A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

Predictive coding is attractive for compression on board of spacecraft due to its low computational complexity, modest memory requirements, and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 10; pp. 6341 - 6355
Main Authors Valsesia, Diego, Magli, Enrico
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2013.2296329

Cover

More Information
Summary:Predictive coding is attractive for compression on board of spacecraft due to its low computational complexity, modest memory requirements, and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation, where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image to achieve the desired target rate while minimizing distortion. The rate control algorithm allows achieving lossy near-lossless compression and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper, we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows performing lossless, near-lossless, and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics, and is extremely competitive with respect to state-of-the-art transform coding.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0196-2892
1558-0644
1558-0644
DOI:10.1109/TGRS.2013.2296329