The stability of variable step-size LMS algorithms

Variable step-site LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 47; no. 12; pp. 3277 - 3288
Main Authors Gelfand, S.B., Yongbin Wei, Krogmeier, J.V.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.1999
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1053-587X
DOI10.1109/78.806072

Cover

Abstract Variable step-site LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most VSLMS described in the literature use a data-dependent step-size, where the step-size either depends on the data before the current time (prior step-size rule) or through the current time (posterior step-size rule). It has often been assumed that VSLMS algorithms are stable (in the sense of mean-square bounded weights), provided that the step-size is constrained to lie within the corresponding stability region for the LMS algorithm. For a single tap fitter, we find exact expressions for the stability region of VSLMS over the classes of prior and posterior step-sizes and show that the stability region for prior step size coincides with that of fixed step-size, but the region for posterior step-size is strictly smaller than for fixed step-size. For the multiple tap case, we obtain bounds on the stability regions with similar properties. The approach taken here is a generalization of the classical method of analyzing, the exponential stability of the weight covariance equation for LMS. Although it is not possible to derive a weight covariance equation for general data-dependent VSLMS, the weight variances can be upper bounded by the solution of a linear time-invariant difference equation, after appropriately dealing with certain nonlinear terms. For prior step-size (like fixed step-size), the state matrix is symmetric, whereas for posterior step-size, the symmetry is lost, requiring a more detailed analysis. The results are verified by computer simulations.
AbstractList Variable step-site LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most VSLMS described in the literature use a data-dependent step-size, where the step-size either depends on the data before the current time (prior step-size rule) or through the current time (posterior step-size rule). It has often been assumed that VSLMS algorithms are stable (in the sense of mean-square bounded weights), provided that the step-size is constrained to lie within the corresponding stability region for the LMS algorithm. For a single tap fitter, we find exact expressions for the stability region of VSLMS over the classes of prior and posterior step-sizes and show that the stability region for prior step size coincides with that of fixed step-size, but the region for posterior step-size is strictly smaller than for fixed step-size. For the multiple tap case, we obtain bounds on the stability regions with similar properties. The approach taken here is a generalization of the classical method of analyzing, the exponential stability of the weight covariance equation for LMS. Although it is not possible to derive a weight covariance equation for general data-dependent VSLMS, the weight variances can be upper bounded by the solution of a linear time-invariant difference equation, after appropriately dealing with certain nonlinear terms. For prior step-size (like fixed step-size), the state matrix is symmetric, whereas for posterior step-size, the symmetry is lost, requiring a more detailed analysis. The results are verified by computer simulations
Variable step-site LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most VSLMS described in the literature use a data-dependent step-size, where the step-size either depends on the data before the current time (prior step-size rule) or through the current time (posterior step-size rule). It has often been assumed that VSLMS algorithms are stable (in the sense of mean-square bounded weights), provided that the step-size is constrained to lie within the corresponding stability region for the LMS algorithm. For a single tap fitter, we find exact expressions for the stability region of VSLMS over the classes of prior and posterior step-sizes and show that the stability region for prior step size coincides with that of fixed step-size, but the region for posterior step-size is strictly smaller than for fixed step-size. For the multiple tap case, we obtain bounds on the stability regions with similar properties. The approach taken here is a generalization of the classical method of analyzing, the exponential stability of the weight covariance equation for LMS. Although it is not possible to derive a weight covariance equation for general data-dependent VSLMS, the weight variances can be upper bounded by the solution of a linear time-invariant difference equation, after appropriately dealing with certain nonlinear terms. For prior step-size (like fixed step-size), the state matrix is symmetric, whereas for posterior step-size, the symmetry is lost, requiring a more detailed analysis. The results are verified by computer simulations.
Variable step-size LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity and robustness of conventional fixed step-size LMS. Here, we examine the stability of VSLMS with uncorrelated stationary Gaussian data. Most VSLMS described in the literature use a data-dependent step-size, where the step-size either depends on the data before the current time (prior step-size rule) or through the current time (posterior step-size rule). It has often been assumed that VSLMS algorithms are stable (in the sense of mean-square bounded weights), provided that the step-size is constrained to lie within the corresponding stability region for the LMS algorithm. For a single tap filter, we find exact expressions for the stability region of VSLMS over the classes of prior and posterior step-sizes and show that the stability region for prior step-size coincides with that of fixed step-size, but the region for posterior step-size is strictly smaller than for fixed step-size. For the multiple tap case, we obtain bounds on the stability regions with similar properties. The approach taken here is a generalization of the classical method of analyzing the exponential stability of the weight covariance equation for LMS. Although it is not possible to derive a weight covariance equation for general data-dependent VSLMS, the weight variances can be upper bounded by the solution of a linear time-invariant difference equation, after appropriately dealing with certain nonlinear terms. For prior step-size (like fixed step-size), the state matrix is symmetric, whereas for posterior step-size, the symmetry is lost, requiring a more detailed analysis. The results are verified by computer simulations.
Author Gelfand, S.B.
Krogmeier, J.V.
Yongbin Wei
Author_xml – sequence: 1
  givenname: S.B.
  surname: Gelfand
  fullname: Gelfand, S.B.
  organization: Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  surname: Yongbin Wei
  fullname: Yongbin Wei
– sequence: 3
  givenname: J.V.
  surname: Krogmeier
  fullname: Krogmeier, J.V.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1201399$$DView record in Pascal Francis
BookMark eNqF0TtPwzAQAGAPRaItDKxMGRCIIdSPxI8RVbykIgaKxBadHYcapUmxXaTy60mVCiSEYLFPd9_dDTdCg6ZtLEJHBF8QgtVEyAuJORZ0gIYE5yzNpXjeR6MQXjEmWab4ENH5wiYhgna1i5ukrZJ38A50vc3aVRrch01m948J1C-td3GxDAdor4I62MPdP0ZP11fz6W06e7i5m17OUsO4it0r8kxIyUUJypSgLZSU4VIKrVUmhMaKsZxZRigHA6KLtOgiqjUAh5yN0Vk_d-Xbt7UNsVi6YGxdQ2PbdSgUUYpRzLfy9E_JMJU8x-Jf2LGM8Jx28GQHIRioKw-NcaFYebcEvykIxYR128fovGfGtyF4W30LXGxvUAhZ9Dfo7OSHNS5CdG0TPbj6147jvsNZa78m74qfPL2S2Q
CODEN ITPRED
CitedBy_id crossref_primary_10_1006_mssp_2002_1519
crossref_primary_10_1109_78_942625
crossref_primary_10_1007_s11741_003_0020_0
crossref_primary_10_3390_app14104070
crossref_primary_10_1177_09544070231166727
crossref_primary_10_1109_TSP_2020_3028993
crossref_primary_10_9723_jksiis_2016_21_3_001
crossref_primary_10_1186_s13634_023_01042_x
crossref_primary_10_4028_www_scientific_net_AMR_255_260_2159
crossref_primary_10_1007_s11265_015_1036_y
crossref_primary_10_1186_s13638_015_0440_0
crossref_primary_10_1016_S1005_8885_15_60667_7
crossref_primary_10_1109_TIA_2018_2825957
crossref_primary_10_1080_00207217_2015_1082204
crossref_primary_10_1121_1_1448314
crossref_primary_10_1016_j_sigpro_2005_03_017
crossref_primary_10_1109_TAP_2010_2071361
crossref_primary_10_1007_s00034_011_9287_8
crossref_primary_10_1007_s00034_013_9674_4
crossref_primary_10_1109_TITS_2017_2659620
crossref_primary_10_1049_iet_rsn_2011_0030
Cites_doi 10.1109/TASSP.1985.1164493
10.1109/TASSP.1986.1164814
10.1109/78.143435
10.1109/9.402231
10.1109/78.558478
10.1109/78.218137
10.1109/18.9765
10.1109/78.229885
10.1109/9.587328
10.1007/978-3-642-75894-2
ContentType Journal Article
Copyright 2000 INIST-CNRS
Copyright_xml – notice: 2000 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/78.806072
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 3288
ExternalDocumentID 1201399
10_1109_78_806072
806072
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
ID FETCH-LOGICAL-c369t-c375478867da9cdabead230d87bb9477b093353e3126aca73e3b76ac2bbaa6a53
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 05:56:08 EDT 2025
Sat Sep 27 18:00:55 EDT 2025
Thu Oct 02 10:37:51 EDT 2025
Mon Jul 21 09:17:02 EDT 2025
Wed Oct 01 01:57:46 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Tue Aug 26 21:00:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Adaptive filtering
Stability
Performance analysis
Adaptive algorithm
Least squares method
Variable step method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-c375478867da9cdabead230d87bb9477b093353e3126aca73e3b76ac2bbaa6a53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28641652
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_28641652
proquest_miscellaneous_30286507
crossref_primary_10_1109_78_806072
ieee_primary_806072
crossref_citationtrail_10_1109_78_806072
proquest_miscellaneous_919932065
pascalfrancis_primary_1201399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-12-01
PublicationDateYYYYMMDD 1999-12-01
PublicationDate_xml – month: 12
  year: 1999
  text: 1999-12-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 1999
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref8
ref7
ref9
ref4
macchi (ref10) 1995
ref3
ref6
ref11
ref5
ref2
ref1
References_xml – ident: ref4
  doi: 10.1109/TASSP.1985.1164493
– ident: ref6
  doi: 10.1109/TASSP.1986.1164814
– ident: ref9
  doi: 10.1109/78.143435
– ident: ref8
  doi: 10.1109/9.402231
– ident: ref1
  doi: 10.1109/78.558478
– ident: ref11
  doi: 10.1109/78.218137
– year: 1995
  ident: ref10
  publication-title: Adaptive Processing The Least Mean Squares Approach with Applications in Transmission
– ident: ref7
  doi: 10.1109/18.9765
– ident: ref3
  doi: 10.1109/78.229885
– ident: ref5
  doi: 10.1109/9.587328
– ident: ref2
  doi: 10.1007/978-3-642-75894-2
SSID ssj0014496
Score 1.8496922
Snippet Variable step-site LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity...
Variable step-size LMS (VSLMS) algorithms are a popular approach to adaptive filtering, which can provide improved performance while maintaining the simplicity...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3277
SubjectTerms Adaptive filters
Algorithms
Applied sciences
Computer simulation
Covariance
Covariance matrix
Dealing
Detection, estimation, filtering, equalization, prediction
Difference equations
Exact sciences and technology
Filtering algorithms
Gaussian
Information, signal and communications theory
Least squares approximation
Mathematical analysis
Nonlinear equations
Robustness
Signal and communications theory
Signal, noise
Stability
Stability analysis
Symmetric matrices
Telecommunications and information theory
Title The stability of variable step-size LMS algorithms
URI https://ieeexplore.ieee.org/document/806072
https://www.proquest.com/docview/28641652
https://www.proquest.com/docview/30286507
https://www.proquest.com/docview/919932065
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014496
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRoxnhThw6VayNI8jQqAJARdA2q1y0hQQY53WDon9epy0G2-JSxVFjtQ4TmLH9mdCjjJu8Fa0NFQZRCHLmAyBMh1yoEYae2JV6jy61ze8e88ue3Gvxtn2uTDWWh98Zluu6X35aW7G7qmsLSMeCTxv54XkVarWzGHAmC_FhdpCJ4yl6NUgQieRagvZqgZ-uXp8LRUXCQkFMiOrqlj8OJD9LXOxXKVvFx6c0AWXPLfGpW6ZyTfoxn9OYIUs1dpmcFqJxyqZs4M1svgJg3CdUBSUAFVEHyT7FuRZ8Irms0uowl47DIuniQ2urm8D6D_ko6fy8aXYIPcX53dn3bAupBCaDlclfoWD7ZJcpKBMChrFB02PVAqtFRNCu2eN2D2HUg4GBLa0wBbVGoBD3NkkjUE-sFskkAyMyhgFbgAtF6uFUAYgphYnxiLdJMdTHiemRhl3xS76ibc2IpUImVRsaJLDGemwgtb4jWjNsXFGMO3d-7JuH-OpU2lVkxxM1zHB7eJ8IDCw-bhIqOSogsb0b4pO5JJ1I9EkwR8UygU9UtTdtn_9uR2y4LEdfMzLLmmUo7HdQ82l1PteZt8BnSfsoQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8R4VogDl44uS_M4IgQasHEBpN0qJ00BASuiHRL8epy0G2-JSxVFjtQ4TmLH9mdC9jJu8Fa0NFQZRCHLmAyBMh1yoEYa27IqdR7d3gXvXLOzftyvcbZ9Loy11gef2aZrel9-mpuheyo7kBGPBJ63UzFjLK6StcYuA8Z8MS7UF9phLEW_hhFqRepAyGY19Mvl46upuFhIKJAdWVXH4seR7O-Zk_kqgbvw8IQuvOS-OSx107x9A2_85xQWyFytbwaHlYAskgk7WCKzn1AIlwlFUQlQSfRhsq9BngUvaEC7lCrstU9hcfdmg27vMoCHm_z5rrx9LFbI9cnx1VEnrEsphKbNVYlf4YC7JBcpKJOCRgFC4yOVQmvFhNDuYSN2D6KUgwGBLS2wRbUG4BC3V8nkIB_YNRJIBkZljAI3gLaL1UIoAxBTixNjkW6Q_RGPE1PjjLtyFw-JtzcilQiZVGxokN0x6VMFrvEb0ZJj45hg1Lv1Zd0-xlOn1KoG2RmtY4IbxnlBYGDzYZFQyVEJjenfFO3IpetGokGCPyiUC3ukqL2t__pzO2S6c9XrJt3Ti_MNMuORHnwEzCaZLJ-Hdgv1mFJve_l9ByI_7-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+stability+of+variable+step-size+LMS+algorithms&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Gelfand%2C+S.B.&rft.au=Yongbin+Wei&rft.au=Krogmeier%2C+J.V.&rft.date=1999-12-01&rft.issn=1053-587X&rft.volume=47&rft.issue=12&rft.spage=3277&rft.epage=3288&rft_id=info:doi/10.1109%2F78.806072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_78_806072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon