-page: 138 article-title: Gaussian process regression for in situ capacity estimation of lithium‐ion batteries publication-title: IEEE Trans Industr Inform – volume: 70 year: 2023 article-title: Predicting temperature distribution of passively balanced battery module under realistic driving conditions through coupled equivalent circuit method and lumped heat dissipation method publication-title: J Energy Storage – volume: 59 year: 2023 article-title: Capacity and degradation mode estimation for lithium‐ion batteries based on partial charging curves at different current rates publication-title: J Energy Storage – volume: 225 year: 2021 article-title: Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data publication-title: Energy – volume: 38 start-page: 840 issue: 8 year: 2020 end-page: 850 article-title: Estimation of municipal waste generation of Turkey using socio‐economic indicators by Bayesian optimization tuned Gaussian process regression publication-title: Waste Manage Res – volume: 271 start-page: 114 year: 2014 end-page: 123 article-title: Lithium‐ion battery state of health monitoring and remaining useful life prediction based on support vector regression‐particle filter publication-title: J Power Sources – volume: 256 start-page: 110 year: 2014 end-page: 124 article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility publication-title: J Power Sources – volume: 234 year: 2023 article-title: Thermal management of large‐sized LiFePO4 pouch cell using simplified mini‐channel cold plates publication-title: Appl Therm Eng – volume: 345 start-page: 21 year: 2017 end-page: 29 article-title: A novel method for identification of lithium‐ion battery equivalent circuit model parameters considering electrochemical properties publication-title: J Power Sources – volume: 6 issue: 9 year: 2023 article-title: An incremental capacity analysis‐based state‐of‐health estimation model for lithium‐ion batteries in high‐power applications publication-title: Batter Supercaps – volume: 174 year: 2021 article-title: A review on state of health estimations and remaining useful life prognostics of lithium‐ion batteries publication-title: Measurement – ident: e_1_2_8_4_1 doi: 10.1016/j.est.2023.107967 – ident: e_1_2_8_15_1 doi: 10.1016/j.apenergy.2018.03.053 – ident: e_1_2_8_17_1 doi: 10.1002/batt.202300140 – ident: e_1_2_8_22_1 doi: 10.1016/j.energy.2023.128445 – ident: e_1_2_8_10_1 doi: 10.1016/j.est.2022.104427 – ident: e_1_2_8_37_1 doi: 10.1177/0734242X20906877 – ident: e_1_2_8_36_1 doi: 10.1016/j.asoc.2021.107281 – ident: e_1_2_8_21_1 doi: 10.1016/j.energy.2020.117852 – ident: e_1_2_8_28_1 doi: 10.1109/TIE.2017.2782224 – ident: e_1_2_8_11_1 doi: 10.1109/ITEC55900.2023.10186914 – ident: e_1_2_8_6_1 doi: 10.1016/j.ensm.2019.06.036 – ident: e_1_2_8_3_1 doi: 10.1016/j.est.2023.107797 – ident: e_1_2_8_29_1 doi: 10.1016/j.jpowsour.2014.01.085 – ident: e_1_2_8_34_1 doi: 10.1063/5.0071686 – ident: e_1_2_8_35_1 doi: 10.1109/JPROC.2015.2494218 – ident: e_1_2_8_9_1 doi: 10.1016/j.measurement.2021.109057 – ident: e_1_2_8_32_1 doi: 10.1016/j.energy.2019.03.177 – ident: e_1_2_8_39_1 doi: 10.1016/j.microrel.2018.06.025 – ident: e_1_2_8_16_1 doi: 10.1016/j.jpowsour.2017.01.126 – ident: e_1_2_8_33_1 doi: 10.1016/j.jpowsour.2018.10.069 – ident: e_1_2_8_13_1 doi: 10.1016/j.est.2022.106517 – ident: e_1_2_8_25_1 doi: 10.1016/j.jpowsour.2016.07.065 – ident: e_1_2_8_24_1 doi: 10.1149/1945-7111/ac79d4 – ident: e_1_2_8_12_1 doi: 10.1016/j.rser.2015.11.042 – ident: e_1_2_8_26_1 doi: 10.1016/j.jpowsour.2018.03.015 – ident: e_1_2_8_8_1 doi: 10.1002/ente.202000624 – ident: e_1_2_8_27_1 doi: 10.1016/j.jpowsour.2014.07.176 – volume: 18 issue: 2 year: 2021 ident: e_1_2_8_23_1 article-title: Aging mechanisms and thermal characteristics of commercial 18650 lithium‐ion battery induced by minor mechanical deformation publication-title: J Electrochem Energy Convers Storage – ident: e_1_2_8_30_1 doi: 10.1149/2.0451608jes – ident: e_1_2_8_38_1 doi: 10.1016/j.est.2021.102570 – ident: e_1_2_8_18_1 doi: 10.1016/j.energy.2021.121986 – ident: e_1_2_8_7_1 doi: 10.1016/j.tsep.2023.101908 – ident: e_1_2_8_19_1 doi: 10.1016/j.energy.2021.120160 – ident: e_1_2_8_31_1 doi: 10.1109/TII.2018.2794997 – ident: e_1_2_8_5_1 doi: 10.1016/j.applthermaleng.2023.121286 – ident: e_1_2_8_2_1 doi: 10.1002/er.5126 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.202003868 – ident: e_1_2_8_14_1 doi: 10.1109/SIITME53254.2021.9663419 |
| SSID | ssj0001414901 |
| Score | 2.2880096 |
| Snippet | Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction technique for... Abstract Accurate on‐board state‐of‐health (SOH) prediction is crucial for lithium‐ion battery applications. This study presents an in situ prediction... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1472 |
| SubjectTerms | Bayesian optimization Gaussian process regression Gray relational analysis minorly deformed battery state of health |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwELbQNXAF4imWlyyguCacEz82KTm0xwkJGjjpusj2OHcrZZPV7kZoO34CBb-QX8KMnVstEo-GJoU1si3P2PNN7PmGsVfWFw16LZOBCiJT6AMyZ3KXaeWVFiHXzlGg-OGjOTtX7y_0xV6pL3oTluiB08Id5wAgnXB4xDpl0F-CIjeDXycdRuN0-oqy2gum4t8Vhchf5NdUQqI4DusgX-eGyqntOaDI03_Ibg7d0m6_2Lb9FaNGJ3N6h90e0SF_k2Z1l90I3T12uMcZeJ99P7HbQJmPvMfdvhjTKLltL3uM868WP75-I88E_J0d1lFumXIB-CpcpkevHUekyucdX883A48pRbxveEqJRHG6u4mdYuNi3vWrdsshELrFbhG2X80HGoYkXKTn3D5g56ezz2_PsrG0QublVJSZlbbRVtO1mkUlicpWAjSYspEBPb4G3MvWgSzAyFxD5bytIFB59KZsjPHyITvo-i48Ynxqg6ugMaUFrZzPnQmVdIC9-NzrKUzY0fV6137kHafyF22dGJOLmlRTk2om7MVOdJnINn4ndEJK2wkQP3ZsQKupR6up_2U1E_Zyp_K_DXUUjeHPEvXs04y4BMrH_2NWT9itAjFTehj0lB1sVkN4hphn455H8_4JDaMDfQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge0A98I9YRJEFHHrJkqxjb3Jsqy0VEhUSrFROwfY426jZZJVNhJYTj8CBJ-yT1GNnVy0ChMQlB2s0TpzxzJeM5xtCXks9zm3UEgHEJgxiGwMCJSIV8FjHPDQRVwo_FN-fipNZ_O6Mn_V9TrEWxvNDbH-44c5w_ho3-BJy7-f77P74jVkZNoqsv71NdgS3YHxAdmanHw4-Y0u5kGOaN-QbPqHr8jeikCPr3yV3umop119lWd4Eqi7SHN8jXzb36A-YXIy6Vo30t1_oG__jIe6Tuz0KpQfebB6QW6Z6SHavcRM-Ij8P5dpghSWtrVdZ9OWaVJbzuina88Xl9x8YAYG-ld3KyS19zQFtzNwfrq2oRcS0qOiqaDvqSpdonVNfemnFMUfklNrBRVHVTbmmYBBFW7X28-C86HAalFCOBnT9mMyOp5-OToK-hUOg2SRMAslkziXH9J20xhCmMg2Bg0hyZiyy4GB9hlTAxiBYxCFVWqZgsA17nuRCaPaEDKq6Mk8JnUijUshFIoHHSkdKmJQpsFp0pPkEhmR_80oz3fObY5uNMvPMzOMMFzrDhR6Sl1vRpSf1-J3QIdrFVgB5uN1A3cyzfltnEQAwFSoLAFQsLJqDGEGQvSqmUsaG5NXWqv421b4zkj9LZNOPU-QsSJ79k8LnZNA2ndmzeKlVL_o9cQWfVx24 priority: 102 providerName: Unpaywall |
| Title | Bayesian optimization algorithm‐based Gaussian process regression for in situ state of health prediction of minorly deformed lithium‐ion battery |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fese3.1678 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ese3.1678 https://doaj.org/article/1ddd3b0b212b46658d40238d40b3b933 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: ADMLS dateStart: 20140601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: BENPR dateStart: 20130401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: 8FG dateStart: 20130401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2050-0505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001414901 issn: 2050-0505 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LattAFB3SZNFmUfokbhIztF1ko0bSPCzRVVLshEJDoDWkKzEvOQZZMrZF8S6f0EW_sF_Se0eykkBaupnFcDQDunPnnnncM4S8VybOIWrJwHIXBhxiQKBlpAPBDRehi4TWuFD8ciHPx_zzlbjaIh83uTCNPkS34Yae4edrdHCll8e3oqFu6diHCObaR2QnAh6Dwzvml7cbLBzIv3_-OA4FHviGYqMsFMbH3df34pGX7d8lj-tyrtY_VFHcp6w-5oyekactWaQnjXWfky1XviC7dyQEX5Jfp2rtMBGSVuD8szarkqpiUsGy_3r2--YnBipLz1S99Lh5kxpAF27S3IEtKRBXOi3pcrqqqc8wolVOmwxJgONRjm8UKmfTsloUa2odkl1oFlj89bTGbhChvVrn-hUZj4bfPp0H7UsLgWGDMAkUU7lQAk_ZFNgsTFUaWmFlkjMHBEBYcG2lLYutZJGwqTYqtQ5fS8-TXErDXpPtsirdHqED5XRqc5koK7g2kZYuZdpCKyYyYmB75GjzvzPTypDjaxhF1ggoxxmaJkPT9MjbDjpvtDceAp2i0ToAymX7imoxyVrvyyJrLdOhhjituQTSZTlyFSg10yljPfKuM_m_ujryg-HviGz4dYjSAsmb_4fukycxEKXmNtAB2V4tancIRGel-35AQ5mMzvp-s6BPdsYXlyff_wBRnAFB |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKWZQuEE91eFrAoptQJ35MIrGhaMoAbYVEK3UX-ZXpSJlkNDMRmh2fwIIv5Eu418mkVALEJoqsE1vK9fU9ftxjQl5pmxQQtVTkhGeRgBgQGRWbSAorJPOxNAYniienanwuPl7Iiy3yZpML0-pD9Atu6BlhvEYHxwXpgyvVUL_0_HUMg-0NclMoeEFdZ_H5aoVFAPsP9x8nTOKOL5MbaSGWHPRfXwtIQbd_l-w01Vyvv-qyvM5ZQ9A5ukNud2yRvm3Ne5ds-eoe2f1NQ_A--XGo1x4zIWkN3j_r0iqpLic1zPsvZz-_fcdI5eh73SwDbt7mBtCFn7SHYCsKzJVOK7qcrhoaUoxoXdA2RRLguJcTKoXC2bSqF-WaOo9sF6oFGn85bbAZRJgg17l-QM6PRmfvxlF31UJk-ZClkea6kFriNpsGo7FMZ8xJp9KCe2AA0oFva-N44hSPpcuM1ZnzeF16kRZKWf6QbFd15fcIHWpvMleoVDspjI2N8hk3DmqxsZVDNyD7m_-d206HHK_DKPNWQTnJ0TQ5mmZAXvTQeSu-8SfQIRqtB6BediioF5O8c788ds5xwwwEaiMUsC4nkKzA03CTcT4gL3uT_6up_dAZ_o7IR19GqC2QPvp_6HOyMz47Oc6PP5x-ekxuJcCa2qNBT8j2atH4p8B6VuZZ6Ny_AAluASI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVAJ6QDxFKI8VcOjF1PY-YktcWkgorwoJgqperH05jeTYURKryo2fwIFfyC9hdu24VALExYf157Xk2dn5vLvzDcBzqeMco5YIDLNhwDAGBEpEKuBMMx7aiCvlfhQ_HoujMXt3wk-24OUmF6bRh-gW3Jxn-PnaObidm3z_QjXULi19EeFkewW2MY6HrAfbB1_Hp-OLNRaG_N9XQI7xfuCKtm3EhcJ4v3v-Ukjyyv07cK0u53J9LoviMmv1YWd0E260fJEcNAa-BVu2vA07v6kI3oEfh3JtXS4kqdD_Z21iJZHFpMI__7PZz2_fXawy5I2slx43b7IDyMJOmmOwJUHuSqYlWU5XNfFJRqTKSZMkiXC3m-M7xcbZtKwWxZoY6_gudotE_mxau9c4hPKCneu7MB4Nv7w6CtpiC4GmgzAJJJU5l9xttEk0W5jKNDTciCSnFjkAN-jdUhkaG0EjblKlZWqsK5ieJ7kQmt6DXlmV9j6QgbQqNblIpOFM6UgJm1JlsBcdaT4wfdjbfO9Mt0rkriBGkTUaynHmTJM50_ThaQedN_IbfwIdOqN1AKeY7RuqxSRrHTCLjDFUhQpDtWICeZdhjq7gVVGVUtqHZ53J__WqPT8Y_o7Ihp-HTl0gefD_0Cdw9dPrUfbh7fH7XbgeI21qzgY9hN5qUdtHSHtW6nE7un8BiXkCdg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge0A98I9YRJEFHHrJkqxjb3Jsqy0VEhUSrFROwfY426jZZJVNhJYTj8CBJ-yT1GNnVy0ChMQlB2s0TpzxzJeM5xtCXks9zm3UEgHEJgxiGwMCJSIV8FjHPDQRVwo_FN-fipNZ_O6Mn_V9TrEWxvNDbH-44c5w_ho3-BJy7-f77P74jVkZNoqsv71NdgS3YHxAdmanHw4-Y0u5kGOaN-QbPqHr8jeikCPr3yV3umop119lWd4Eqi7SHN8jXzb36A-YXIy6Vo30t1_oG__jIe6Tuz0KpQfebB6QW6Z6SHavcRM-Ij8P5dpghSWtrVdZ9OWaVJbzuina88Xl9x8YAYG-ld3KyS19zQFtzNwfrq2oRcS0qOiqaDvqSpdonVNfemnFMUfklNrBRVHVTbmmYBBFW7X28-C86HAalFCOBnT9mMyOp5-OToK-hUOg2SRMAslkziXH9J20xhCmMg2Bg0hyZiyy4GB9hlTAxiBYxCFVWqZgsA17nuRCaPaEDKq6Mk8JnUijUshFIoHHSkdKmJQpsFp0pPkEhmR_80oz3fObY5uNMvPMzOMMFzrDhR6Sl1vRpSf1-J3QIdrFVgB5uN1A3cyzfltnEQAwFSoLAFQsLJqDGEGQvSqmUsaG5NXWqv421b4zkj9LZNOPU-QsSJ79k8LnZNA2ndmzeKlVL_o9cQWfVx24 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+algorithm%E2%80%90based+Gaussian+process+regression+for+in+situ+state+of+health+prediction+of+minorly+deformed+lithium%E2%80%90ion+battery&rft.jtitle=Energy+science+%26+engineering&rft.au=Liu%2C+Qi&rft.au=Bao%2C+Xubin&rft.au=Guo%2C+Dandan&rft.au=Li%2C+Ling&rft.date=2024-04-01&rft.issn=2050-0505&rft.eissn=2050-0505&rft.volume=12&rft.issue=4&rft.spage=1472&rft.epage=1485&rft_id=info:doi/10.1002%2Fese3.1678&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ese3_1678 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0505&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0505&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0505&client=summon |