Mine roof water inflow prediction model for the initial mining disturbance stage based on simulation-driven feature selection and ensemble learning

•Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 28; p. 106977
Main Authors Tang, Xiaohang, Wang, Zhongchang, Zhang, Wenquan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2590-1230
2590-1230
DOI10.1016/j.rineng.2025.106977

Cover

Abstract •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•Achieved 3.8 % prediction error, outperforming traditional methods by 11 %—validated model in Wanfu Coal Mine with strong engineering applicability. Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions.
AbstractList •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy simulations.•Enhanced small-sample learning via Wasserstein GAN-based data augmentation.•Optimized parameters using deep reinforcement learning bee algorithm.•Achieved 3.8 % prediction error, outperforming traditional methods by 11 %—validated model in Wanfu Coal Mine with strong engineering applicability. Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions.
Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden onset and complex mechanisms. To improve prediction accuracy under static conditions, this study proposes an intelligent water inflow prediction model—W-CGANs–DLBA–XGBoost—by integrating simulation-assisted feature selection and generative data augmentation. Based on coupled Particle Flow Code (PFC) – Finite Volume Partial Differential Equation Python (FiPy) simulations, key controlling factors such as development height of the water-conducting fracture zone, ratio of unconsolidated layer thickness to bedrock, and ratio of burial depth to unconsolidated layer thickness are identified. These, along with conventional geological and hydrogeological variables, form the model input without embedding explicit physical drivers. A Wasserstein Conditional Generative Adversarial Network (W-CGANs) expands the dataset to enhance diversity and distribution coverage. The Deep Q Network-based Bee Algorithm (DLBA) optimizes hyperparameters, while Extreme Gradient Boosting (XGBoost) performs final regression prediction. Application to a thick-unconsolidated-layer mining site in the Wanfu coalfield demonstrates the model’s effectiveness: during the initial mining disturbance phase, it predicts an average water inflow of 314.95 m³/h, with only 3.8 % relative error compared to the measured 327.4 m³/h—far better than the 14.8 % error of the traditional large-well method. Spatial prediction results closely match actual inflow patterns, successfully identifying high-risk zones. The model exhibits high numerical precision and spatial generalization ability, offering strong physical interpretability and practical value. This provides a reliable approach for early warning and zonal management of water inrush under thick unconsolidated geological conditions.
ArticleNumber 106977
Author Wang, Zhongchang
Tang, Xiaohang
Zhang, Wenquan
Author_xml – sequence: 1
  givenname: Xiaohang
  surname: Tang
  fullname: Tang, Xiaohang
  organization: School of Transportation Engineering, Dalian Jiaotong University, Dalian Liaoning 116028 China
– sequence: 2
  givenname: Zhongchang
  surname: Wang
  fullname: Wang, Zhongchang
  organization: School of Transportation Engineering, Dalian Jiaotong University, Dalian Liaoning 116028 China
– sequence: 3
  givenname: Wenquan
  surname: Zhang
  fullname: Zhang, Wenquan
  email: wenquanzhang@163.com
  organization: College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China
BookMark eNqNkUtqHDEQhkWwIY7jG2ShC_REj5a6exMIJg-DQzbJWuhRGmtQS4PU48HnyIWjTgfjVchKRam-D6r-N-gi5QQIvaNkRwmV7w-7EhKk_Y4RJlpLTsPwCl0xMZGOMk4uXtSv0U2tB0IIGxvLhyv061uDccnZ47NeoOCQfMxnfCzggl1CTnjODiL2ueDlAdp_WIKOeG5F2mMX6nIqRicLuC56D9joCg43rob5FPWq6FwJj5CwB92G2yBE2Nw6OQypwmwi4Ai6rNK36NLrWOHm73uNfn7-9OP2a3f__cvd7cf7znI5LZ0XjnPLtfdyJN6YXnpmDHGcUmGo4dQxYujEpLFCjs5awQYuwEvH2cTFwK_R3eZ1WR_UsYRZlyeVdVB_GrnslS5LsBHUKEQ_mUFIS03P2LR6HTGjHqn1FvrmEpvrlI766axjfBZSotag1EFtQak1KLUF1bh-42zJtRbw_4t92DBo93kMUFS1AVoILpR22rZA-LfgN2MStEA
Cites_doi 10.1038/s41598-025-85477-2
10.1007/s10462-012-9328-0
10.1016/j.jhydrol.2025.132892
10.1038/s41586-024-08328-6
10.1007/s10291-025-01836-6
10.1007/s13201-024-02186-3
10.1016/j.trgeo.2024.101438
10.1007/s10230-022-00884-5
10.1007/s11356-021-16703-3
10.1007/s11277-021-08452-w
10.1146/annurev-statistics-030718-104938
10.3390/w15183237
10.1016/j.ins.2024.121593
10.1038/s41598-024-67962-2
10.1007/s11227-022-04721-y
10.1109/ACCESS.2023.3272032
10.1016/j.engfailanal.2021.106005
10.1007/s12145-025-01824-x
10.1016/j.heliyon.2024.e35708
10.1016/j.energy.2025.135971
10.1016/j.energy.2025.136157
10.1007/s12145-023-00985-x
10.1016/j.jlp.2025.105574
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.rineng.2025.106977
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_85549b756c1b4229b192d0b8a81cfce4
10.1016/j.rineng.2025.106977
10_1016_j_rineng_2025_106977
S2590123025030336
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c369t-f5d33c3aff680fbb46f2bb0d3115b1b31d20b1926bc568dcc52735ef6d3293573
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Fri Oct 03 12:22:15 EDT 2025
Mon Sep 15 10:03:13 EDT 2025
Sat Oct 25 05:29:46 EDT 2025
Sat Oct 11 16:51:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extreme gradient boosting (XGBoost)
Coal mine water inrush
Deep Q network-based bee algorithm (DLBA)
Thick unconsolidated layers
Ensemble learning
Wasserstein conditional generative adversarial network (W-CGANs)
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-f5d33c3aff680fbb46f2bb0d3115b1b31d20b1926bc568dcc52735ef6d3293573
OpenAccessLink https://doaj.org/article/85549b756c1b4229b192d0b8a81cfce4
ParticipantIDs doaj_primary_oai_doaj_org_article_85549b756c1b4229b192d0b8a81cfce4
unpaywall_primary_10_1016_j_rineng_2025_106977
crossref_primary_10_1016_j_rineng_2025_106977
elsevier_sciencedirect_doi_10_1016_j_rineng_2025_106977
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Fang (bib0018) 2022; 127
Li, Zhang, Ma (bib0034) 2017; 36
Zhang, Luo, Su, Song, Deng, Ji (bib0031) 2025; 94
Fathallah, Sakr, Eletriby (bib0023) 2023; 11
Lupo Pasini, Yin (bib0024) 2023; 79
Wang, Wang, Li, Qi, Cui, Bai (bib0014) 2025; 15
Karaboga, Gorkemli, Ozturk, Karaboga (bib0025) 2014; 42
Deng, Xu, Su, He, Li (bib0032) 2024; 49
Li, Xu (bib0009) 2022
Panaretos, Zemel (bib0022) 2019; 6
Hollmann, Müller, Purucker, Krishnakumar, Körfer, Hoo, Schirrmeister (bib0033) 2025; 637
Xu, Wen, Huang, Tang, Wang, Pan (bib0029) 2025; 325
Sun, Bao, Li (bib0003) 2022
Li, Dong, Liu, Zhao, Li (bib0019) 2022
Chen, Ou, Peng, Wang, Chen, Tian (bib0008) 2022; 133
Wei, Dong, Ji, Ding, Yu (bib0015) 2022; 41
Bian, Hou, Ren, Lin, Qiao, Ma, Ma, Wang, Wang, Liang (bib0020) 2024; 14
Di, Fang, Liu, Zhu, Sun, Wang, Li (bib0030) 2025; 655
Niu, Tian, Xiao, Xue, Zhang, Xu, Luo (bib0010) 2024; 14
Chen, Tang, Zhu (bib0001) 2022; 29
Wang, Gao, Liu, Gong, Fang, Xiong (bib0011) 2023
Li, Wu, Liu, Fan, Li (bib0007) 2023; 16
Liu, Yuan, Xu, Deng, Jian (bib0028) 2025; 690
Xu, Chen, Li, Sun, Zhang, Chen, Gao, He (bib0006) 2022; 2022
(bib0005) 2000
Hui, Xiaojun, Hua, Lijuan, Liangjun, Liugen, Shenzhu, Chunlu, Qiong, Qingye, Yu, Dongyan (bib0004) 2021; 46
Gong, Li, Yang, Li, Li, Zhang, Zheng, Duan, Liu, Hu, Xiang, Zhou (bib0021) 2025; 15
Li, Zhu, Yang, Wen, Shi, Zhao, He, Li (bib0026) 2025; 29
Dong, Zhang (bib0002) 2023
Xiao, Li, Niu, Dai, Qiao, Lin (bib0012) 2023
Zhai, He, Cao, Abdou-Tankari, Wang, Zhang (bib0027) 2025; 324
Ling, Fu, Xue (bib0017) 2024; 10
Zheng, Li, Tong, Liu (bib0013) 2025; 18
Bian (10.1016/j.rineng.2025.106977_bib0020) 2024; 14
Wang (10.1016/j.rineng.2025.106977_bib0014) 2025; 15
Xu (10.1016/j.rineng.2025.106977_bib0029) 2025; 325
Wang (10.1016/j.rineng.2025.106977_bib0011) 2023
Chen (10.1016/j.rineng.2025.106977_bib0008) 2022; 133
Deng (10.1016/j.rineng.2025.106977_bib0032) 2024; 49
Panaretos (10.1016/j.rineng.2025.106977_bib0022) 2019; 6
Li (10.1016/j.rineng.2025.106977_bib0026) 2025; 29
Xu (10.1016/j.rineng.2025.106977_bib0006) 2022; 2022
Li (10.1016/j.rineng.2025.106977_bib0007) 2023; 16
Karaboga (10.1016/j.rineng.2025.106977_bib0025) 2014; 42
Niu (10.1016/j.rineng.2025.106977_bib0010) 2024; 14
Zheng (10.1016/j.rineng.2025.106977_bib0013) 2025; 18
Dong (10.1016/j.rineng.2025.106977_bib0002) 2023
Wei (10.1016/j.rineng.2025.106977_bib0015) 2022; 41
Liu (10.1016/j.rineng.2025.106977_bib0028) 2025; 690
Xiao (10.1016/j.rineng.2025.106977_bib0012) 2023
Zhang (10.1016/j.rineng.2025.106977_bib0031) 2025; 94
(10.1016/j.rineng.2025.106977_bib0005) 2000
Gong (10.1016/j.rineng.2025.106977_bib0021) 2025; 15
Sun (10.1016/j.rineng.2025.106977_bib0003) 2022
Chen (10.1016/j.rineng.2025.106977_bib0001) 2022; 29
Hui (10.1016/j.rineng.2025.106977_bib0004) 2021; 46
Zhai (10.1016/j.rineng.2025.106977_bib0027) 2025; 324
Lupo Pasini (10.1016/j.rineng.2025.106977_bib0024) 2023; 79
Fang (10.1016/j.rineng.2025.106977_bib0018) 2022; 127
Hollmann (10.1016/j.rineng.2025.106977_bib0033) 2025; 637
Di (10.1016/j.rineng.2025.106977_bib0030) 2025; 655
Li (10.1016/j.rineng.2025.106977_bib0034) 2017; 36
Li (10.1016/j.rineng.2025.106977_bib0019) 2022
Fathallah (10.1016/j.rineng.2025.106977_bib0023) 2023; 11
Li (10.1016/j.rineng.2025.106977_bib0009) 2022
Ling (10.1016/j.rineng.2025.106977_bib0017) 2024; 10
References_xml – volume: 14
  year: 2024
  ident: bib0020
  article-title: Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach
  publication-title: Sci. Rep.
– year: 2023
  ident: bib0011
  article-title: A GIS-based probabilistic spatial multicriteria roof water inrush risk evaluation method considering decision makers’ Risk-coping attitude
  publication-title: Water
– volume: 29
  start-page: 77
  year: 2025
  ident: bib0026
  article-title: Storm-time ionospheric model over Yunnan-Sichuan area of China based on the SSA-ConvLSTM-BiLSTM algorithm
  publication-title: GPS Solut.
– volume: 690
  year: 2025
  ident: bib0028
  article-title: A learning-based artificial bee colony algorithm for operation optimization in gas pipelines
  publication-title: Inf. Sci.
– volume: 42
  start-page: 21
  year: 2014
  end-page: 57
  ident: bib0025
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
– volume: 655
  year: 2025
  ident: bib0030
  article-title: Generalization of an intelligent real-time flood prediction model based on CBT-BLSTM-RPA and QRGP-WGAN: a perspective considering the effect of drainage pipeline siltation
  publication-title: J. Hydrol.
– volume: 14
  start-page: 146
  year: 2024
  ident: bib0010
  article-title: Principal causes of water damage in mining roofs under giant thick topsoil–lilou coal mine
  publication-title: Appl. Water. Sci.
– year: 2022
  ident: bib0003
  article-title: Comprehensive water inrush risk assessment method for coal seam roof
  publication-title: Sustainability
– volume: 133
  year: 2022
  ident: bib0008
  article-title: Numerical simulation of abnormal roof water-inrush mechanism in mining under unconsolidated aquifer based on overburden dynamic damage
  publication-title: Eng. Fail. Anal.
– volume: 325
  year: 2025
  ident: bib0029
  article-title: Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: insights and applications
  publication-title: Energy
– volume: 41
  start-page: 1106
  year: 2022
  end-page: 1117
  ident: bib0015
  article-title: Source discrimination of mine water inrush using multiple combinations of an improved support vector machine model
  publication-title: Mine Water Environ.
– year: 2023
  ident: bib0002
  article-title: Discrimination methods of mine inrush water source
  publication-title: Water
– volume: 15
  start-page: 2009
  year: 2025
  ident: bib0021
  article-title: Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model
  publication-title: Sci. Rep.
– volume: 94
  year: 2025
  ident: bib0031
  article-title: Prediction of explosion hazard of aluminum powder two-phase mixed system using random forest based on K-fold cross-validation
  publication-title: J. Loss. Prev. Process. Ind.
– volume: 2022
  year: 2022
  ident: bib0006
  article-title: Defects and improvement of predicting mine water inflow by virtual large diameter well method
  publication-title: Geofluids
– volume: 127
  start-page: 945
  year: 2022
  end-page: 962
  ident: bib0018
  article-title: Method for quickly identifying mine water inrush using convolutional neural network in coal mine safety mining
  publication-title: Wirel. Pers. Commun.
– volume: 16
  start-page: 1879
  year: 2023
  end-page: 1890
  ident: bib0007
  article-title: Construction and application of mine water inflow prediction model based on multi-factor weighted regression: wulunshan Coal Mine case
  publication-title: Earth Sci Inf.
– volume: 10
  year: 2024
  ident: bib0017
  article-title: Rapid identification model of mine water inrush source using random forest optimized by multi-strategy improved sparrow search algorithm
  publication-title: Heliyon.
– volume: 79
  start-page: 1856
  year: 2023
  end-page: 1876
  ident: bib0024
  article-title: Stable parallel training of Wasserstein conditional generative adversarial neural networks
  publication-title: J. Supercomput.
– volume: 46
  start-page: 4021
  year: 2021
  end-page: 4032
  ident: bib0004
  article-title: Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:acase study from Lüjin Lake, Huaibei
  publication-title: J. China Coal Soc.
– volume: 6
  start-page: 405
  year: 2019
  end-page: 431
  ident: bib0022
  article-title: Statistical aspects of Wasserstein distances
  publication-title: Annu Rev. Stat. Appl.
– volume: 15
  year: 2025
  ident: bib0014
  article-title: Prediction model of water inrush risk level of coal seam floor based on KPCA-DBO-SVM
  publication-title: Sci. Rep.
– year: 2022
  ident: bib0019
  article-title: Identification of mine mixed water inrush source based on genetic algorithm and XGBoost algorithm: a case study of Huangyuchuan mine
  publication-title: Water
– volume: 18
  start-page: 315
  year: 2025
  ident: bib0013
  article-title: Precise quantitative evaluation of the risk level of coal mine water inrush accidents based on the CW-BN model
  publication-title: Earth Sci. Inf.
– year: 2022
  ident: bib0009
  article-title: Numerical modeling and investigation of fault-induced water inrush hazard under different mining advancing directions
  publication-title: Mathematics
– volume: 29
  start-page: 19608
  year: 2022
  end-page: 19623
  ident: bib0001
  article-title: Comprehensive study on identification of water inrush sources from deep mining roadway
  publication-title: Environ. Sci. Pollut. Res.
– volume: 324
  year: 2025
  ident: bib0027
  article-title: Photovoltaic power forecasting based on VMD-SSA-Transformer: multidimensional analysis of dataset length, weather mutation and forecast accuracy
  publication-title: Energy
– volume: 637
  start-page: 319
  year: 2025
  end-page: 326
  ident: bib0033
  article-title: Accurate predictions on small data with a tabular foundation model
  publication-title: Nature
– volume: 11
  start-page: 43276
  year: 2023
  end-page: 43285
  ident: bib0023
  article-title: Stabilizing and improving training of generative adversarial networks through identity blocks and modified loss function
  publication-title: IEEe Access.
– volume: 36
  start-page: 39
  year: 2017
  end-page: 46
  ident: bib0034
  article-title: Influencing factors and prediction of mine water inrush disaster under thick unconsolidated layers and thin bedrock
  publication-title: J. Shandong Univ. Sci. Technol. (Nat. Sci.)
– volume: 49
  year: 2024
  ident: bib0032
  article-title: A novel method for subgrade cumulative deformation prediction of high-speed railways based on empiricism-constrained neural network and SHapley Additive exPlanations analysis
  publication-title: Transp. Geotech.
– year: 2000
  ident: bib0005
  article-title: Regulations For Coal Pillar Retention and Coal Mining Under Buildings, Water Bodies, Railways, and Main Roadways
– year: 2023
  ident: bib0012
  article-title: Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method
  publication-title: Energies
– volume: 15
  start-page: 2009
  issue: 1
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0021
  article-title: Construction and application of optimized model for mine water inflow prediction based on neural network and ARIMA model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-85477-2
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 10.1016/j.rineng.2025.106977_bib0025
  article-title: A comprehensive survey: artificial bee colony (ABC) algorithm and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0003
  article-title: Comprehensive water inrush risk assessment method for coal seam roof
  publication-title: Sustainability
– year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0009
  article-title: Numerical modeling and investigation of fault-induced water inrush hazard under different mining advancing directions
  publication-title: Mathematics
– volume: 15
  issue: 1
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0014
  article-title: Prediction model of water inrush risk level of coal seam floor based on KPCA-DBO-SVM
  publication-title: Sci. Rep.
– year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0012
  article-title: Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method
  publication-title: Energies
– volume: 655
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0030
  article-title: Generalization of an intelligent real-time flood prediction model based on CBT-BLSTM-RPA and QRGP-WGAN: a perspective considering the effect of drainage pipeline siltation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2025.132892
– volume: 2022
  issue: 1
  year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0006
  article-title: Defects and improvement of predicting mine water inflow by virtual large diameter well method
  publication-title: Geofluids
– volume: 637
  start-page: 319
  issue: 8045
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0033
  article-title: Accurate predictions on small data with a tabular foundation model
  publication-title: Nature
  doi: 10.1038/s41586-024-08328-6
– year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0019
  article-title: Identification of mine mixed water inrush source based on genetic algorithm and XGBoost algorithm: a case study of Huangyuchuan mine
  publication-title: Water
– volume: 29
  start-page: 77
  issue: 2
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0026
  article-title: Storm-time ionospheric model over Yunnan-Sichuan area of China based on the SSA-ConvLSTM-BiLSTM algorithm
  publication-title: GPS Solut.
  doi: 10.1007/s10291-025-01836-6
– volume: 36
  start-page: 39
  issue: 6
  year: 2017
  ident: 10.1016/j.rineng.2025.106977_bib0034
  article-title: Influencing factors and prediction of mine water inrush disaster under thick unconsolidated layers and thin bedrock
  publication-title: J. Shandong Univ. Sci. Technol. (Nat. Sci.)
– year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0011
  article-title: A GIS-based probabilistic spatial multicriteria roof water inrush risk evaluation method considering decision makers’ Risk-coping attitude
  publication-title: Water
– volume: 14
  start-page: 146
  issue: 6
  year: 2024
  ident: 10.1016/j.rineng.2025.106977_bib0010
  article-title: Principal causes of water damage in mining roofs under giant thick topsoil–lilou coal mine
  publication-title: Appl. Water. Sci.
  doi: 10.1007/s13201-024-02186-3
– volume: 49
  year: 2024
  ident: 10.1016/j.rineng.2025.106977_bib0032
  article-title: A novel method for subgrade cumulative deformation prediction of high-speed railways based on empiricism-constrained neural network and SHapley Additive exPlanations analysis
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2024.101438
– volume: 41
  start-page: 1106
  issue: 4
  year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0015
  article-title: Source discrimination of mine water inrush using multiple combinations of an improved support vector machine model
  publication-title: Mine Water Environ.
  doi: 10.1007/s10230-022-00884-5
– volume: 29
  start-page: 19608
  issue: 13
  year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0001
  article-title: Comprehensive study on identification of water inrush sources from deep mining roadway
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-16703-3
– volume: 127
  start-page: 945
  issue: 2
  year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0018
  article-title: Method for quickly identifying mine water inrush using convolutional neural network in coal mine safety mining
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08452-w
– volume: 6
  start-page: 405
  issue: 2019
  year: 2019
  ident: 10.1016/j.rineng.2025.106977_bib0022
  article-title: Statistical aspects of Wasserstein distances
  publication-title: Annu Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-030718-104938
– year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0002
  article-title: Discrimination methods of mine inrush water source
  publication-title: Water
  doi: 10.3390/w15183237
– year: 2000
  ident: 10.1016/j.rineng.2025.106977_bib0005
– volume: 690
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0028
  article-title: A learning-based artificial bee colony algorithm for operation optimization in gas pipelines
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121593
– volume: 14
  issue: 1
  year: 2024
  ident: 10.1016/j.rineng.2025.106977_bib0020
  article-title: Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-67962-2
– volume: 79
  start-page: 1856
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0024
  article-title: Stable parallel training of Wasserstein conditional generative adversarial neural networks
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04721-y
– volume: 11
  start-page: 43276
  year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0023
  article-title: Stabilizing and improving training of generative adversarial networks through identity blocks and modified loss function
  publication-title: IEEe Access.
  doi: 10.1109/ACCESS.2023.3272032
– volume: 46
  start-page: 4021
  issue: 12
  year: 2021
  ident: 10.1016/j.rineng.2025.106977_bib0004
  article-title: Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:acase study from Lüjin Lake, Huaibei
  publication-title: J. China Coal Soc.
– volume: 133
  year: 2022
  ident: 10.1016/j.rineng.2025.106977_bib0008
  article-title: Numerical simulation of abnormal roof water-inrush mechanism in mining under unconsolidated aquifer based on overburden dynamic damage
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2021.106005
– volume: 18
  start-page: 315
  issue: 3
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0013
  article-title: Precise quantitative evaluation of the risk level of coal mine water inrush accidents based on the CW-BN model
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-025-01824-x
– volume: 10
  issue: 15
  year: 2024
  ident: 10.1016/j.rineng.2025.106977_bib0017
  article-title: Rapid identification model of mine water inrush source using random forest optimized by multi-strategy improved sparrow search algorithm
  publication-title: Heliyon.
  doi: 10.1016/j.heliyon.2024.e35708
– volume: 324
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0027
  article-title: Photovoltaic power forecasting based on VMD-SSA-Transformer: multidimensional analysis of dataset length, weather mutation and forecast accuracy
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135971
– volume: 325
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0029
  article-title: Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: insights and applications
  publication-title: Energy
  doi: 10.1016/j.energy.2025.136157
– volume: 16
  start-page: 1879
  issue: 2
  year: 2023
  ident: 10.1016/j.rineng.2025.106977_bib0007
  article-title: Construction and application of mine water inflow prediction model based on multi-factor weighted regression: wulunshan Coal Mine case
  publication-title: Earth Sci Inf.
  doi: 10.1007/s12145-023-00985-x
– volume: 94
  year: 2025
  ident: 10.1016/j.rineng.2025.106977_bib0031
  article-title: Prediction of explosion hazard of aluminum powder two-phase mixed system using random forest based on K-fold cross-validation
  publication-title: J. Loss. Prev. Process. Ind.
  doi: 10.1016/j.jlp.2025.105574
SSID ssj0002810137
Score 2.313292
Snippet •Developed W-CGANs-DLBA-XGBoost model for accurate roof water inflow prediction.•Identified key controlling factors through coupled PFC-FiPy...
Water inrush from the roof of coal seams beneath thick unconsolidated layers presents a significant challenge in mine water hazard prevention due to its sudden...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 106977
SubjectTerms Coal mine water inrush
Deep Q network-based bee algorithm (DLBA)
Ensemble learning
Extreme gradient boosting (XGBoost)
Thick unconsolidated layers
Wasserstein conditional generative adversarial network (W-CGANs)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW7gFx4I22CNAcOOIqiWPHOS6I1QqpKw5UWk6Rx4-qkGarbKsK_gZ_mHEeqy0SYrlFTuyMZsaez_L4G8beGoPOFzbnucmQ54XzXHsjuNJWlqnWtH-LJ7rzC3W-yD9dyssj9m68C3Nwft_lYcVLcM2SdnKZpCZFeOUeO1aSkPeEHS8uPp9-jfXjZBmTDEQy3o77S9eD6NOR9B8Eofu7ZmN-7E1d3woyZ4_YfBSvzy35PtttcWZ__sHceFf5H7OHA9qE0949nrAj3zxlD25xED5jv-b0DISfA-wJd7ZALldf7WHTxiOcaDboquUAoVsgtEjvV7Qq1LDuSkuAIz_ZtRidBwhpLj3EwOiA-l2v1kNxMO7auKpC8B2PKFx31Xfi2KZxQDtpv8baw1DCYvmcLc4-fvlwzodKDdwKVW55kE4IK0wISicBMVchQ0xcpPLBFEXqsgQJSyq0UmlnbaR9kz4oJwhuyEK8YJPmqvEnDDDxWqMMnpBbTio0ZRlc5si-Psl8kU4ZHy1YbXpCjmrMVPtW9cquorKrXtlT9j6a-ebbSKfdNZCVqmF2VjFXr8RCKptinmVllNUlqI1ObbA-n7JidJJqQCY94qChVv_4_ezGp-4k78v_7fCKTbbtzr8mbLTFN8OU-A1IihBF
  priority: 102
  providerName: Unpaywall
Title Mine roof water inflow prediction model for the initial mining disturbance stage based on simulation-driven feature selection and ensemble learning
URI https://dx.doi.org/10.1016/j.rineng.2025.106977
https://doi.org/10.1016/j.rineng.2025.106977
https://doaj.org/article/85549b756c1b4229b192d0b8a81cfce4
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2590-1230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810137
  issn: 2590-1230
  databaseCode: AKRWK
  dateStart: 20190301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOqLzEUqjmwDWQlx3n2KJWFdJWHFipnCKPH6utsukq3dWKC3-CP8yMk622p3LgEkVOYlszk8w38fgbIT4Zg85XtkxKk2NSVs4n2psiUdrKOtOa4jde0Z1eqctZ-e1aXu-V-uKcsIEeeBDcF06jqrGSymZY5nmNBElcitrozAbrIxNoquu9YOom_jLKmEtvt1cuJnTxbrpuTiFhLqlJEfB54IsiZf8Dl_R0063Mr61p2z2Xc3EkXoxYEU6HOb4UT3z3SjzfYxB8Lf5M6RwI_QbYEmrsgQymvd3CqucFGBY6xFo3QNgUCOvR9QW90y0sY2EIcKTlTY-seiCcOPfAbs0BPXe3WI6lvRLX8zcRgo8soHAXa-dw36ZzQHGwX2LrYSxAMX8jZhfnP75eJmOdhcQWql4nQbqisIUJQek0IJYq5IipYyIezLDIXJ6y2BVaqbSzlknbpA_KFQQWZFW8FQfdbeffCcDUa40yeMJdJcnd1HVwuZN16tPcV9lEJDuJN6uBTqPZ5ZndNIOGGtZQM2hoIs5YLff3Mhl2bCATaUYTaR4zkYmodkptRlwx4AXqavHI8J_vbeCf5vv-f8z3WDzjLoekmQ_iYN1v_EeCPms8iVZOx-nv8xNxOLv6fvrzLxrvB8A
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW7gFx4I22CNAcOOIqiWPHOS6I1QqpKw5UWk6Rx4-qkGarbKsK_gZ_mHEeqy0SYrlFTuyMZsaez_L4G8beGoPOFzbnucmQ54XzXHsjuNJWlqnWtH-LJ7rzC3W-yD9dyssj9m68C3Nwft_lYcVLcM2SdnKZpCZFeOUeO1aSkPeEHS8uPp9-jfXjZBmTDEQy3o77S9eD6NOR9B8Eofu7ZmN-7E1d3woyZ4_YfBSvzy35PtttcWZ__sHceFf5H7OHA9qE0949nrAj3zxlD25xED5jv-b0DISfA-wJd7ZALldf7WHTxiOcaDboquUAoVsgtEjvV7Qq1LDuSkuAIz_ZtRidBwhpLj3EwOiA-l2v1kNxMO7auKpC8B2PKFx31Xfi2KZxQDtpv8baw1DCYvmcLc4-fvlwzodKDdwKVW55kE4IK0wISicBMVchQ0xcpPLBFEXqsgQJSyq0UmlnbaR9kz4oJwhuyEK8YJPmqvEnDDDxWqMMnpBbTio0ZRlc5si-Psl8kU4ZHy1YbXpCjmrMVPtW9cquorKrXtlT9j6a-ebbSKfdNZCVqmF2VjFXr8RCKptinmVllNUlqI1ObbA-n7JidJJqQCY94qChVv_4_ezGp-4k78v_7fCKTbbtzr8mbLTFN8OU-A1IihBF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mine+roof+water+inflow+prediction+model+for+the+initial+mining+disturbance+stage+based+on+simulation-driven+feature+selection+and+ensemble+learning&rft.jtitle=Results+in+engineering&rft.au=Tang%2C+Xiaohang&rft.au=Wang%2C+Zhongchang&rft.au=Zhang%2C+Wenquan&rft.date=2025-12-01&rft.pub=Elsevier+B.V&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=28&rft_id=info:doi/10.1016%2Fj.rineng.2025.106977&rft.externalDocID=S2590123025030336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon