Leximin Asymmetric Multiple Objective Distributed Constraint Optimization Problem

The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized coo...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence Vol. 34; no. 1; pp. 49 - 84
Main Authors Matsui, Toshihiro, Matsuo, Hiroshi, Silaghi, Marius, Hirayama, Katsutoshi, Yokoo, Makoto
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.02.2018
Subjects
Online AccessGet full text
ISSN0824-7935
1467-8640
DOI10.1111/coin.12106

Cover

Abstract The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are performed by multiple agents. In a conventional DCOP, a single objective is considered. The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. However, such models do not capture the interests of each agent. On the other hand, in several practical problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents. Because the optimization based on the leximin ordering improves the equality among the satisfied preferences of the agents, this class of problems is important. We propose several solution methods for Leximin AMODCOPs generalizing traditional operators into the operators on sorted objective vectors and leximin. The solution methods applied to the Leximin AMODCOPs are based on pseudo trees. Also, the investigated search methods employ the concept of boundaries of the sorted vectors.
AbstractList The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are performed by multiple agents. In a conventional DCOP, a single objective is considered. The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. However, such models do not capture the interests of each agent. On the other hand, in several practical problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents. Because the optimization based on the leximin ordering improves the equality among the satisfied preferences of the agents, this class of problems is important. We propose several solution methods for Leximin AMODCOPs generalizing traditional operators into the operators on sorted objective vectors and leximin. The solution methods applied to the Leximin AMODCOPs are based on pseudo trees. Also, the investigated search methods employ the concept of boundaries of the sorted vectors.
The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource allocation problems is formalized using constraint optimization problems. The solvers for the problem are designed based on decentralized cooperative algorithms that are performed by multiple agents. In a conventional DCOP, a single objective is considered.The Multiple Objective Distributed Constraint Optimization Problem (MODCOP) is an extension of the DCOP framework, where agents cooperatively have to optimize simultaneously multiple objective functions. In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. However, such models do not capture the interests of each agent. On the other hand, in several practical problems, the share of each agent is important. Such shares are modeled as preference values of agents. This class of problems can be defined using the MODCOP on the preferences of agents. In particular, we define optimization problems based on leximin ordering and Asymmetric DCOPs (Leximin AMODCOPs). The leximin defines an ordering among vectors of objective values. In addition, Asymmetric DCOPs capture the preferences of agents. Because the optimization based on the leximin ordering improves the equality among the satisfied preferences of the agents, this class of problems is important. We propose several solution methods for Leximin AMODCOPs generalizing traditional operators into the operators on sorted objective vectors and leximin. The solution methods applied to the Leximin AMODCOPs are based on pseudo trees. Also, the investigated search methods employ the concept of boundaries of the sorted vectors.
Author Silaghi, Marius
Yokoo, Makoto
Matsui, Toshihiro
Matsuo, Hiroshi
Hirayama, Katsutoshi
Author_xml – sequence: 1
  givenname: Toshihiro
  surname: Matsui
  fullname: Matsui, Toshihiro
  email: matsui.t@nitech.ac.jp
  organization: Nagoya Institute of Technology
– sequence: 2
  givenname: Hiroshi
  surname: Matsuo
  fullname: Matsuo, Hiroshi
  organization: Nagoya Institute of Technology
– sequence: 3
  givenname: Marius
  surname: Silaghi
  fullname: Silaghi, Marius
  organization: Florida Institute of Technology
– sequence: 4
  givenname: Katsutoshi
  surname: Hirayama
  fullname: Hirayama, Katsutoshi
  organization: Kobe University
– sequence: 5
  givenname: Makoto
  surname: Yokoo
  fullname: Yokoo, Makoto
  organization: Kyushu University
BookMark eNp9kE1LxDAQhoOs4Lp68RcUvAldJ222SY9L_VpYrYKeQ5pOIUvb1DZV119v1np2LsMwzzsDzymZtbZFQi4oLKmva21Nu6QRheSIzClLeCgSBjMyBxGxkKfx6oScDsMOAGjMxJy8bPHLNKYN1sO-adD1RgePY-1MV2OQFzvUznxgcGMGvypGh2WQ2dYPyrQuyDvnw9_KGdsGz70tamzOyHGl6gHP__qCvN3dvmYP4Ta_32TrbahjDklIyyKOKC9j4IBYolgpEEkKoFORJkVS0RQ1U5pHJS8LXbCYJpFQQrGqqmKfW5DL6W7X2_cRByd3duxb_1JGADxeRZyBp64mSvd2GHqsZNebRvV7SUEelMmDMvmrzMN0gj9Njft_SJnlm6cp8wNoRnEX
Cites_doi 10.1016/j.artint.2008.10.010
10.1007/978-3-642-32729-2_10
10.5220/0004186700150024
10.1109/WI-IAT.2013.90
10.1007/978-3-642-24013-3_5
10.1016/j.artint.2010.11.001
10.1016/j.artint.2004.10.004
10.1109/WI-IAT.2012.22
10.1007/s10458-010-9132-7
10.1007/s00158-003-0368-6
10.1613/jair.3945
10.1017/CCOL0521360552
10.1093/comjnl/bxq022
10.1613/jair.2500
10.1016/j.artint.2004.09.003
10.1016/S0004-3702(99)00059-4
10.1609/aaai.v24i1.7552
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/coin.12106
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1467-8640
EndPage 84
ExternalDocumentID 10_1111_coin_12106
COIN12106
Genre article
GrantInformation_xml – fundername: KAKENHI Grant‐in‐Aid for Scientific Research (C)
  funderid: 25330257
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOD
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3706-1db3217d3070eede85a086900c9896b6f19ec4ac72d7dbcb431628a8a4fff37d3
IEDL.DBID DR2
ISSN 0824-7935
IngestDate Sun Jul 13 04:26:31 EDT 2025
Wed Oct 01 05:56:15 EDT 2025
Thu Sep 25 07:36:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3706-1db3217d3070eede85a086900c9896b6f19ec4ac72d7dbcb431628a8a4fff37d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://nitech.repo.nii.ac.jp/records/6418
PQID 2007352740
PQPubID 34323
PageCount 36
ParticipantIDs proquest_journals_2007352740
crossref_primary_10_1111_coin_12106
wiley_primary_10_1111_coin_12106_COIN12106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computational intelligence
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 53
2013; 47
2011; 1
2012
2011
2010
2004; 26
1998
2008
1997
2006
2005
2008; 32
2009; 173
2004
2013a; 1
2013b
2002
2011; 175
2012; 2
2005; 161
2012; 1
2011; 22
1999; 113
1988
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
Sen A. K. (e_1_2_10_25_1) 1997
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – start-page: 372
  year: 1998
  end-page: 381
– start-page: 591
  year: 2008
  end-page: 598
– volume: 1
  start-page: 371
  year: 2011
  end-page: 378
– volume: 47
  start-page: 613
  year: 2013
  end-page: 647
  article-title: Asymmetric distributed constraint optimization problems
  publication-title: Journal of Artificial Intelligence Research
– start-page: 35
  year: 2011
  end-page: 47
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  article-title: Survey of multi‐objective optimization methods for engineering
  publication-title: Structural and Multidisciplinary Optimization
– volume: 53
  start-page: 1447
  issue: 9
  year: 2010
  end-page: 1461
  article-title: Decentralized coordination in robocup rescue
  publication-title: Computer Journal
– volume: 173
  start-page: 343
  issue: 2
  year: 2009
  end-page: 364
  article-title: Computing leximin‐optimal solutions in constraint networks
  publication-title: Artificial Intelligence
– start-page: 393
  year: 2008
  end-page: 398
– volume: 175
  start-page: 730
  issue: 2
  year: 2011
  end-page: 759
  article-title: Bounded approximate decentralised coordination via the max‐sum algorithm
  publication-title: Artificial Intelligence
– volume: 22
  start-page: 439
  issue: 3
  year: 2011
  end-page: 464
  article-title: Constructing a unifying theory of dynamic programming DCOP algorithms via the generalized distributive law
  publication-title: Autonomous Agents and Multi‐Agent Systems
– volume: 1
  start-page: 133
  year: 2011
  end-page: 140
– start-page: 219
  year: 1998
  end-page: 223
– start-page: 727
  year: 2005
  end-page: 732
– volume: 1
  start-page: 15
  year: 2013a
  end-page: 24
– start-page: 53
  year: 2013b
  end-page: 58
– start-page: 310
  year: 2004
  end-page: 317
– start-page: 137
  year: 2012
  end-page: 152
– start-page: 197
  year: 2010
  end-page: 203
– volume: 113
  start-page: 41
  issue: 1‐2
  year: 1999
  end-page: 85
  article-title: Bucket elimination: a unifying framework for reasoning
  publication-title: Artificial Intelligence
– volume: 1
  start-page: 281
  year: 2012
  end-page: 288
– start-page: 639
  year: 2008
  end-page: 646
– start-page: 266
  year: 2005
  end-page: 271
– year: 2002
– volume: 161
  start-page: 55
  issue: 1‐2
  year: 2005
  end-page: 87
  article-title: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks
  publication-title: Artificial Intelligence
– year: 1988
– year: 2006
– volume: 161
  start-page: 149
  issue: 1‐2
  year: 2005
  end-page: 180
  article-title: Adopt: asynchronous distributed constraint optimization with quality guarantees
  publication-title: Artificial Intelligence
– year: 1997
– volume: 2
  start-page: 25
  year: 2012
  end-page: 32
– volume: 32
  start-page: 705
  year: 2008
  end-page: 755
  article-title: M‐DPOP: faithful distributed implementation of efficient social choice problems
  publication-title: Journal of Artificial Intelligence Research
– ident: e_1_2_10_2_1
  doi: 10.1016/j.artint.2008.10.010
– ident: e_1_2_10_12_1
  doi: 10.1007/978-3-642-32729-2_10
– ident: e_1_2_10_5_1
– ident: e_1_2_10_18_1
  doi: 10.5220/0004186700150024
– ident: e_1_2_10_30_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_19_1
  doi: 10.1109/WI-IAT.2013.90
– ident: e_1_2_10_28_1
– ident: e_1_2_10_17_1
  doi: 10.1007/978-3-642-24013-3_5
– ident: e_1_2_10_32_1
– ident: e_1_2_10_24_1
  doi: 10.1016/j.artint.2010.11.001
– ident: e_1_2_10_21_1
– volume-title: Choice, Welfare and Measurement
  year: 1997
  ident: e_1_2_10_25_1
– ident: e_1_2_10_31_1
  doi: 10.1016/j.artint.2004.10.004
– ident: e_1_2_10_8_1
– ident: e_1_2_10_20_1
– ident: e_1_2_10_29_1
– ident: e_1_2_10_10_1
  doi: 10.1109/WI-IAT.2012.22
– ident: e_1_2_10_27_1
  doi: 10.1007/s10458-010-9132-7
– ident: e_1_2_10_9_1
  doi: 10.1007/s00158-003-0368-6
– ident: e_1_2_10_6_1
  doi: 10.1613/jair.3945
– ident: e_1_2_10_4_1
– ident: e_1_2_10_14_1
– ident: e_1_2_10_16_1
  doi: 10.1017/CCOL0521360552
– ident: e_1_2_10_23_1
  doi: 10.1093/comjnl/bxq022
– ident: e_1_2_10_7_1
– ident: e_1_2_10_22_1
  doi: 10.1613/jair.2500
– ident: e_1_2_10_15_1
  doi: 10.1016/j.artint.2004.09.003
– ident: e_1_2_10_3_1
  doi: 10.1016/S0004-3702(99)00059-4
– ident: e_1_2_10_26_1
  doi: 10.1609/aaai.v24i1.7552
– ident: e_1_2_10_11_1
SSID ssj0001348
Score 2.161681
Snippet The Distributed Constraint Optimization Problem (DCOP) lies at the foundations of multiagent cooperation. With DCOPs, the optimization in distributed resource...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 49
SubjectTerms Cooperation
distributed constraint optimization
leximin
multiagent
Multiagent systems
Multiple objective analysis
multiple objectives
Operators
Optimization
Pareto optimum
preference
Reagents
Resource allocation
Solvers
Title Leximin Asymmetric Multiple Objective Distributed Constraint Optimization Problem
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcoin.12106
https://www.proquest.com/docview/2007352740
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8640
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8640
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001348
  issn: 0824-7935
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0824-7935
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001348
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KT16sn1itsqAnIaVJNtkEvJRqqWJbFQu9SMhuJqDSVGwL6q93Z5PY6kHQWw7ZkOzOx5sw8x7AieRcInWJKyl1gZJ6oRWj61oSNTpHVCgEDQr3B35vxK_G3rgCZ-UsTM4P8fXDjTzDxGty8FjOVpxcTR8z4kYwfNu265t66m7JHWW7RjpLpzhuaSP0Cm5SauNZLv2ejZYQcxWomkzTrcFD-Y55g8lzczGXTfXxg77xvx-xAesFBGXt3GY2oYLZFtRKeQdWePs23F7jG2l-sfbsfTIh5S3F-kX_IRvKpzxUsnOi3iXVLEwYyX8a0Yk5G-pYNCmGPNlNLluzA6PuxX2nZxUKDJZyBQn0JNLVNUtCgUEnUwy8uEUSVi0VBqEv_dQOUfFYCScRiVSS5uqdIA5inqapq9ftQjWbZrgHzI4doVLkDuoayJEiDjVWSLwkVMiFCNM6HJcnEb3kRBtRWaDQLkVml-rQKA8pKpxtRkqaQuNIwVt1ODW7_csTos7wcmCu9v9y8wGsaagU5P3aDajOXxd4qOHIXB4Zs_sEQ3XdRA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHvRifWK16oKehJQ22WSTY6mWVvtQaaG3kN1MQKWp2BTUX-_OZmOrB0FvOWQD2Z3HN8vM9xFyIRgTgF3iUghVoCRuYEXgOJYAhc4BJHCOg8L9gdcZs5uJOzG9OTgLk_NDfF24oWfoeI0OjhfSK14uZ48pkiMg4fY681ShgpjoYcke1XC0eJZKcsxSZugadlJs5Fmu_Z6PliBzFarqXNMu54Kqc01RiC0mz7VFJmry4weB479_Y5tsGRRKm7nZ7JA1SHdJuVB4oMbh98h9D95Q9os25-_TKYpvSdo3LYh0KJ7yaEmvkH0XhbMgpqgAqnUnMjpU4Whq5jzpXa5cs0_G7etRq2MZEQZLOhw1emLhqLIlxtig8in4blRHFau6DPzAE17SCECySHI75rGQAkfrbT_yI5YkiaPWHZBSOkvhkNBGZHOZALNBlUG24FGg4ELsxoEExnmQVMh5cRThS861ERY1Cu5SqHepQqrFKYXG3-YopskVlOSsXiGXert_-ULYGnYH-unoLy-fkY3OqN8Le93B7THZVMjJz9u3q6SUvS7gRKGTTJxqG_wEJ5DhZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kgnixfmK16oKehJQ22XSzx9JaWu2XYqG3kN1MQKVpsSmov96dTWKrB0FvOSSB7O7MvAlv3iPkSjImAVniSkrdoESusAJwHEuCRucACjjHQeH-oN4Zs9uJO8m4OTgLk-pDfP1ww8gw-RoDHOZhtBblavYUozgCCm5vMld4yOhrPazUo2qOMc_SRY5Z-hi6mTopEnlWz36vRyuQuQ5VTa1pF1ND1YWRKESKyUtlmciK-vgh4Pjvz9glOxkKpY302OyRDYj3STF3eKBZwB-Q-x68oe0XbSzep1M031K0n1EQ6VA-p9mStlB9F42zIKToAGp8JxI61Oloms150lHqXHNIxu2bx2bHykwYLOVw9OgJpaPblhBzg66n4LlBFV2sqkp4oi7rUU2AYoHidshDqSSO1tte4AUsiiJHP3dECvEshmNCa4HNVQTMBt0G2ZIHQsOF0A2FAsa5iErkMt8Kf55qbfh5j4Kr5JtVKpFyvkt-Fm8LNNPkGkpyVi2Ra7Pcv7zBbw67A3N18pebL8jWqNX2e93B3SnZ1sDJS9nbZVJIXpdwpsFJIs_NEfwE-iXg6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leximin+Asymmetric+Multiple+Objective+Distributed+Constraint+Optimization+Problem&rft.jtitle=Computational+intelligence&rft.au=Matsui%2C+Toshihiro&rft.au=Matsuo%2C+Hiroshi&rft.au=Silaghi%2C+Marius&rft.au=Hirayama%2C+Katsutoshi&rft.date=2018-02-01&rft.issn=0824-7935&rft.eissn=1467-8640&rft.volume=34&rft.issue=1&rft.spage=49&rft.epage=84&rft_id=info:doi/10.1111%2Fcoin.12106&rft.externalDBID=10.1111%252Fcoin.12106&rft.externalDocID=COIN12106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0824-7935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0824-7935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0824-7935&client=summon