Mine roof water inflow prediction model for the initial mining disturbance stage based on simulation-driven feature selection and ensemble learning
•Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•...
Saved in:
| Published in | Results in engineering Vol. 28; p. 106977 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2590-1230 2590-1230 |
| DOI | 10.1016/j.rineng.2025.106977 |
Cover
| Abstract | •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•Achieved 3.8 % prediction error, outperforming traditional methods by 11 %—validated model in Wanfu Coal Mine with strong engineering applicability.
Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions. |
|---|---|
| AbstractList | •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•Achieved 3.8 % prediction error, outperforming traditional methods by 11 %—validated model in Wanfu Coal Mine with strong engineering applicability.
Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions. Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions. |
| ArticleNumber | 106977 |
| Author | Wang, Zhongchang Tang, Xiaohang Zhang, Wenquan |
| Author_xml | – sequence: 1 givenname: Xiaohang surname: Tang fullname: Tang, Xiaohang organization: School of Transportation Engineering, Dalian Jiaotong University, Dalian Liaoning 116028 China – sequence: 2 givenname: Zhongchang surname: Wang fullname: Wang, Zhongchang organization: School of Transportation Engineering, Dalian Jiaotong University, Dalian Liaoning 116028 China – sequence: 3 givenname: Wenquan surname: Zhang fullname: Zhang, Wenquan email: wenquanzhang@163.com organization: College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
| BookMark | eNqNkUtqHDEQhkWwIY7jG2ShC_REj5a6exMIJg-DQzbJWuhRGmtQS4PU48HnyIWjTgfjVchKRam-D6r-N-gi5QQIvaNkRwmV7w-7EhKk_Y4RJlpLTsPwCl0xMZGOMk4uXtSv0U2tB0IIGxvLhyv061uDccnZ47NeoOCQfMxnfCzggl1CTnjODiL2ueDlAdp_WIKOeG5F2mMX6nIqRicLuC56D9joCg43rob5FPWq6FwJj5CwB92G2yBE2Nw6OQypwmwi4Ai6rNK36NLrWOHm73uNfn7-9OP2a3f__cvd7cf7znI5LZ0XjnPLtfdyJN6YXnpmDHGcUmGo4dQxYujEpLFCjs5awQYuwEvH2cTFwK_R3eZ1WR_UsYRZlyeVdVB_GrnslS5LsBHUKEQ_mUFIS03P2LR6HTGjHqn1FvrmEpvrlI766axjfBZSotag1EFtQak1KLUF1bh-42zJtRbw_4t92DBo93kMUFS1AVoILpR22rZA-LfgN2MStEA |
| Cites_doi | 10.1038/s41598-025-85477-2 10.1007/s10462-012-9328-0 10.1016/j.jhydrol.2025.132892 10.1038/s41586-024-08328-6 10.1007/s10291-025-01836-6 10.1007/s13201-024-02186-3 10.1016/j.trgeo.2024.101438 10.1007/s10230-022-00884-5 10.1007/s11356-021-16703-3 10.1007/s11277-021-08452-w 10.1146/annurev-statistics-030718-104938 10.3390/w15183237 10.1016/j.ins.2024.121593 10.1038/s41598-024-67962-2 10.1007/s11227-022-04721-y 10.1109/ACCESS.2023.3272032 10.1016/j.engfailanal.2021.106005 10.1007/s12145-025-01824-x 10.1016/j.heliyon.2024.e35708 10.1016/j.energy.2025.135971 10.1016/j.energy.2025.136157 10.1007/s12145-023-00985-x 10.1016/j.jlp.2025.105574 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.rineng.2025.106977 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1230 |
| ExternalDocumentID | oai_doaj_org_article_85549b756c1b4229b192d0b8a81cfce4 10.1016/j.rineng.2025.106977 10_1016_j_rineng_2025_106977 S2590123025030336 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c369t-f5d33c3aff680fbb46f2bb0d3115b1b31d20b1926bc568dcc52735ef6d3293573 |
| IEDL.DBID | DOA |
| ISSN | 2590-1230 |
| IngestDate | Fri Oct 03 12:22:15 EDT 2025 Mon Sep 15 10:03:13 EDT 2025 Sat Oct 25 05:29:46 EDT 2025 Sat Oct 11 16:51:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Extreme gradient boosting (XGBoost) Coal mine water inrush Deep Q network-based bee algorithm (DLBA) Thick unconsolidated layers Ensemble learning Wasserstein conditional generative adversarial network (W-CGANs) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-f5d33c3aff680fbb46f2bb0d3115b1b31d20b1926bc568dcc52735ef6d3293573 |
| OpenAccessLink | https://doaj.org/article/85549b756c1b4229b192d0b8a81cfce4 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_85549b756c1b4229b192d0b8a81cfce4 unpaywall_primary_10_1016_j_rineng_2025_106977 crossref_primary_10_1016_j_rineng_2025_106977 elsevier_sciencedirect_doi_10_1016_j_rineng_2025_106977 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 2025-12-00 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Results in engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Fang (bib0018) 2022; 127 Li, Zhang, Ma (bib0034) 2017; 36 Zhang, Luo, Su, Song, Deng, Ji (bib0031) 2025; 94 Fathallah, Sakr, Eletriby (bib0023) 2023; 11 Lupo Pasini, Yin (bib0024) 2023; 79 Wang, Wang, Li, Qi, Cui, Bai (bib0014) 2025; 15 Karaboga, Gorkemli, Ozturk, Karaboga (bib0025) 2014; 42 Deng, Xu, Su, He, Li (bib0032) 2024; 49 Li, Xu (bib0009) 2022 Panaretos, Zemel (bib0022) 2019; 6 Hollmann, Müller, Purucker, Krishnakumar, Körfer, Hoo, Schirrmeister (bib0033) 2025; 637 Xu, Wen, Huang, Tang, Wang, Pan (bib0029) 2025; 325 Sun, Bao, Li (bib0003) 2022 Li, Dong, Liu, Zhao, Li (bib0019) 2022 Chen, Ou, Peng, Wang, Chen, Tian (bib0008) 2022; 133 Wei, Dong, Ji, Ding, Yu (bib0015) 2022; 41 Bian, Hou, Ren, Lin, Qiao, Ma, Ma, Wang, Wang, Liang (bib0020) 2024; 14 Di, Fang, Liu, Zhu, Sun, Wang, Li (bib0030) 2025; 655 Niu, Tian, Xiao, Xue, Zhang, Xu, Luo (bib0010) 2024; 14 Chen, Tang, Zhu (bib0001) 2022; 29 Wang, Gao, Liu, Gong, Fang, Xiong (bib0011) 2023 Li, Wu, Liu, Fan, Li (bib0007) 2023; 16 Liu, Yuan, Xu, Deng, Jian (bib0028) 2025; 690 Xu, Chen, Li, Sun, Zhang, Chen, Gao, He (bib0006) 2022; 2022 (bib0005) 2000 Hui, Xiaojun, Hua, Lijuan, Liangjun, Liugen, Shenzhu, Chunlu, Qiong, Qingye, Yu, Dongyan (bib0004) 2021; 46 Gong, Li, Yang, Li, Li, Zhang, Zheng, Duan, Liu, Hu, Xiang, Zhou (bib0021) 2025; 15 Li, Zhu, Yang, Wen, Shi, Zhao, He, Li (bib0026) 2025; 29 Dong, Zhang (bib0002) 2023 Xiao, Li, Niu, Dai, Qiao, Lin (bib0012) 2023 Zhai, He, Cao, Abdou-Tankari, Wang, Zhang (bib0027) 2025; 324 Ling, Fu, Xue (bib0017) 2024; 10 Zheng, Li, Tong, Liu (bib0013) 2025; 18 Bian (10.1016/j.rineng.2025.106977_bib0020) 2024; 14 Wang (10.1016/j.rineng.2025.106977_bib0014) 2025; 15 Xu (10.1016/j.rineng.2025.106977_bib0029) 2025; 325 Wang (10.1016/j.rineng.2025.106977_bib0011) 2023 Chen (10.1016/j.rineng.2025.106977_bib0008) 2022; 133 Deng (10.1016/j.rineng.2025.106977_bib0032) 2024; 49 Panaretos (10.1016/j.rineng.2025.106977_bib0022) 2019; 6 Li (10.1016/j.rineng.2025.106977_bib0026) 2025; 29 Xu (10.1016/j.rineng.2025.106977_bib0006) 2022; 2022 Li (10.1016/j.rineng.2025.106977_bib0007) 2023; 16 Karaboga (10.1016/j.rineng.2025.106977_bib0025) 2014; 42 Niu (10.1016/j.rineng.2025.106977_bib0010) 2024; 14 Zheng (10.1016/j.rineng.2025.106977_bib0013) 2025; 18 Dong (10.1016/j.rineng.2025.106977_bib0002) 2023 Wei (10.1016/j.rineng.2025.106977_bib0015) 2022; 41 Liu (10.1016/j.rineng.2025.106977_bib0028) 2025; 690 Xiao (10.1016/j.rineng.2025.106977_bib0012) 2023 Zhang (10.1016/j.rineng.2025.106977_bib0031) 2025; 94 (10.1016/j.rineng.2025.106977_bib0005) 2000 Gong (10.1016/j.rineng.2025.106977_bib0021) 2025; 15 Sun (10.1016/j.rineng.2025.106977_bib0003) 2022 Chen (10.1016/j.rineng.2025.106977_bib0001) 2022; 29 Hui (10.1016/j.rineng.2025.106977_bib0004) 2021; 46 Zhai (10.1016/j.rineng.2025.106977_bib0027) 2025; 324 Lupo Pasini (10.1016/j.rineng.2025.106977_bib0024) 2023; 79 Fang (10.1016/j.rineng.2025.106977_bib0018) 2022; 127 Hollmann (10.1016/j.rineng.2025.106977_bib0033) 2025; 637 Di (10.1016/j.rineng.2025.106977_bib0030) 2025; 655 Li (10.1016/j.rineng.2025.106977_bib0034) 2017; 36 Li (10.1016/j.rineng.2025.106977_bib0019) 2022 Fathallah (10.1016/j.rineng.2025.106977_bib0023) 2023; 11 Li (10.1016/j.rineng.2025.106977_bib0009) 2022 Ling (10.1016/j.rineng.2025.106977_bib0017) 2024; 10 |
| References_xml | – volume: 14 year: 2024 ident: bib0020 article-title: Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach publication-title: Sci. Rep. – year: 2023 ident: bib0011 article-title: A GIS-based probabilistic spatial multicriteria roof water inrush risk evaluation method considering decision makers’ Risk-coping attitude publication-title: Water – volume: 29 start-page: 77 year: 2025 ident: bib0026 article-title: Storm-time ionospheric model over Yunnan-Sichuan area of China based on the SSA-ConvLSTM-BiLSTM algorithm publication-title: GPS Solut. – volume: 690 year: 2025 ident: bib0028 article-title: A learning-based artificial bee colony algorithm for operation optimization in gas pipelines publication-title: Inf. Sci. – volume: 42 start-page: 21 year: 2014 end-page: 57 ident: bib0025 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. – volume: 655 year: 2025 ident: bib0030 article-title: Generalization of an intelligent real-time flood prediction model based on CBT-BLSTM-RPA and QRGP-WGAN: a perspective considering the effect of drainage pipeline siltation publication-title: J. Hydrol. – volume: 14 start-page: 146 year: 2024 ident: bib0010 article-title: Principal causes of water damage in mining roofs under giant thick topsoil–lilou coal mine publication-title: Appl. Water. Sci. – year: 2022 ident: bib0003 article-title: Comprehensive water inrush risk assessment method for coal seam roof publication-title: Sustainability – volume: 133 year: 2022 ident: bib0008 article-title: Numerical simulation of abnormal roof water-inrush mechanism in mining under unconsolidated aquifer based on overburden dynamic damage publication-title: Eng. Fail. Anal. – volume: 325 year: 2025 ident: bib0029 article-title: Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: insights and applications publication-title: Energy – volume: 41 start-page: 1106 year: 2022 end-page: 1117 ident: bib0015 article-title: Source discrimination of mine water inrush using multiple combinations of an improved support vector machine model publication-title: Mine Water Environ. – year: 2023 ident: bib0002 article-title: Discrimination methods of mine inrush water source publication-title: Water – volume: 15 start-page: 2009 year: 2025 ident: bib0021 article-title: Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model publication-title: Sci. Rep. – volume: 94 year: 2025 ident: bib0031 article-title: Prediction of explosion hazard of aluminum powder two-phase mixed system using random forest based on K-fold cross-validation publication-title: J. Loss. Prev. Process. Ind. – volume: 2022 year: 2022 ident: bib0006 article-title: Defects and improvement of predicting mine water inflow by virtual large diameter well method publication-title: Geofluids – volume: 127 start-page: 945 year: 2022 end-page: 962 ident: bib0018 article-title: Method for quickly identifying mine water inrush using convolutional neural network in coal mine safety mining publication-title: Wirel. Pers. Commun. – volume: 16 start-page: 1879 year: 2023 end-page: 1890 ident: bib0007 article-title: Construction and application of mine water inflow prediction model based on multi-factor weighted regression: wulunshan Coal Mine case publication-title: Earth Sci Inf. – volume: 10 year: 2024 ident: bib0017 article-title: Rapid identification model of mine water inrush source using random forest optimized by multi-strategy improved sparrow search algorithm publication-title: Heliyon. – volume: 79 start-page: 1856 year: 2023 end-page: 1876 ident: bib0024 article-title: Stable parallel training of Wasserstein conditional generative adversarial neural networks publication-title: J. Supercomput. – volume: 46 start-page: 4021 year: 2021 end-page: 4032 ident: bib0004 article-title: Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:acase study from Lüjin Lake, Huaibei publication-title: J. China Coal Soc. – volume: 6 start-page: 405 year: 2019 end-page: 431 ident: bib0022 article-title: Statistical aspects of Wasserstein distances publication-title: Annu Rev. Stat. Appl. – volume: 15 year: 2025 ident: bib0014 article-title: Prediction model of water inrush risk level of coal seam floor based on KPCA-DBO-SVM publication-title: Sci. Rep. – year: 2022 ident: bib0019 article-title: Identification of mine mixed water inrush source based on genetic algorithm and XGBoost algorithm: a case study of Huangyuchuan mine publication-title: Water – volume: 18 start-page: 315 year: 2025 ident: bib0013 article-title: Precise quantitative evaluation of the risk level of coal mine water inrush accidents based on the CW-BN model publication-title: Earth Sci. Inf. – year: 2022 ident: bib0009 article-title: Numerical modeling and investigation of fault-induced water inrush hazard under different mining advancing directions publication-title: Mathematics – volume: 29 start-page: 19608 year: 2022 end-page: 19623 ident: bib0001 article-title: Comprehensive study on identification of water inrush sources from deep mining roadway publication-title: Environ. Sci. Pollut. Res. – volume: 324 year: 2025 ident: bib0027 article-title: Photovoltaic power forecasting based on VMD-SSA-Transformer: multidimensional analysis of dataset length, weather mutation and forecast accuracy publication-title: Energy – volume: 637 start-page: 319 year: 2025 end-page: 326 ident: bib0033 article-title: Accurate predictions on small data with a tabular foundation model publication-title: Nature – volume: 11 start-page: 43276 year: 2023 end-page: 43285 ident: bib0023 article-title: Stabilizing and improving training of generative adversarial networks through identity blocks and modified loss function publication-title: IEEe Access. – volume: 36 start-page: 39 year: 2017 end-page: 46 ident: bib0034 article-title: Influencing factors and prediction of mine water inrush disaster under thick unconsolidated layers and thin bedrock publication-title: J. Shandong Univ. Sci. Technol. (Nat. Sci.) – volume: 49 year: 2024 ident: bib0032 article-title: A novel method for subgrade cumulative deformation prediction of high-speed railways based on empiricism-constrained neural network and SHapley Additive exPlanations analysis publication-title: Transp. Geotech. – year: 2000 ident: bib0005 article-title: Regulations For Coal Pillar Retention and Coal Mining Under Buildings, Water Bodies, Railways, and Main Roadways – year: 2023 ident: bib0012 article-title: Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method publication-title: Energies – volume: 15 start-page: 2009 issue: 1 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0021 article-title: Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model publication-title: Sci. Rep. doi: 10.1038/s41598-025-85477-2 – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 10.1016/j.rineng.2025.106977_bib0025 article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0003 article-title: Comprehensive water inrush risk assessment method for coal seam roof publication-title: Sustainability – year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0009 article-title: Numerical modeling and investigation of fault-induced water inrush hazard under different mining advancing directions publication-title: Mathematics – volume: 15 issue: 1 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0014 article-title: Prediction model of water inrush risk level of coal seam floor based on KPCA-DBO-SVM publication-title: Sci. Rep. – year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0012 article-title: Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method publication-title: Energies – volume: 655 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0030 article-title: Generalization of an intelligent real-time flood prediction model based on CBT-BLSTM-RPA and QRGP-WGAN: a perspective considering the effect of drainage pipeline siltation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2025.132892 – volume: 2022 issue: 1 year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0006 article-title: Defects and improvement of predicting mine water inflow by virtual large diameter well method publication-title: Geofluids – volume: 637 start-page: 319 issue: 8045 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0033 article-title: Accurate predictions on small data with a tabular foundation model publication-title: Nature doi: 10.1038/s41586-024-08328-6 – year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0019 article-title: Identification of mine mixed water inrush source based on genetic algorithm and XGBoost algorithm: a case study of Huangyuchuan mine publication-title: Water – volume: 29 start-page: 77 issue: 2 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0026 article-title: Storm-time ionospheric model over Yunnan-Sichuan area of China based on the SSA-ConvLSTM-BiLSTM algorithm publication-title: GPS Solut. doi: 10.1007/s10291-025-01836-6 – volume: 36 start-page: 39 issue: 6 year: 2017 ident: 10.1016/j.rineng.2025.106977_bib0034 article-title: Influencing factors and prediction of mine water inrush disaster under thick unconsolidated layers and thin bedrock publication-title: J. Shandong Univ. Sci. Technol. (Nat. Sci.) – year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0011 article-title: A GIS-based probabilistic spatial multicriteria roof water inrush risk evaluation method considering decision makers’ Risk-coping attitude publication-title: Water – volume: 14 start-page: 146 issue: 6 year: 2024 ident: 10.1016/j.rineng.2025.106977_bib0010 article-title: Principal causes of water damage in mining roofs under giant thick topsoil–lilou coal mine publication-title: Appl. Water. Sci. doi: 10.1007/s13201-024-02186-3 – volume: 49 year: 2024 ident: 10.1016/j.rineng.2025.106977_bib0032 article-title: A novel method for subgrade cumulative deformation prediction of high-speed railways based on empiricism-constrained neural network and SHapley Additive exPlanations analysis publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2024.101438 – volume: 41 start-page: 1106 issue: 4 year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0015 article-title: Source discrimination of mine water inrush using multiple combinations of an improved support vector machine model publication-title: Mine Water Environ. doi: 10.1007/s10230-022-00884-5 – volume: 29 start-page: 19608 issue: 13 year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0001 article-title: Comprehensive study on identification of water inrush sources from deep mining roadway publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-16703-3 – volume: 127 start-page: 945 issue: 2 year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0018 article-title: Method for quickly identifying mine water inrush using convolutional neural network in coal mine safety mining publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08452-w – volume: 6 start-page: 405 issue: 2019 year: 2019 ident: 10.1016/j.rineng.2025.106977_bib0022 article-title: Statistical aspects of Wasserstein distances publication-title: Annu Rev. Stat. Appl. doi: 10.1146/annurev-statistics-030718-104938 – year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0002 article-title: Discrimination methods of mine inrush water source publication-title: Water doi: 10.3390/w15183237 – year: 2000 ident: 10.1016/j.rineng.2025.106977_bib0005 – volume: 690 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0028 article-title: A learning-based artificial bee colony algorithm for operation optimization in gas pipelines publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121593 – volume: 14 issue: 1 year: 2024 ident: 10.1016/j.rineng.2025.106977_bib0020 article-title: Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-024-67962-2 – volume: 79 start-page: 1856 issue: 2 year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0024 article-title: Stable parallel training of Wasserstein conditional generative adversarial neural networks publication-title: J. Supercomput. doi: 10.1007/s11227-022-04721-y – volume: 11 start-page: 43276 year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0023 article-title: Stabilizing and improving training of generative adversarial networks through identity blocks and modified loss function publication-title: IEEe Access. doi: 10.1109/ACCESS.2023.3272032 – volume: 46 start-page: 4021 issue: 12 year: 2021 ident: 10.1016/j.rineng.2025.106977_bib0004 article-title: Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:acase study from Lüjin Lake, Huaibei publication-title: J. China Coal Soc. – volume: 133 year: 2022 ident: 10.1016/j.rineng.2025.106977_bib0008 article-title: Numerical simulation of abnormal roof water-inrush mechanism in mining under unconsolidated aquifer based on overburden dynamic damage publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.106005 – volume: 18 start-page: 315 issue: 3 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0013 article-title: Precise quantitative evaluation of the risk level of coal mine water inrush accidents based on the CW-BN model publication-title: Earth Sci. Inf. doi: 10.1007/s12145-025-01824-x – volume: 10 issue: 15 year: 2024 ident: 10.1016/j.rineng.2025.106977_bib0017 article-title: Rapid identification model of mine water inrush source using random forest optimized by multi-strategy improved sparrow search algorithm publication-title: Heliyon. doi: 10.1016/j.heliyon.2024.e35708 – volume: 324 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0027 article-title: Photovoltaic power forecasting based on VMD-SSA-Transformer: multidimensional analysis of dataset length, weather mutation and forecast accuracy publication-title: Energy doi: 10.1016/j.energy.2025.135971 – volume: 325 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0029 article-title: Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: insights and applications publication-title: Energy doi: 10.1016/j.energy.2025.136157 – volume: 16 start-page: 1879 issue: 2 year: 2023 ident: 10.1016/j.rineng.2025.106977_bib0007 article-title: Construction and application of mine water inflow prediction model based on multi-factor weighted regression: wulunshan Coal Mine case publication-title: Earth Sci Inf. doi: 10.1007/s12145-023-00985-x – volume: 94 year: 2025 ident: 10.1016/j.rineng.2025.106977_bib0031 article-title: Prediction of explosion hazard of aluminum powder two-phase mixed system using random forest based on K-fold cross-validation publication-title: J. Loss. Prev. Process. Ind. doi: 10.1016/j.jlp.2025.105574 |
| SSID | ssj0002810137 |
| Score | 2.313292 |
| Snippet | •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy... Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 106977 |
| SubjectTerms | Coal mine water inrush Deep Q network-based bee algorithm (DLBA) Ensemble learning Extreme gradient boosting (XGBoost) Thick unconsolidated layers Wasserstein conditional generative adversarial network (W-CGANs) |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW7gFx4I22CNAcOOIqiWPHOS6I1QqpKw5UWk6Rx4-qkGarbKsK_gZ_mHEeqy0SYrlFTuyMZsaez_L4G8beGoPOFzbnucmQ54XzXHsjuNJWlqnWtH-LJ7rzC3W-yD9dyssj9m68C3Nwft_lYcVLcM2SdnKZpCZFeOUeO1aSkPeEHS8uPp9-jfXjZBmTDEQy3o77S9eD6NOR9B8Eofu7ZmN-7E1d3woyZ4_YfBSvzy35PtttcWZ__sHceFf5H7OHA9qE0949nrAj3zxlD25xED5jv-b0DISfA-wJd7ZALldf7WHTxiOcaDboquUAoVsgtEjvV7Qq1LDuSkuAIz_ZtRidBwhpLj3EwOiA-l2v1kNxMO7auKpC8B2PKFx31Xfi2KZxQDtpv8baw1DCYvmcLc4-fvlwzodKDdwKVW55kE4IK0wISicBMVchQ0xcpPLBFEXqsgQJSyq0UmlnbaR9kz4oJwhuyEK8YJPmqvEnDDDxWqMMnpBbTio0ZRlc5si-Psl8kU4ZHy1YbXpCjmrMVPtW9cquorKrXtlT9j6a-ebbSKfdNZCVqmF2VjFXr8RCKptinmVllNUlqI1ObbA-n7JidJJqQCY94qChVv_4_ezGp-4k78v_7fCKTbbtzr8mbLTFN8OU-A1IihBF priority: 102 providerName: Unpaywall |
| Title | Mine roof water inflow prediction model for the initial mining disturbance stage based on simulation-driven feature selection and ensemble learning |
| URI | https://dx.doi.org/10.1016/j.rineng.2025.106977 https://doi.org/10.1016/j.rineng.2025.106977 https://doaj.org/article/85549b756c1b4229b192d0b8a81cfce4 |
| UnpaywallVersion | publishedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2590-1230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: AKRWK dateStart: 20190301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOqLzEUqjmwDWQlx3n2KJWFdJWHFipnCKPH6utsukq3dWKC3-CP8yMk622p3LgEkVOYlszk8w38fgbIT4Zg85XtkxKk2NSVs4n2psiUdrKOtOa4jde0Z1eqctZ-e1aXu-V-uKcsIEeeBDcF06jqrGSymZY5nmNBElcitrozAbrIxNoquu9YOom_jLKmEtvt1cuJnTxbrpuTiFhLqlJEfB54IsiZf8Dl_R0063Mr61p2z2Xc3EkXoxYEU6HOb4UT3z3SjzfYxB8Lf5M6RwI_QbYEmrsgQymvd3CqucFGBY6xFo3QNgUCOvR9QW90y0sY2EIcKTlTY-seiCcOPfAbs0BPXe3WI6lvRLX8zcRgo8soHAXa-dw36ZzQHGwX2LrYSxAMX8jZhfnP75eJmOdhcQWql4nQbqisIUJQek0IJYq5IipYyIezLDIXJ6y2BVaqbSzlknbpA_KFQQWZFW8FQfdbeffCcDUa40yeMJdJcnd1HVwuZN16tPcV9lEJDuJN6uBTqPZ5ZndNIOGGtZQM2hoIs5YLff3Mhl2bCATaUYTaR4zkYmodkptRlwx4AXqavHI8J_vbeCf5vv-f8z3WDzjLoekmQ_iYN1v_EeCPms8iVZOx-nv8xNxOLv6fvrzLxrvB8A |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW7gFx4I22CNAcOOIqiWPHOS6I1QqpKw5UWk6Rx4-qkGarbKsK_gZ_mHEeqy0SYrlFTuyMZsaez_L4G8beGoPOFzbnucmQ54XzXHsjuNJWlqnWtH-LJ7rzC3W-yD9dyssj9m68C3Nwft_lYcVLcM2SdnKZpCZFeOUeO1aSkPeEHS8uPp9-jfXjZBmTDEQy3o77S9eD6NOR9B8Eofu7ZmN-7E1d3woyZ4_YfBSvzy35PtttcWZ__sHceFf5H7OHA9qE0949nrAj3zxlD25xED5jv-b0DISfA-wJd7ZALldf7WHTxiOcaDboquUAoVsgtEjvV7Qq1LDuSkuAIz_ZtRidBwhpLj3EwOiA-l2v1kNxMO7auKpC8B2PKFx31Xfi2KZxQDtpv8baw1DCYvmcLc4-fvlwzodKDdwKVW55kE4IK0wISicBMVchQ0xcpPLBFEXqsgQJSyq0UmlnbaR9kz4oJwhuyEK8YJPmqvEnDDDxWqMMnpBbTio0ZRlc5si-Psl8kU4ZHy1YbXpCjmrMVPtW9cquorKrXtlT9j6a-ebbSKfdNZCVqmF2VjFXr8RCKptinmVllNUlqI1ObbA-n7JidJJqQCY94qChVv_4_ezGp-4k78v_7fCKTbbtzr8mbLTFN8OU-A1IihBF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mine+roof+water+inflow+prediction+model+for+the+initial+mining+disturbance+stage+based+on+simulation-driven+feature+selection+and+ensemble+learning&rft.jtitle=Results+in+engineering&rft.au=Tang%2C+Xiaohang&rft.au=Wang%2C+Zhongchang&rft.au=Zhang%2C+Wenquan&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=28&rft_id=info:doi/10.1016%2Fj.rineng.2025.106977&rft.externalDocID=S2590123025030336 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |