Algorithms for Fast Spiking Neural Network Simulation on FPGAs
Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like)...
Saved in:
| Published in | IEEE access Vol. 12; pp. 150334 - 150353 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3479933 |
Cover
| Abstract | Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results. We have published our implementation at https://github.com/bjourne/fast_snn_fpga . |
|---|---|
| AbstractList | Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results. Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons that transmit information on axons between each other via synapses. SNNs have several important application areas, ranging from (brain-like) artificial intelligence to complex brain simulations. Most SNN simulations today are carried out on systems such as CPUs and GPUs, which fit SNNs poorly and often yield slow solutions that consume needlessly much energy. In this work, we present algorithms for efficient simulation of SNNs on Field-Programmable Gate Arrays (FPGAs), which is driven by our hypothesis that said devices can be much more power-efficient without sacrificing execution performance. We also provide an in-depth analysis and discussion of our algorithms and techniques. We target the important Potjans-Diesmann model, a well-known cortical microcircuit often used for assessing SNN simulation performance. Using high-level synthesis (HLS) targeting the latest Intel Agilex 7 FPGA, we show that our best simulator can execute the microcircuit 25% faster than real-time and require only 21 nJ per synaptic event. Our result surpasses the state-of-the-art for single-device simulation, and the energy use is the lowest among published results. We have published our implementation at https://github.com/bjourne/fast_snn_fpga. |
| Author | Podobas, Artur Lindqvist, Bjorn A. |
| Author_xml | – sequence: 1 givenname: Bjorn A. orcidid: 0009-0007-3374-4355 surname: Lindqvist fullname: Lindqvist, Bjorn A. email: bjolin2@kth.se organization: KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 2 givenname: Artur orcidid: 0000-0001-5452-6794 surname: Podobas fullname: Podobas, Artur organization: KTH Royal Institute of Technology, Stockholm, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-355765$$DView record from Swedish Publication Index |
| BookMark | eNplkW9LIzEQxoN44J_zE-iL_QJbk02yad4IS896gpxC1bdhkk1q7HZTki2l397oyuGdITDDML9nJk9O0GEfeovQOcETQrC8bGaz68ViUuGKTSgTUlJ6gI4rUsuScloffsmP0FlKrzifaS5xcYyumm4Zoh9e1qlwIRZzSEOx2PiV75fFH7uN0OUw7EJcFQu_3nYw-NAX-c4fbpr0E_1w0CV79hlP0dP8-nH2u7y7v7mdNXelobUcSgOcak45njIOpHLMECDCgXS6lpQA5Vo6BsJw3HLhdOU402BwfgzW2hh6im5H3TbAq9pEv4a4VwG8-iiEuFQQB286qzQBY1vdgjGCtTVI0ropZ0YLqitmRdZio9a238B-B133V5Bg9W6pyqxNSb1bqj4tzVg5YmlnN1v9zxK__HPzscRqeFGUc1Hz3E_HfhNDStG6b1PGj_t_ysVIeWvtF0KQmtaEvgG2V5WY |
| CODEN | IAECCG |
| Cites_doi | 10.1109/SC.2016.34 10.1002/cpe.6570 10.1109/ICECS49266.2020.9294790 10.1109/ISVLSI.2008.43 10.3389/fnins.2015.00516 10.1145/3529256 10.1145/3193827 10.3389/fncom.2023.1144143 10.1098/rsta.2019.0160 10.1109/ISVLSI54635.2022.00016 10.1007/978-3-642-03156-4_17 10.3389/fnins.2017.00090 10.3389/fninf.2022.884033 10.1093/cercor/bhs358 10.1145/3078597.3078616 10.1109/TCAD.2018.2834439 10.1109/MSPEC.2010.5644776 10.1561/1000000005 10.23919/FPL.2017.8056756 10.1109/IPDPSW59300.2023.00078 10.3389/fninf.2010.00113 10.1109/N-SSC.2007.4785534 10.1145/3518997.3531027 10.1109/TNSRE.2020.2980475 10.1109/JPROC.2015.2392104 10.1109/SAMOS.2016.7818341 10.1109/IJCNN54540.2023.10191153 10.1016/S0893-6080(97)00011-7 10.3389/fncom.2021.627620 10.1145/3547276.3548629 10.1145/3200691.3178506 10.1109/TCSI.2021.3052885 10.1145/3491235 10.5121/ijcsit.2017.9214 10.1007/978-1-4614-6675-8_258 10.1109/ACCESS.2020.3012084 10.1145/296399.296428 10.1109/HPEC.2018.8547646 10.1145/3578178.3579341 10.1145/3506713 10.3389/fnins.2021.728460 10.3389/fnins.2018.00941 10.1109/MCAS.2021.3071607 10.1109/IPDPS49936.2021.00116 10.1145/3337801.3337813 10.1088/0954-898X_11_4_302 10.1109/TCSII.2021.3090422 10.1109/MCSE.2017.29 10.1145/3592979.3593407 10.1145/3576200 10.1002/SERIES1345 10.26599/TST.2019.9010019 10.1109/NorCAS58970.2023.10305473 10.1109/ASAP.2018.8445106 10.3389/fnins.2018.00291 10.1038/d41586-019-02209-z 10.1109/MM.2018.032271057 10.1109/FPL60245.2023.00047 10.1109/TC.2012.142 10.1007/s10827-007-0038-6 10.1088/2634-4386/ac55fc |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ADTPV AOWAS D8V ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3479933 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 150353 |
| ExternalDocumentID | oai_doaj_org_article_b1acedbdacc74d6a91df854cb73b24e7 10.1109/access.2024.3479933 oai_DiVA_org_kth_355765 10_1109_ACCESS_2024_3479933 10716361 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Swedish Research Council’s Project Building Digital Brains grantid: 2021-04579 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION ADTPV AOWAS D8V ADTOC UNPAY |
| ID | FETCH-LOGICAL-c369t-ca53b5350845a12f4c1a17fa9fb6931a35b9f4a7c50d57fb2f54bac07990bbcc3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:48:38 EDT 2025 Sun Sep 07 11:01:10 EDT 2025 Thu Aug 21 07:33:04 EDT 2025 Wed Oct 01 03:43:26 EDT 2025 Wed Aug 27 02:15:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-ca53b5350845a12f4c1a17fa9fb6931a35b9f4a7c50d57fb2f54bac07990bbcc3 |
| ORCID | 0000-0001-5452-6794 0009-0007-3374-4355 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10716361 |
| PageCount | 20 |
| ParticipantIDs | unpaywall_primary_10_1109_access_2024_3479933 crossref_primary_10_1109_ACCESS_2024_3479933 doaj_primary_oai_doaj_org_article_b1acedbdacc74d6a91df854cb73b24e7 ieee_primary_10716361 swepub_primary_oai_DiVA_org_kth_355765 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 2024 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 Carpegna (ref61) 2024 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 Vreeken (ref30) 2003 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 (ref50) 2023 ref8 ref7 ref9 ref4 ref3 ref6 Plesser (ref27) 2024 ref5 ref35 Perry (ref14) 2002 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref39 ref38 Diesmann (ref68) 2001; 58 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref29 (ref40) 2018 Makin (ref1) 2019; 571 ref60 ref62 |
| References_xml | – volume-title: How a Well-Crafted Brain Model Has Influenced Research year: 2024 ident: ref27 – ident: ref16 doi: 10.1109/SC.2016.34 – ident: ref36 doi: 10.1002/cpe.6570 – ident: ref56 doi: 10.1109/ICECS49266.2020.9294790 – ident: ref20 doi: 10.1109/ISVLSI.2008.43 – ident: ref64 doi: 10.3389/fnins.2015.00516 – ident: ref45 doi: 10.1145/3529256 – ident: ref13 doi: 10.1145/3193827 – ident: ref28 doi: 10.3389/fncom.2023.1144143 – year: 2024 ident: ref61 article-title: Spiker+: A framework for the generation of efficient spiking neural networks FPGA accelerators for inference at the edge publication-title: arXiv:2401.01141 – ident: ref54 doi: 10.1098/rsta.2019.0160 – ident: ref59 doi: 10.1109/ISVLSI54635.2022.00016 – ident: ref2 doi: 10.1007/978-3-642-03156-4_17 – ident: ref62 doi: 10.3389/fnins.2017.00090 – ident: ref65 doi: 10.3389/fninf.2022.884033 – ident: ref26 doi: 10.1093/cercor/bhs358 – ident: ref43 doi: 10.1145/3078597.3078616 – ident: ref39 doi: 10.1109/TCAD.2018.2834439 – ident: ref5 doi: 10.1109/MSPEC.2010.5644776 – ident: ref8 doi: 10.1561/1000000005 – ident: ref15 doi: 10.23919/FPL.2017.8056756 – ident: ref19 doi: 10.1109/IPDPSW59300.2023.00078 – ident: ref33 doi: 10.3389/fninf.2010.00113 – ident: ref6 doi: 10.1109/N-SSC.2007.4785534 – ident: ref42 doi: 10.1145/3518997.3531027 – ident: ref63 doi: 10.1109/TNSRE.2020.2980475 – ident: ref34 doi: 10.1109/JPROC.2015.2392104 – ident: ref51 doi: 10.1109/SAMOS.2016.7818341 – ident: ref60 doi: 10.1109/IJCNN54540.2023.10191153 – ident: ref25 doi: 10.1016/S0893-6080(97)00011-7 – ident: ref29 doi: 10.3389/fncom.2021.627620 – ident: ref12 doi: 10.1145/3547276.3548629 – volume-title: VHDL: Programming by Example year: 2002 ident: ref14 – ident: ref44 doi: 10.1145/3200691.3178506 – ident: ref57 doi: 10.1109/TCSI.2021.3052885 – ident: ref23 doi: 10.1145/3491235 – ident: ref3 doi: 10.5121/ijcsit.2017.9214 – ident: ref48 doi: 10.1007/978-1-4614-6675-8_258 – ident: ref9 doi: 10.1109/ACCESS.2020.3012084 – ident: ref38 doi: 10.1145/296399.296428 – ident: ref21 doi: 10.1109/HPEC.2018.8547646 – ident: ref10 doi: 10.1145/3578178.3579341 – ident: ref37 doi: 10.1145/3506713 – ident: ref53 doi: 10.3389/fnins.2021.728460 – ident: ref46 doi: 10.3389/fnins.2018.00941 – ident: ref35 doi: 10.1109/MCAS.2021.3071607 – volume-title: Spiking neural networks, an introduction year: 2003 ident: ref30 – ident: ref17 doi: 10.1109/IPDPS49936.2021.00116 – ident: ref24 doi: 10.1145/3337801.3337813 – ident: ref32 doi: 10.1088/0954-898X_11_4_302 – volume: 58 start-page: 43 year: 2001 ident: ref68 article-title: NEST: An environment for neural systems simulations publication-title: Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis – ident: ref58 doi: 10.1109/TCSII.2021.3090422 – ident: ref7 doi: 10.1109/MCSE.2017.29 – ident: ref18 doi: 10.1145/3592979.3593407 – ident: ref11 doi: 10.1145/3576200 – ident: ref49 doi: 10.1002/SERIES1345 – ident: ref31 doi: 10.26599/TST.2019.9010019 – ident: ref66 doi: 10.1109/NorCAS58970.2023.10305473 – ident: ref22 doi: 10.1109/ASAP.2018.8445106 – volume-title: Intel FPGA SDK for OpenCL Standard Edition: Best Practices Guide year: 2018 ident: ref40 – ident: ref47 doi: 10.3389/fnins.2018.00291 – volume: 571 issue: 7766 year: 2019 ident: ref1 article-title: The four biggest challenges in brain simulation publication-title: Nature doi: 10.1038/d41586-019-02209-z – volume-title: Intel Agilex 7 FPGA F-Series Development Kit User Guide year: 2023 ident: ref50 – ident: ref4 doi: 10.1109/MM.2018.032271057 – ident: ref52 doi: 10.1109/FPL60245.2023.00047 – ident: ref67 doi: 10.1109/TC.2012.142 – ident: ref41 doi: 10.1007/s10827-007-0038-6 – ident: ref55 doi: 10.1088/2634-4386/ac55fc |
| SSID | ssj0000816957 |
| Score | 2.302607 |
| Snippet | Spiking Neural Networks (SNNs) are models that mimic and replicate the computational properties of the biological brain. Computation is performed using neurons... |
| SourceID | doaj unpaywall swepub crossref ieee |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 150334 |
| SubjectTerms | Brain modeling Cortical microcircuit Field programmable gate arrays FPGA Hardware HLS HPC leaky integrate-and-fire Logic Membrane potentials Neuroscience OpenCL simulation Spiking neural networks Synapses Table lookup |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5kL7oH8bFidJUcxJNx08-kL0IcHRfBRVhX9haq-uEOOzs7OFkW_73dSRwyePAi5BTSler6QvqrpusrgFfkncPgeMFtzHSkClRgaUVRu5qVgZTnIlUjfznRx2fy87k6n7T6SmfCBnngIXBHxNB6Rw6traTTaJgLtZKWKkFc-r6OvKzNJJnq_8E100ZVo8wQK81RM5vFGcWEkMu3qXrSCLGzFPWK_WOLla1s6D7cvVmt8dctLpeTZWf-AO6PfDFvBj8fwh2_egT7ExXBx_CuWf64jjn-xdUmjxQ0n-Omy0_Xi7QJnifxjTj-ZDjtnZ8ursZ-XXm85l8_NZsDOJt__DY7Lsa2CIUV2nSFRSVIicispELGg7QMWRXQBNJGMBSKTJBYWVU6VQXiQUlCW8Y5l0TWiiewt7pe-aeQR7JKQqD2RnEZ4iDHPNOeS2HTQk4ZvPkToXY9qF-0fdZQmnYIaJsC2o4BzeB9iuL20SRd3d-IgLYjoO2_AM3gIGEweV9M6YRmGbweQNkx_2HxvenNX3YXbeROlVYZFFvQ_vIa-zaUO14_-x9eP4d7yeawOXMIe93PG_8i0pWOXvZf5m8lY-gY priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BekA9tAWKakqRD4gTDt6nsxckEwgVElGlElRO1s4-2qhpGjWOEPx6dm0TJSAhkHyydtbjmbH2G-_ONwAv0FmrvaUZNSHT4cJjpnPDsoEdkNyjcJTFauRPY3k64R8vxEXHsx1rYTb370muXuumbWDI4yjvx6LHkH_fhx0pAvDuwc5kfFZ-je3jiFQZazYij_8iubX2NBT9XU-VNU_oLjxYzRf6-zc9m22sM6P9toB72dATxuMl1_1VjX3z4zfyxn98hQPY6_BmWrYB8hDuufkj2N1gIXwMb8rZ5e3dtL66WaYBwqYjvazT88U0_kRPI3lHkB-3p8XT8-lN1-8rDdfo7EO5PITJ6P3n4WnWtVXIDJOqzowWDAULyIwLTajnhmhSeK08SsWIZgKV57owIrei8Ei94KhNHjTPEY1hT6A3v527I0gD2EXGtHRKUO6DkCWOSEc5MxEIYAKvfhm8WrTsGVWTdeSqKofDEGJVNEvVmSWBt9Ep66GR-rq5EcxZdV9ShUQbZ9EGsxbcSq2I9QPBDRYMKXdFAofRpRvPCykhkySBl62Pt6Z_N_1SNtNf11dVwF6FFAlk6xj4Q-vWmVtaP_3P8c-gV9-t3EkAMzU-74L4J8gm8DM priority: 102 providerName: Unpaywall |
| Title | Algorithms for Fast Spiking Neural Network Simulation on FPGAs |
| URI | https://ieeexplore.ieee.org/document/10716361 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-355765 https://doi.org/10.1109/access.2024.3479933 https://doaj.org/article/b1acedbdacc74d6a91df854cb73b24e7 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BOUAPPIvqFiIfECccvC9v9oLkBkKFRFSpBJWTtU8aNU2ixhGCX88-3CgBISH5YFn7nNnVfjPe-QbglbLGSGdwgbW3dChzqpClJsXADFDpFLOYhGjkz-PqdEI_XbCLLlg9xsJYa-PlM9sPr_FfvlnodXCV-R3u0T0Jxs5dPqhSsNbGoRIySAjGO2YhVIq39XDoJ-FtQEz7IWBSELJz-kSS_i6ryoYpdB_ur-dL-fOHnM22TprRIxjfjjFdMLnqr1vV17_-oG_870k8hocd5szrtEiewB07fwr7W0yEz-BdPfu-uJm2l9er3MPYfCRXbX6-nAZHeh4IPHz9cboxnp9Pr7ucX7l_Rmcf69UBTEYfvgxPiy61QqFJJdpCS0YUIx6dUSYRdlQjibiTwqlKECQJU8JRyTUrDeNOYceokrr0QiyV0po8h735Ym4PIfeAVxEiKysYps5XMsiiymJKdAADKoM3tyJvlolBo4mWRymapKEmaKjpNJTBSVDLpmigv44fvBCbbjc1CkltjTJSa05NJQUybsCoVpwoTC3P4CAIfqu_JPMMXict7zT_fvq1js1ftZeNx1-8YhkUm1Xw16hlTGW5M-qjf3R4DA9CseSzeQF77c3avvQoplW9aP334hruwb3J-Kz-9hvUXPJn |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6hcig9UB5FmPLwAXHCwfuysxckEwgB2gipLepttU8aNU2ixhGCX88-3CgBISH5YFne18yu9pvZnW8AXiprjHQGF1h7S4cypwpZalL0TR-VTjGLSYhGPh5XozP6-Zydd8HqMRbGWhsvn9leeI1n-WauV8FV5le4R_ckGDu3GaWUpXCttUsl5JDgrO64hVDJ3zSDgR-GtwIx7YWQSU7I1v4Tafq7vCprrtA92F3NFvLnDzmdbuw1w30Y3_QyXTG57K1a1dO__iBw_O9h3IO7HerMmzRN7sMtO3sAextchA_hbTP9Pr-etBdXy9wD2Xwol21-spgEV3oeKDx8-XG6M56fTK66rF-5f4ZfPzbLAzgbfjgdjIouuUKhScXbQktGFCMen1EmEXZUI4lqJ7lTFSdIEqa4o7LWrDSsdgo7RpXUpRdiqZTW5BHszOYz-xhyD3kVIbKynGHqfCGDLKospkQHOKAyeH0jcrFIHBoi2h4lF0lDImhIdBrK4F1Qy_rXQIAdP3ghim49CYWktkYZqXVNTSU5Mq7PqFY1UZjaOoODIPiN9pLMM3iVtLxV_fvJtyZWf9leCI_A6oplUKxnwV-9ljGZ5Vavn_yjwRewOzo9PhJHn8ZfDuFOKJI8OE9hp71e2Wce07TqeZzJvwFYqPMP |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BekA9tAWKakqRD4gTDt6nsxckEwgVElGlElRO1s4-2qhpGjWOEPx6dm0TJSAhkHyydtbjmbH2G-_ONwAv0FmrvaUZNSHT4cJjpnPDsoEdkNyjcJTFauRPY3k64R8vxEXHsx1rYTb370muXuumbWDI4yjvx6LHkH_fhx0pAvDuwc5kfFZ-je3jiFQZazYij_8iubX2NBT9XU-VNU_oLjxYzRf6-zc9m22sM6P9toB72dATxuMl1_1VjX3z4zfyxn98hQPY6_BmWrYB8hDuufkj2N1gIXwMb8rZ5e3dtL66WaYBwqYjvazT88U0_kRPI3lHkB-3p8XT8-lN1-8rDdfo7EO5PITJ6P3n4WnWtVXIDJOqzowWDAULyIwLTajnhmhSeK08SsWIZgKV57owIrei8Ei94KhNHjTPEY1hT6A3v527I0gD2EXGtHRKUO6DkCWOSEc5MxEIYAKvfhm8WrTsGVWTdeSqKofDEGJVNEvVmSWBt9Ep66GR-rq5EcxZdV9ShUQbZ9EGsxbcSq2I9QPBDRYMKXdFAofRpRvPCykhkySBl62Pt6Z_N_1SNtNf11dVwF6FFAlk6xj4Q-vWmVtaP_3P8c-gV9-t3EkAMzU-74L4J8gm8DM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+for+Fast+Spiking+Neural+Network+Simulation+on+FPGAs&rft.jtitle=IEEE+access&rft.au=Lindqvist%2C+Bj%C3%B6rn+A.&rft.au=Podobas%2C+Artur&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=150334&rft.epage=150353&rft_id=info:doi/10.1109%2FACCESS.2024.3479933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3479933 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |