Algorithms for Fast Spiking Neural Network Simulation on FPGAs

Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like)...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 150334 - 150353
Main Authors Lindqvist, Bjorn A., Podobas, Artur
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3479933

Cover

Abstract Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results. We have published our implementation at https://github.com/bjourne/fast_snn_fpga .
AbstractList Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results.
Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results. We have published our implementation at https://github.com/bjourne/fast_snn_fpga.
Author Podobas, Artur
Lindqvist, Bjorn A.
Author_xml – sequence: 1
  givenname: Bjorn A.
  orcidid: 0009-0007-3374-4355
  surname: Lindqvist
  fullname: Lindqvist, Bjorn A.
  email: bjolin2@kth.se
  organization: KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 2
  givenname: Artur
  orcidid: 0000-0001-5452-6794
  surname: Podobas
  fullname: Podobas, Artur
  organization: KTH Royal Institute of Technology, Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-355765$$DView record from Swedish Publication Index
BookMark eNplkW9LIzEQxoN44J_zE-iL_QJbk02yad4IS896gpxC1bdhkk1q7HZTki2l397oyuGdITDDML9nJk9O0GEfeovQOcETQrC8bGaz68ViUuGKTSgTUlJ6gI4rUsuScloffsmP0FlKrzifaS5xcYyumm4Zoh9e1qlwIRZzSEOx2PiV75fFH7uN0OUw7EJcFQu_3nYw-NAX-c4fbpr0E_1w0CV79hlP0dP8-nH2u7y7v7mdNXelobUcSgOcak45njIOpHLMECDCgXS6lpQA5Vo6BsJw3HLhdOU402BwfgzW2hh6im5H3TbAq9pEv4a4VwG8-iiEuFQQB286qzQBY1vdgjGCtTVI0ropZ0YLqitmRdZio9a238B-B133V5Bg9W6pyqxNSb1bqj4tzVg5YmlnN1v9zxK__HPzscRqeFGUc1Hz3E_HfhNDStG6b1PGj_t_ysVIeWvtF0KQmtaEvgG2V5WY
CODEN IAECCG
Cites_doi 10.1109/SC.2016.34
10.1002/cpe.6570
10.1109/ICECS49266.2020.9294790
10.1109/ISVLSI.2008.43
10.3389/fnins.2015.00516
10.1145/3529256
10.1145/3193827
10.3389/fncom.2023.1144143
10.1098/rsta.2019.0160
10.1109/ISVLSI54635.2022.00016
10.1007/978-3-642-03156-4_17
10.3389/fnins.2017.00090
10.3389/fninf.2022.884033
10.1093/cercor/bhs358
10.1145/3078597.3078616
10.1109/TCAD.2018.2834439
10.1109/MSPEC.2010.5644776
10.1561/1000000005
10.23919/FPL.2017.8056756
10.1109/IPDPSW59300.2023.00078
10.3389/fninf.2010.00113
10.1109/N-SSC.2007.4785534
10.1145/3518997.3531027
10.1109/TNSRE.2020.2980475
10.1109/JPROC.2015.2392104
10.1109/SAMOS.2016.7818341
10.1109/IJCNN54540.2023.10191153
10.1016/S0893-6080(97)00011-7
10.3389/fncom.2021.627620
10.1145/3547276.3548629
10.1145/3200691.3178506
10.1109/TCSI.2021.3052885
10.1145/3491235
10.5121/ijcsit.2017.9214
10.1007/978-1-4614-6675-8_258
10.1109/ACCESS.2020.3012084
10.1145/296399.296428
10.1109/HPEC.2018.8547646
10.1145/3578178.3579341
10.1145/3506713
10.3389/fnins.2021.728460
10.3389/fnins.2018.00941
10.1109/MCAS.2021.3071607
10.1109/IPDPS49936.2021.00116
10.1145/3337801.3337813
10.1088/0954-898X_11_4_302
10.1109/TCSII.2021.3090422
10.1109/MCSE.2017.29
10.1145/3592979.3593407
10.1145/3576200
10.1002/SERIES1345
10.26599/TST.2019.9010019
10.1109/NorCAS58970.2023.10305473
10.1109/ASAP.2018.8445106
10.3389/fnins.2018.00291
10.1038/d41586-019-02209-z
10.1109/MM.2018.032271057
10.1109/FPL60245.2023.00047
10.1109/TC.2012.142
10.1007/s10827-007-0038-6
10.1088/2634-4386/ac55fc
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTPV
AOWAS
D8V
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3479933
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 150353
ExternalDocumentID oai_doaj_org_article_b1acedbdacc74d6a91df854cb73b24e7
10.1109/access.2024.3479933
oai_DiVA_org_kth_355765
10_1109_ACCESS_2024_3479933
10716361
Genre orig-research
GrantInformation_xml – fundername: Swedish Research Council’s Project Building Digital Brains
  grantid: 2021-04579
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ADTPV
AOWAS
D8V
ADTOC
UNPAY
ID FETCH-LOGICAL-c369t-ca53b5350845a12f4c1a17fa9fb6931a35b9f4a7c50d57fb2f54bac07990bbcc3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:48:38 EDT 2025
Sun Sep 07 11:01:10 EDT 2025
Thu Aug 21 07:33:04 EDT 2025
Wed Oct 01 03:43:26 EDT 2025
Wed Aug 27 02:15:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-ca53b5350845a12f4c1a17fa9fb6931a35b9f4a7c50d57fb2f54bac07990bbcc3
ORCID 0000-0001-5452-6794
0009-0007-3374-4355
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10716361
PageCount 20
ParticipantIDs unpaywall_primary_10_1109_access_2024_3479933
crossref_primary_10_1109_ACCESS_2024_3479933
doaj_primary_oai_doaj_org_article_b1acedbdacc74d6a91df854cb73b24e7
ieee_primary_10716361
swepub_primary_oai_DiVA_org_kth_355765
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
Carpegna (ref61) 2024
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
Vreeken (ref30) 2003
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
(ref50) 2023
ref8
ref7
ref9
ref4
ref3
ref6
Plesser (ref27) 2024
ref5
ref35
Perry (ref14) 2002
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref39
ref38
Diesmann (ref68) 2001; 58
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
(ref40) 2018
Makin (ref1) 2019; 571
ref60
ref62
References_xml – volume-title: How a Well-Crafted Brain Model Has Influenced Research
  year: 2024
  ident: ref27
– ident: ref16
  doi: 10.1109/SC.2016.34
– ident: ref36
  doi: 10.1002/cpe.6570
– ident: ref56
  doi: 10.1109/ICECS49266.2020.9294790
– ident: ref20
  doi: 10.1109/ISVLSI.2008.43
– ident: ref64
  doi: 10.3389/fnins.2015.00516
– ident: ref45
  doi: 10.1145/3529256
– ident: ref13
  doi: 10.1145/3193827
– ident: ref28
  doi: 10.3389/fncom.2023.1144143
– year: 2024
  ident: ref61
  article-title: Spiker+: A framework for the generation of efficient spiking neural networks FPGA accelerators for inference at the edge
  publication-title: arXiv:2401.01141
– ident: ref54
  doi: 10.1098/rsta.2019.0160
– ident: ref59
  doi: 10.1109/ISVLSI54635.2022.00016
– ident: ref2
  doi: 10.1007/978-3-642-03156-4_17
– ident: ref62
  doi: 10.3389/fnins.2017.00090
– ident: ref65
  doi: 10.3389/fninf.2022.884033
– ident: ref26
  doi: 10.1093/cercor/bhs358
– ident: ref43
  doi: 10.1145/3078597.3078616
– ident: ref39
  doi: 10.1109/TCAD.2018.2834439
– ident: ref5
  doi: 10.1109/MSPEC.2010.5644776
– ident: ref8
  doi: 10.1561/1000000005
– ident: ref15
  doi: 10.23919/FPL.2017.8056756
– ident: ref19
  doi: 10.1109/IPDPSW59300.2023.00078
– ident: ref33
  doi: 10.3389/fninf.2010.00113
– ident: ref6
  doi: 10.1109/N-SSC.2007.4785534
– ident: ref42
  doi: 10.1145/3518997.3531027
– ident: ref63
  doi: 10.1109/TNSRE.2020.2980475
– ident: ref34
  doi: 10.1109/JPROC.2015.2392104
– ident: ref51
  doi: 10.1109/SAMOS.2016.7818341
– ident: ref60
  doi: 10.1109/IJCNN54540.2023.10191153
– ident: ref25
  doi: 10.1016/S0893-6080(97)00011-7
– ident: ref29
  doi: 10.3389/fncom.2021.627620
– ident: ref12
  doi: 10.1145/3547276.3548629
– volume-title: VHDL: Programming by Example
  year: 2002
  ident: ref14
– ident: ref44
  doi: 10.1145/3200691.3178506
– ident: ref57
  doi: 10.1109/TCSI.2021.3052885
– ident: ref23
  doi: 10.1145/3491235
– ident: ref3
  doi: 10.5121/ijcsit.2017.9214
– ident: ref48
  doi: 10.1007/978-1-4614-6675-8_258
– ident: ref9
  doi: 10.1109/ACCESS.2020.3012084
– ident: ref38
  doi: 10.1145/296399.296428
– ident: ref21
  doi: 10.1109/HPEC.2018.8547646
– ident: ref10
  doi: 10.1145/3578178.3579341
– ident: ref37
  doi: 10.1145/3506713
– ident: ref53
  doi: 10.3389/fnins.2021.728460
– ident: ref46
  doi: 10.3389/fnins.2018.00941
– ident: ref35
  doi: 10.1109/MCAS.2021.3071607
– volume-title: Spiking neural networks, an introduction
  year: 2003
  ident: ref30
– ident: ref17
  doi: 10.1109/IPDPS49936.2021.00116
– ident: ref24
  doi: 10.1145/3337801.3337813
– ident: ref32
  doi: 10.1088/0954-898X_11_4_302
– volume: 58
  start-page: 43
  year: 2001
  ident: ref68
  article-title: NEST: An environment for neural systems simulations
  publication-title: Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis
– ident: ref58
  doi: 10.1109/TCSII.2021.3090422
– ident: ref7
  doi: 10.1109/MCSE.2017.29
– ident: ref18
  doi: 10.1145/3592979.3593407
– ident: ref11
  doi: 10.1145/3576200
– ident: ref49
  doi: 10.1002/SERIES1345
– ident: ref31
  doi: 10.26599/TST.2019.9010019
– ident: ref66
  doi: 10.1109/NorCAS58970.2023.10305473
– ident: ref22
  doi: 10.1109/ASAP.2018.8445106
– volume-title: Intel FPGA SDK for OpenCL Standard Edition: Best Practices Guide
  year: 2018
  ident: ref40
– ident: ref47
  doi: 10.3389/fnins.2018.00291
– volume: 571
  issue: 7766
  year: 2019
  ident: ref1
  article-title: The four biggest challenges in brain simulation
  publication-title: Nature
  doi: 10.1038/d41586-019-02209-z
– volume-title: Intel Agilex 7 FPGA F-Series Development Kit User Guide
  year: 2023
  ident: ref50
– ident: ref4
  doi: 10.1109/MM.2018.032271057
– ident: ref52
  doi: 10.1109/FPL60245.2023.00047
– ident: ref67
  doi: 10.1109/TC.2012.142
– ident: ref41
  doi: 10.1007/s10827-007-0038-6
– ident: ref55
  doi: 10.1088/2634-4386/ac55fc
SSID ssj0000816957
Score 2.302607
Snippet Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons...
SourceID doaj
unpaywall
swepub
crossref
ieee
SourceType Open Website
Open Access Repository
Index Database
Publisher
StartPage 150334
SubjectTerms Brain modeling
Cortical microcircuit
Field programmable gate arrays
FPGA
Hardware
HLS
HPC
leaky integrate-and-fire
Logic
Membrane potentials
Neuroscience
OpenCL
simulation
Spiking neural networks
Synapses
Table lookup
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5kL7oH8bFidJUcxJNx08-kL0IcHRfBRVhX9haq-uEOOzs7OFkW_73dSRwyePAi5BTSler6QvqrpusrgFfkncPgeMFtzHSkClRgaUVRu5qVgZTnIlUjfznRx2fy87k6n7T6SmfCBnngIXBHxNB6Rw6traTTaJgLtZKWKkFc-r6OvKzNJJnq_8E100ZVo8wQK81RM5vFGcWEkMu3qXrSCLGzFPWK_WOLla1s6D7cvVmt8dctLpeTZWf-AO6PfDFvBj8fwh2_egT7ExXBx_CuWf64jjn-xdUmjxQ0n-Omy0_Xi7QJnifxjTj-ZDjtnZ8ursZ-XXm85l8_NZsDOJt__DY7Lsa2CIUV2nSFRSVIicispELGg7QMWRXQBNJGMBSKTJBYWVU6VQXiQUlCW8Y5l0TWiiewt7pe-aeQR7JKQqD2RnEZ4iDHPNOeS2HTQk4ZvPkToXY9qF-0fdZQmnYIaJsC2o4BzeB9iuL20SRd3d-IgLYjoO2_AM3gIGEweV9M6YRmGbweQNkx_2HxvenNX3YXbeROlVYZFFvQ_vIa-zaUO14_-x9eP4d7yeawOXMIe93PG_8i0pWOXvZf5m8lY-gY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BekA9tAWKakqRD4gTDt6nsxckEwgVElGlElRO1s4-2qhpGjWOEPx6dm0TJSAhkHyydtbjmbH2G-_ONwAv0FmrvaUZNSHT4cJjpnPDsoEdkNyjcJTFauRPY3k64R8vxEXHsx1rYTb370muXuumbWDI4yjvx6LHkH_fhx0pAvDuwc5kfFZ-je3jiFQZazYij_8iubX2NBT9XU-VNU_oLjxYzRf6-zc9m22sM6P9toB72dATxuMl1_1VjX3z4zfyxn98hQPY6_BmWrYB8hDuufkj2N1gIXwMb8rZ5e3dtL66WaYBwqYjvazT88U0_kRPI3lHkB-3p8XT8-lN1-8rDdfo7EO5PITJ6P3n4WnWtVXIDJOqzowWDAULyIwLTajnhmhSeK08SsWIZgKV57owIrei8Ei94KhNHjTPEY1hT6A3v527I0gD2EXGtHRKUO6DkCWOSEc5MxEIYAKvfhm8WrTsGVWTdeSqKofDEGJVNEvVmSWBt9Ep66GR-rq5EcxZdV9ShUQbZ9EGsxbcSq2I9QPBDRYMKXdFAofRpRvPCykhkySBl62Pt6Z_N_1SNtNf11dVwF6FFAlk6xj4Q-vWmVtaP_3P8c-gV9-t3EkAMzU-74L4J8gm8DM
  priority: 102
  providerName: Unpaywall
Title Algorithms for Fast Spiking Neural Network Simulation on FPGAs
URI https://ieeexplore.ieee.org/document/10716361
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-355765
https://doi.org/10.1109/access.2024.3479933
https://doaj.org/article/b1acedbdacc74d6a91df854cb73b24e7
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOUAPPIvqFiIfECccvC9v9oLkBkKFRFSpBJWTtU8aNU2ixhGCX88-3CgBISH5YFn7nNnVfjPe-QbglbLGSGdwgbW3dChzqpClJsXADFDpFLOYhGjkz-PqdEI_XbCLLlg9xsJYa-PlM9sPr_FfvlnodXCV-R3u0T0Jxs5dPqhSsNbGoRIySAjGO2YhVIq39XDoJ-FtQEz7IWBSELJz-kSS_i6ryoYpdB_ur-dL-fOHnM22TprRIxjfjjFdMLnqr1vV17_-oG_870k8hocd5szrtEiewB07fwr7W0yEz-BdPfu-uJm2l9er3MPYfCRXbX6-nAZHeh4IPHz9cboxnp9Pr7ucX7l_Rmcf69UBTEYfvgxPiy61QqFJJdpCS0YUIx6dUSYRdlQjibiTwqlKECQJU8JRyTUrDeNOYceokrr0QiyV0po8h735Ym4PIfeAVxEiKysYps5XMsiiymJKdAADKoM3tyJvlolBo4mWRymapKEmaKjpNJTBSVDLpmigv44fvBCbbjc1CkltjTJSa05NJQUybsCoVpwoTC3P4CAIfqu_JPMMXict7zT_fvq1js1ftZeNx1-8YhkUm1Xw16hlTGW5M-qjf3R4DA9CseSzeQF77c3avvQoplW9aP334hruwb3J-Kz-9hvUXPJn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcig9UB5FmPLwAXHCwfuysxckEwgB2gipLepttU8aNU2ixhGCX88-3CgBISH5YFne18yu9pvZnW8AXiprjHQGF1h7S4cypwpZalL0TR-VTjGLSYhGPh5XozP6-Zydd8HqMRbGWhsvn9leeI1n-WauV8FV5le4R_ckGDu3GaWUpXCttUsl5JDgrO64hVDJ3zSDgR-GtwIx7YWQSU7I1v4Tafq7vCprrtA92F3NFvLnDzmdbuw1w30Y3_QyXTG57K1a1dO__iBw_O9h3IO7HerMmzRN7sMtO3sAextchA_hbTP9Pr-etBdXy9wD2Xwol21-spgEV3oeKDx8-XG6M56fTK66rF-5f4ZfPzbLAzgbfjgdjIouuUKhScXbQktGFCMen1EmEXZUI4lqJ7lTFSdIEqa4o7LWrDSsdgo7RpXUpRdiqZTW5BHszOYz-xhyD3kVIbKynGHqfCGDLKospkQHOKAyeH0jcrFIHBoi2h4lF0lDImhIdBrK4F1Qy_rXQIAdP3ghim49CYWktkYZqXVNTSU5Mq7PqFY1UZjaOoODIPiN9pLMM3iVtLxV_fvJtyZWf9leCI_A6oplUKxnwV-9ljGZ5Vavn_yjwRewOzo9PhJHn8ZfDuFOKJI8OE9hp71e2Wce07TqeZzJvwFYqPMP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BekA9tAWKakqRD4gTDt6nsxckEwgVElGlElRO1s4-2qhpGjWOEPx6dm0TJSAhkHyydtbjmbH2G-_ONwAv0FmrvaUZNSHT4cJjpnPDsoEdkNyjcJTFauRPY3k64R8vxEXHsx1rYTb370muXuumbWDI4yjvx6LHkH_fhx0pAvDuwc5kfFZ-je3jiFQZazYij_8iubX2NBT9XU-VNU_oLjxYzRf6-zc9m22sM6P9toB72dATxuMl1_1VjX3z4zfyxn98hQPY6_BmWrYB8hDuufkj2N1gIXwMb8rZ5e3dtL66WaYBwqYjvazT88U0_kRPI3lHkB-3p8XT8-lN1-8rDdfo7EO5PITJ6P3n4WnWtVXIDJOqzowWDAULyIwLTajnhmhSeK08SsWIZgKV57owIrei8Ei94KhNHjTPEY1hT6A3v527I0gD2EXGtHRKUO6DkCWOSEc5MxEIYAKvfhm8WrTsGVWTdeSqKofDEGJVNEvVmSWBt9Ep66GR-rq5EcxZdV9ShUQbZ9EGsxbcSq2I9QPBDRYMKXdFAofRpRvPCykhkySBl62Pt6Z_N_1SNtNf11dVwF6FFAlk6xj4Q-vWmVtaP_3P8c-gV9-t3EkAMzU-74L4J8gm8DM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Fast+Spiking+Neural+Network+Simulation+on+FPGAs&rft.jtitle=IEEE+access&rft.au=Lindqvist%2C+Bj%C3%B6rn+A.&rft.au=Podobas%2C+Artur&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=150334&rft.epage=150353&rft_id=info:doi/10.1109%2FACCESS.2024.3479933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3479933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon