Power system state estimation solution using modified models of PSO algorithm: Comparative study
•A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable. The objective of all power system state estimat...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 92; pp. 508 - 523 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 1873-412X |
| DOI | 10.1016/j.measurement.2016.06.052 |
Cover
| Abstract | •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable.
The objective of all power system state estimation (PSSE) is to determine, by statistical projections, the best estimate of state variables represented by the voltage magnitudes and voltage angles of all the buses. Due to the complexity and non-linearity of the power system (PS), it is necessary to use more advanced methods for its analysis and control in real-time environment. This research discusses the application and the comparison of hybrid models of one of the algorithm using artificial intelligence (AI) technique (particle swarm optimisation ‘PSO’) in minimising the raw measurement errors in order to estimate the optimal point of the PS when certain sensitive data are incomplete. The effectiveness of the hybrid models are demonstrated and compared with the original PSO, artificial bee swarm optimisation (ABSO) algorithm and genetic algorithm (GA) using IEEE 14, 30, 118 and 300 bus test systems. Newton-Raphson load flow solution is taken as benchmark. Two different objective function formulations assessed by PSWV (Particle swarm without velocity equation), EPSOWP (Enhanced particle swarm optimiser incorporating a weighted particle), PSO-RF (PSO with repulsion factor) and CLPSO (Comprehensive learning PSO). The first formulation is the Weighted Least Square (WLS) and the second one is the Weighted Least Absolute Value (WLAV). |
|---|---|
| AbstractList | •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable.
The objective of all power system state estimation (PSSE) is to determine, by statistical projections, the best estimate of state variables represented by the voltage magnitudes and voltage angles of all the buses. Due to the complexity and non-linearity of the power system (PS), it is necessary to use more advanced methods for its analysis and control in real-time environment. This research discusses the application and the comparison of hybrid models of one of the algorithm using artificial intelligence (AI) technique (particle swarm optimisation ‘PSO’) in minimising the raw measurement errors in order to estimate the optimal point of the PS when certain sensitive data are incomplete. The effectiveness of the hybrid models are demonstrated and compared with the original PSO, artificial bee swarm optimisation (ABSO) algorithm and genetic algorithm (GA) using IEEE 14, 30, 118 and 300 bus test systems. Newton-Raphson load flow solution is taken as benchmark. Two different objective function formulations assessed by PSWV (Particle swarm without velocity equation), EPSOWP (Enhanced particle swarm optimiser incorporating a weighted particle), PSO-RF (PSO with repulsion factor) and CLPSO (Comprehensive learning PSO). The first formulation is the Weighted Least Square (WLS) and the second one is the Weighted Least Absolute Value (WLAV). |
| Author | Jordaan, Jacobus A. Tungadio, Diambomba H. Siti, Mukwanga W. |
| Author_xml | – sequence: 1 givenname: Diambomba H. surname: Tungadio fullname: Tungadio, Diambomba H. email: tutudiambomba@yahoo.fr – sequence: 2 givenname: Jacobus A. surname: Jordaan fullname: Jordaan, Jacobus A. email: JordaanJA@tut.ac.za – sequence: 3 givenname: Mukwanga W. surname: Siti fullname: Siti, Mukwanga W. email: sitim@tut.ac.za |
| BookMark | eNqNkF1LwzAUhoNMcJv-h_gDWvPRZq03IsMvGGyggncxS09mRtuMJJ3s39ttXohXgxfO4cD7wHlGaNC6FhC6piSlhIqbddqACp2HBtqYsv6Ukj45O0NDWkx4klH2MUBDwgRPGMvoBRqFsCaECF6KIfpcuG_wOOxChAaHqCJgCNE2KlrX4uDq7rB0wbYr3LjKGgvVfoE6YGfw4nWOVb1y3sav5hZPXbNRvi9voad11e4SnRtVB7j6nWP0_vjwNn1OZvOnl-n9LNFclDHRhOVLxdlyootK8EJQQzNuhKa8gKLkVc6ENrnShvNJQRhRJtNlnpGsWtJcKz5G5ZGrvQvBg5Eb33_hd5ISuVcl1_KPKrlXJUmfnPXdu39dbeNBQPTK1icRpkdCbwW2FrwM2kKrobIedJSVsydQfgD_OJKT |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2023_109126 crossref_primary_10_1016_j_measurement_2023_113175 crossref_primary_10_1080_19942060_2017_1343751 crossref_primary_10_1016_j_measurement_2023_112565 crossref_primary_10_1080_17445302_2017_1347231 crossref_primary_10_1002_2050_7038_12708 crossref_primary_10_18178_ijfcc_2017_6_3_501 crossref_primary_10_1016_j_est_2021_103290 crossref_primary_10_1155_2020_8873995 crossref_primary_10_1016_j_prime_2023_100224 crossref_primary_10_2298_SJEE2401113C crossref_primary_10_1016_j_oceaneng_2018_08_059 crossref_primary_10_1007_s10489_022_03685_z crossref_primary_10_1007_s00521_023_09097_5 crossref_primary_10_1016_j_measurement_2022_110906 crossref_primary_10_3389_fenrg_2023_1204072 crossref_primary_10_3390_en13226054 crossref_primary_10_1049_gtd2_12037 crossref_primary_10_1016_j_egyr_2023_09_075 crossref_primary_10_3390_en14175363 crossref_primary_10_1016_j_asoc_2019_01_004 crossref_primary_10_1142_S0217984917400577 crossref_primary_10_1016_j_est_2023_108307 crossref_primary_10_1109_ACCESS_2018_2806370 |
| Cites_doi | 10.1049/cp:20040056 10.1109/TD-ASIA.2009.5356917 10.1109/MWSCAS.2006.382127 10.1109/TPWRS.2006.889132 10.1016/j.energy.2014.05.070 10.1016/j.eij.2011.02.004 10.1109/CEC.2001.934374 10.1016/j.epsr.2009.05.004 10.1049/ip-gtd:19960050 10.1016/j.eswa.2010.12.025 10.1109/SoCPaR.2009.24 10.1109/ICPST.2006.321730 10.1109/TDC.2002.1177567 10.1109/AFRCON.2013.6757730 10.1016/j.swevo.2011.11.005 10.1016/j.renene.2009.03.005 10.1109/ICSMC.2006.385000 10.1109/5.824004 10.1016/j.neucom.2012.10.049 10.1109/TPWRS.2002.807051 10.1109/ISET-India.2011.6145359 10.1109/ICPST.2004.1460111 10.1109/FUZZY.1996.552306 10.1109/ICPST.2000.897171 10.1109/PESGM.2012.6344688 10.1016/j.phpro.2012.03.357 10.1109/TPWRS.2004.831275 10.1049/ip-gtd:19971168 10.1007/s11047-007-9050-z 10.1109/59.486098 10.1007/s10462-009-9127-4 10.1109/ICIEA.2008.4582960 10.1109/TEVC.2006.880326 10.1109/AFRCON.1996.562959 10.1016/j.neucom.2013.07.005 10.1109/PTC.2003.1304121 10.1109/ICCA.2007.4376403 10.1109/CCECE.1996.548259 10.1109/ICICISYS.2009.5358106 10.1109/NAPS.2008.5307380 10.1109/TPWRS.2012.2187804 10.1016/j.solener.2014.05.016 10.1016/j.ijepes.2013.03.035 10.1109/ECTICON.2009.5136953 10.1109/PTC.2003.1304768 10.1109/59.630475 10.1109/TEVC.2010.2059031 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2016.06.052 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| EndPage | 523 |
| ExternalDocumentID | 10_1016_j_measurement_2016_06_052 S026322411630344X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c369t-c025ba32b7c8d63861f143f6c138e893d526cf5acf3378020af4c95404db15ca3 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Wed Oct 01 05:53:50 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Fri Feb 23 02:33:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PSSE CLPSO WLAV PS ABSO PSWV AI GA EPSOWP PSO-RF PSO WLS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c369t-c025ba32b7c8d63861f143f6c138e893d526cf5acf3378020af4c95404db15ca3 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1016_j_measurement_2016_06_052 crossref_citationtrail_10_1016_j_measurement_2016_06_052 elsevier_sciencedirect_doi_10_1016_j_measurement_2016_06_052 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: IEEE Transmission and Distribution Conference and Exhibition, Asia Pacific, 6–10 Oct. 2002, pp. 745–750. AlRashidi, El-Hawary (b0190) 2009; 13 Baran, Wu (b0310) 1989; 4 Tungadio, Numbi, Siti, Jimoh (b0105) 2015; 148 El-Sharbiny (b0230) 2011; 12 Askarzadeh (b0250) 2014; 72 Askarzaden (b0360) 2014; 72 Dag, Alvarado (b0015) 1997; 12 Abur, Exposito (b0335) 2004 Mantisas, Singh, Pal, Strbac (b0150) 2012; 27 Maleki, Askarzadeh (b0320) 2014; 107 Naka, Genji, Yura, Fukuyama (b0265) 2001 Mallik, Ghoshal, Acharjee, Thakur (b0300) 2013; 52 Aryza, Abdallah, Khalidin, Lubis, Jie (b0240) 2012; 25 N.H. Abbasy, Neural network aided design for metering system of power system state estimation, in: Canadian Conference on Electrical and Computer Engineering, Calgary, Alta, vol. 2, 26–29 May 1996, pp. 741–744. Li, Wang, Hsu, Chang, Chou, Chang (b0255) 2014; 124 Garcia, Monticelli, Abreu (b0010) 1979; 3 O. Ivanov, M. Gravilas, Improved WLS estimator in large systems using genetic algorithms, in: 4th edition of the Interdisciplinary in Engineering International Conference, Petru Maior, University of Tirgu Mures, Romania, 2009, pp. 82–85. M.B.C. Filho, J.C.S. DE Souza, E.B.M. Meza, Application of genetic algorithms for planning metering systems in state estimation, in: 15th PSCC, Liege, Belgium, 22–26 August 2005. Reeves (b0050) 1993 Karaboga, Akay (b0180) 2009; 31 Souza, Leite da Silva, Alves da Silva (b0120) 1997; 144 A. Zaraki, M.F. Bin Othman, Implementing particle swarm optimisation to solve economic load dispatch problem, in: International Conference of Soft Computing and Pattern Recognition, 2009, SOCPAR ’09, Malacca, 4–7 Dec. 2009, pp. 60–65. Mousa, El-Shorbagy, Abd-El-Wahed (b0245) 2012; 3 A. Jain, R. Balasubramanian, S.C. Tripathy, B.N. Singh, Y. Kawazoe, Power system topological observability analysis using artificial neural networks, in: IEEE Power Engineering Society General Meeting, vol. 1, 12–16 June 2005, pp. 497–502. B. Yang, Y. Chen, Z. Zhao, Survey on applications of particle swarm optimisation in electric power systems, in: 2007 International Conference on Control and Automation, Guangzhou, China, May 30–June 1, 2007, pp. 418–486. Andrija, Rade (b0160) 2003; 18 Selvi, Ramara, Kumar (b0065) 2005 Zhu (b0045) 2009 Niknam, Firouzi (b0290) 2009; 34 F. Shabani, N.R. Prasad, H.A. Smolleck, State estimation with aid of fuzzy logic, in: IEEE International Conference Fuzzy Systems, 1996, pp. 947–953. Y. Gao, Z. Hu, X. He, D. Liu, Optimal placement of PMUs in power systems based on improved PSO algorithm, in: 3rd IEEE Conference on Industrial electronics and applications, 2008, ICIEA 2008, Singapore, 3–5 June 2008, pp. 2464–2469. A.H. Mantawy, M.S. Al-Ghamdi, A new reactive power optimisation algorithm, in: Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 4, 2003, pp. 6. Tsai, Pan, Liao, Chu (b0060) 2009; 5 N.H. Abbasy, W. EL-Hassawy, Power system state estimation: ANN application to bad data detection and identification, in: IEEE AFRICON, Stellenbosch, SA, vol. 2, 24–27 September 1996, pp. 611–615. H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: IEEE Systems, Man and Cybernetics, Taipei, 8–11 Oct. 2006, pp. 1855–1860. R.C. Eberhart, S. Yuhui, Particle swarm optimisation: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, Seoul, vol. 1, 27–30 May 2001, pp. 81–86. E.J. Contreras-Hernandez, J.R. Cedeno-Maldonado, A self-adaptive evolutionary programming approach for power system state estimation, in: 49th IEEE International Circuits and Systems, Midwest Symposium, 6–9 Aug. 2006, pp. 571–575. J. Khwanram, P. Damrongkulkamjom, Multiple bad data identification in power system state estimation using particle swarm optimisation, in: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, vol. 1, Pattaya, Chonburi, Thailand, 6–9 May, 2009, pp. 2–5. Fred, Wildes (b0325) 1970; 89 D. Xu, R. He, P. Wang, T. Xu, Comparison of several PMU placement algorithms for state estimation, in: Eighth IEE International Conference on Developments in Power System Protection, 5–8 April 2004, vol. 1, pp. 32–35. Sundeep, Madhusudhanarao (b0145) 2011; 1 Abdelaziz, Mohammed, Mekhamer, Badr (b0215) 2009; 79 S. Gastoni, G.P. Granelli, M. Montagna, Multiple bad data processing by genetic algorithms, in: Power Tech Conference Proceedings, Italy, Bologna, 23–26 June 2003, pp. 1–6. J. Hee-Myung, L. Hwa-Seok, P. June-Ho, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, 26–30 Oct. 2009, pp. 1–4. V. Miranda, N. Fonseca, EPSO – evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: Transmission and distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, 6–10 Oct. 2002, pp. 745–750. H.M. Jeong, H.S. Lee, J.H. Park, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE T & D, Asia, 2009, pp. 1–4. Aruna Jeyanthy, Devaraj (b0035) 2010 D.H. Tungadio, B.P. Numbi, M.W. Siti, J.A. Jacobus, Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation, in: IEEE Africon, Pointe-Aux-Piments, Mauritius, 9–12 Sept. 2013, pp. 1–6. Monticelli (b0020) 2002; 88 Park, Jeong, Shin, Lee (b0225) 2010; 25 A. Kumar, S. Chakrabarti, ANN-based hybrid state estimation and enhanced visualization of power systems, in: Innovative Smart Grid Technologies – India, 1–3 December 2011, pp. 1–6. Angeline (b0270) May 1998 Vinod Kumar, Srivastava, Shah, Mathur (b0125) 1996; 143 S. Naka, T. Genji, T. Yura, Y. Fukuyama, N. Hayashi, Distribution state estimation considering nonlinear characteristics of practical equipment using particle swarm optimisation, in: International Conference on Power System Technology, 2000, Proceedings, PowerCon 2000, vol. 2, Perth, Wa, 2000, pp. 1083–1088. T. Kerdchuen, W. Ongsakul, Optimal measurement placement for power system state estimation using hybrid genetic algorithm and simulated annealing, in: Power System Technology, PowerCon, Chongqing, 22–26 October 2006, pp. 1–5. Zhigang, Liye (b0040) 2008 Mili, Cheniae, Vichare, Rousseeuw (b0340) 1996; 11 T.Q.D. Khoa, P.T.T. BinhINH, T.V. Khoa, Hopfield network and parallel genetic algorithm for solving state estimate in power systems, in: Power System Technology, PowerCon, Singapore, 21–24 November 2004, pp. 845–849. Selvakumar, Thanushkodi (b0200) 2007; 22 M. Madhdavi, S. Jalilzadeh, Advanced particle swarm optimisation for parameter identification of three-phase DFIM, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009, vol. 3, Shanghai, 20–22 Nov. 2009, pp. 580–584. Naka, Genji, Yura, Fukuyama (b0275) 2003; 18 O. Chilard, S. Grenard, O. Devaux, Comparison of the performances of distribution state estimation algorithms: classical newton approach and PSO approach, in: Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, 22–26 July 2012, pp. 1–7. Sundeep, Madhusudhanarao (b0005) 2011; 1 S. Kamireddy, N.S. Noel, K.S. Anurag, Comparison of state estimation algorithms for extreme contingencies, in: Proceedings of the North American Power Symposium, 28–30, September 2008, Calvary, Canada, 2008, pp. 1–5. Ahmadi, Beromi, Moradi (b0235) 2011; 38 H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: International Conference on Systems, Man, and Cybernetics, October 8–11, 2006, Taipei, Taiwan, IEEE, 2006, pp. 1855–1860. Hossam-Eldin, Abdallah, EL-Nozahy (b0070) 31 January 2009 Banks, Vincent, Anyokoha (b0175) 2008; 7 Pandey, Singh (b0140) 2010 Das, Suganthan (b0185) 2011; 15 Thukaram, Seshadri (b0030) 2010; 11 Mantisas (10.1016/j.measurement.2016.06.052_b0150) 2012; 27 Das (10.1016/j.measurement.2016.06.052_b0185) 2011; 15 Pandey (10.1016/j.measurement.2016.06.052_b0140) 2010 10.1016/j.measurement.2016.06.052_b0170 Niknam (10.1016/j.measurement.2016.06.052_b0290) 2009; 34 10.1016/j.measurement.2016.06.052_b0090 Garcia (10.1016/j.measurement.2016.06.052_b0010) 1979; 3 Sundeep (10.1016/j.measurement.2016.06.052_b0145) 2011; 1 Baran (10.1016/j.measurement.2016.06.052_b0310) 1989; 4 10.1016/j.measurement.2016.06.052_b0130 Li (10.1016/j.measurement.2016.06.052_b0255) 2014; 124 10.1016/j.measurement.2016.06.052_b0295 Park (10.1016/j.measurement.2016.06.052_b0225) 2010; 25 10.1016/j.measurement.2016.06.052_b0095 10.1016/j.measurement.2016.06.052_b0285 Maleki (10.1016/j.measurement.2016.06.052_b0320) 2014; 107 10.1016/j.measurement.2016.06.052_b0165 Askarzadeh (10.1016/j.measurement.2016.06.052_b0250) 2014; 72 10.1016/j.measurement.2016.06.052_b0205 Aryza (10.1016/j.measurement.2016.06.052_b0240) 2012; 25 Naka (10.1016/j.measurement.2016.06.052_b0275) 2003; 18 10.1016/j.measurement.2016.06.052_b0280 10.1016/j.measurement.2016.06.052_b0080 10.1016/j.measurement.2016.06.052_b0085 Abdelaziz (10.1016/j.measurement.2016.06.052_b0215) 2009; 79 Monticelli (10.1016/j.measurement.2016.06.052_b0020) 2002; 88 Vinod Kumar (10.1016/j.measurement.2016.06.052_b0125) 1996; 143 10.1016/j.measurement.2016.06.052_b0155 Aruna Jeyanthy (10.1016/j.measurement.2016.06.052_b0035) 2010 Tsai (10.1016/j.measurement.2016.06.052_b0060) 2009; 5 Selvi (10.1016/j.measurement.2016.06.052_b0065) 2005 10.1016/j.measurement.2016.06.052_b0110 10.1016/j.measurement.2016.06.052_b0115 Selvakumar (10.1016/j.measurement.2016.06.052_b0200) 2007; 22 10.1016/j.measurement.2016.06.052_b0355 Souza (10.1016/j.measurement.2016.06.052_b0120) 1997; 144 10.1016/j.measurement.2016.06.052_b0315 Thukaram (10.1016/j.measurement.2016.06.052_b0030) 2010; 11 AlRashidi (10.1016/j.measurement.2016.06.052_b0190) 2009; 13 10.1016/j.measurement.2016.06.052_b0195 10.1016/j.measurement.2016.06.052_b0075 Mili (10.1016/j.measurement.2016.06.052_b0340) 1996; 11 10.1016/j.measurement.2016.06.052_b0350 10.1016/j.measurement.2016.06.052_b0100 Ahmadi (10.1016/j.measurement.2016.06.052_b0235) 2011; 38 Abur (10.1016/j.measurement.2016.06.052_b0335) 2004 10.1016/j.measurement.2016.06.052_b0220 10.1016/j.measurement.2016.06.052_b0025 10.1016/j.measurement.2016.06.052_b0345 Zhigang (10.1016/j.measurement.2016.06.052_b0040) 2008 10.1016/j.measurement.2016.06.052_b0305 El-Sharbiny (10.1016/j.measurement.2016.06.052_b0230) 2011; 12 Mousa (10.1016/j.measurement.2016.06.052_b0245) 2012; 3 Hossam-Eldin (10.1016/j.measurement.2016.06.052_b0070) 2009 Sundeep (10.1016/j.measurement.2016.06.052_b0005) 2011; 1 Karaboga (10.1016/j.measurement.2016.06.052_b0180) 2009; 31 Fred (10.1016/j.measurement.2016.06.052_b0325) 1970; 89 Askarzaden (10.1016/j.measurement.2016.06.052_b0360) 2014; 72 Banks (10.1016/j.measurement.2016.06.052_b0175) 2008; 7 10.1016/j.measurement.2016.06.052_b0260 Dag (10.1016/j.measurement.2016.06.052_b0015) 1997; 12 10.1016/j.measurement.2016.06.052_b0210 Zhu (10.1016/j.measurement.2016.06.052_b0045) 2009 10.1016/j.measurement.2016.06.052_b0055 10.1016/j.measurement.2016.06.052_b0330 10.1016/j.measurement.2016.06.052_b0135 Andrija (10.1016/j.measurement.2016.06.052_b0160) 2003; 18 Naka (10.1016/j.measurement.2016.06.052_b0265) 2001 Mallik (10.1016/j.measurement.2016.06.052_b0300) 2013; 52 Tungadio (10.1016/j.measurement.2016.06.052_b0105) 2015; 148 Reeves (10.1016/j.measurement.2016.06.052_b0050) 1993 Angeline (10.1016/j.measurement.2016.06.052_b0270) 1998 |
| References_xml | – reference: D. Xu, R. He, P. Wang, T. Xu, Comparison of several PMU placement algorithms for state estimation, in: Eighth IEE International Conference on Developments in Power System Protection, 5–8 April 2004, vol. 1, pp. 32–35. – reference: F. Shabani, N.R. Prasad, H.A. Smolleck, State estimation with aid of fuzzy logic, in: IEEE International Conference Fuzzy Systems, 1996, pp. 947–953. – reference: A. Jain, R. Balasubramanian, S.C. Tripathy, B.N. Singh, Y. Kawazoe, Power system topological observability analysis using artificial neural networks, in: IEEE Power Engineering Society General Meeting, vol. 1, 12–16 June 2005, pp. 497–502. – reference: V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: IEEE Transmission and Distribution Conference and Exhibition, Asia Pacific, 6–10 Oct. 2002, pp. 745–750. – reference: O. Chilard, S. Grenard, O. Devaux, Comparison of the performances of distribution state estimation algorithms: classical newton approach and PSO approach, in: Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, 22–26 July 2012, pp. 1–7. – start-page: 19 year: 2010 end-page: 28 ident: b0140 article-title: Application of radial basis neural network for state estimation of power system networks publication-title: Int. J. Eng., Sci. Technol. – reference: A. Kumar, S. Chakrabarti, ANN-based hybrid state estimation and enhanced visualization of power systems, in: Innovative Smart Grid Technologies – India, 1–3 December 2011, pp. 1–6. – year: May 1998 ident: b0270 article-title: Using selection to improve particle swarm optimisation publication-title: Proceedings of IEEE International Conference on Evolutionary Computation (ICEC), Anchorage – reference: A. Zaraki, M.F. Bin Othman, Implementing particle swarm optimisation to solve economic load dispatch problem, in: International Conference of Soft Computing and Pattern Recognition, 2009, SOCPAR ’09, Malacca, 4–7 Dec. 2009, pp. 60–65. – start-page: 862 year: 2008 end-page: 866 ident: b0040 article-title: Power system reactive power optimisation based on direct neural dynamic programming publication-title: Third International Conference on Intelligent System and Knowledge Engineering, 2008, ISKE 2008 – reference: E.J. Contreras-Hernandez, J.R. Cedeno-Maldonado, A self-adaptive evolutionary programming approach for power system state estimation, in: 49th IEEE International Circuits and Systems, Midwest Symposium, 6–9 Aug. 2006, pp. 571–575. – reference: N.H. Abbasy, W. EL-Hassawy, Power system state estimation: ANN application to bad data detection and identification, in: IEEE AFRICON, Stellenbosch, SA, vol. 2, 24–27 September 1996, pp. 611–615. – volume: 88 start-page: 262 year: 2002 end-page: 282 ident: b0020 article-title: Electric power system state estimation publication-title: Proc. IEEE – reference: J. Khwanram, P. Damrongkulkamjom, Multiple bad data identification in power system state estimation using particle swarm optimisation, in: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, vol. 1, Pattaya, Chonburi, Thailand, 6–9 May, 2009, pp. 2–5. – volume: 144 start-page: 445 year: 1997 end-page: 455 ident: b0120 article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks publication-title: IEE Proc. Gener., Transm. Distrib. – reference: V. Miranda, N. Fonseca, EPSO – evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: Transmission and distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, 6–10 Oct. 2002, pp. 745–750. – reference: S. Gastoni, G.P. Granelli, M. Montagna, Multiple bad data processing by genetic algorithms, in: Power Tech Conference Proceedings, Italy, Bologna, 23–26 June 2003, pp. 1–6. – start-page: 18 year: 2010 end-page: 23 ident: b0035 article-title: Hybrid particle swarm optimisation for multi-objective reactive power optimisation with voltage stability publication-title: Proc. of Int. Conf. on Control, Communication and Power Engineering 2010, ACEEE 2010 – reference: O. Ivanov, M. Gravilas, Improved WLS estimator in large systems using genetic algorithms, in: 4th edition of the Interdisciplinary in Engineering International Conference, Petru Maior, University of Tirgu Mures, Romania, 2009, pp. 82–85. – reference: T.Q.D. Khoa, P.T.T. BinhINH, T.V. Khoa, Hopfield network and parallel genetic algorithm for solving state estimate in power systems, in: Power System Technology, PowerCon, Singapore, 21–24 November 2004, pp. 845–849. – volume: 12 start-page: 1306 year: 1997 end-page: 1314 ident: b0015 article-title: Toward improved uses of the conjugate gradient method for power system applications publication-title: IEEE Trans. Power Syst. – reference: M.B.C. Filho, J.C.S. DE Souza, E.B.M. Meza, Application of genetic algorithms for planning metering systems in state estimation, in: 15th PSCC, Liege, Belgium, 22–26 August 2005. – start-page: 307 year: 31 January 2009 end-page: 316 ident: b0070 article-title: A modified genetic algorithm based technique for solving the power system state estimation problem publication-title: International Conference on Electrical and Computer Engineering, Oslo, Norway – reference: H.M. Jeong, H.S. Lee, J.H. Park, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE T & D, Asia, 2009, pp. 1–4. – reference: B. Yang, Y. Chen, Z. Zhao, Survey on applications of particle swarm optimisation in electric power systems, in: 2007 International Conference on Control and Automation, Guangzhou, China, May 30–June 1, 2007, pp. 418–486. – year: 2005 ident: b0065 article-title: Application of genetic algorithm for power system state estimation publication-title: IE(1) Journal-CP – volume: 38 start-page: 7263 year: 2011 end-page: 7269 ident: b0235 article-title: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy publication-title: Expert Syst. Appl. – volume: 143 start-page: 99 year: 1996 end-page: 105 ident: b0125 article-title: Topology processing and static state estimation using artificial neural networks publication-title: IEE Proc. Gener., Transm. Distrib. – volume: 11 year: 2010 ident: b0030 article-title: Linear programming approach for power system state estimation using upper bound optimisation techniques publication-title: Int. J. Emerg. Electr. Power Syst. – volume: 27 start-page: 1888 year: 2012 end-page: 1896 ident: b0150 article-title: Distribution system state estimation using an artificial neural network approach for pseudo measurement modelling publication-title: IEEE Trans. Power Syst. – reference: Y. Gao, Z. Hu, X. He, D. Liu, Optimal placement of PMUs in power systems based on improved PSO algorithm, in: 3rd IEEE Conference on Industrial electronics and applications, 2008, ICIEA 2008, Singapore, 3–5 June 2008, pp. 2464–2469. – volume: 79 start-page: 1521 year: 2009 end-page: 1530 ident: b0215 article-title: Distribution systems reconfiguration using a modified particle swarm optimisation algorithm publication-title: Electric Power Syst. Res. – reference: M. Madhdavi, S. Jalilzadeh, Advanced particle swarm optimisation for parameter identification of three-phase DFIM, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009, vol. 3, Shanghai, 20–22 Nov. 2009, pp. 580–584. – reference: S. Naka, T. Genji, T. Yura, Y. Fukuyama, N. Hayashi, Distribution state estimation considering nonlinear characteristics of practical equipment using particle swarm optimisation, in: International Conference on Power System Technology, 2000, Proceedings, PowerCon 2000, vol. 2, Perth, Wa, 2000, pp. 1083–1088. – volume: 3 start-page: 1 year: 2012 end-page: 14 ident: b0245 article-title: Local search hybrid swarm optimisation algorithm for multiobjective optimisation publication-title: Swarm Evol. Comput. – volume: 11 start-page: 216 year: 1996 end-page: 225 ident: b0340 article-title: Robustification of the least absolute value estimator by means of projection statistics publication-title: IEEE Trans. Power Syst. – year: 1993 ident: b0050 article-title: Modern Heuristic Techniques for Combinatorial Problems – reference: H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: International Conference on Systems, Man, and Cybernetics, October 8–11, 2006, Taipei, Taiwan, IEEE, 2006, pp. 1855–1860. – volume: 7 start-page: 109 year: 2008 end-page: 124 ident: b0175 article-title: A review of particle swarm optimisation. Part II: hybridisation, combinatorial, multicriteria and constrained optimisation, indicative applications publication-title: Nat. Comput. – volume: 4 year: 1989 ident: b0310 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans. Power Deliv. – volume: 13 year: 2009 ident: b0190 article-title: A survey of particle swarm optimisation applications in electric power systems publication-title: IEEE Trans. Evol. Comput. – volume: 148 start-page: 175 year: 2015 end-page: 180 ident: b0105 article-title: Particle swarm optimisation for power system state estimation publication-title: Neurocomputing – reference: N.H. Abbasy, Neural network aided design for metering system of power system state estimation, in: Canadian Conference on Electrical and Computer Engineering, Calgary, Alta, vol. 2, 26–29 May 1996, pp. 741–744. – volume: 52 start-page: 254 year: 2013 end-page: 265 ident: b0300 article-title: Optimal static state estimation using improved particle swarm optimisation and gravitational search algorithm publication-title: Electr. Power Energy Syst. – volume: 72 start-page: 484 year: 2014 end-page: 491 ident: b0250 article-title: Comparison of swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy – start-page: 815 year: 2001 end-page: 820 ident: b0265 article-title: Practical distribution state estimation using hybrid particle swarm optimisation publication-title: Society Winter Meeting, 2001, Proceedings of the IEEE Power Engineering, Columbus, Ohio, USA – year: 2004 ident: b0335 article-title: Power System State Estimation: Theory and Implementation – reference: T. Kerdchuen, W. Ongsakul, Optimal measurement placement for power system state estimation using hybrid genetic algorithm and simulated annealing, in: Power System Technology, PowerCon, Chongqing, 22–26 October 2006, pp. 1–5. – volume: 22 year: 2007 ident: b0200 article-title: A new particle swarm optimisation solution to nonconvex economic dispatch problems publication-title: IEEE Trans. Power Syst. – year: 2009 ident: b0045 article-title: Optimisation of Power System Operation – volume: 124 start-page: 218 year: 2014 end-page: 227 ident: b0255 article-title: Enhanced particle swarm optimizer incorporating a weighted particle publication-title: Neurocomputing – reference: D.H. Tungadio, B.P. Numbi, M.W. Siti, J.A. Jacobus, Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation, in: IEEE Africon, Pointe-Aux-Piments, Mauritius, 9–12 Sept. 2013, pp. 1–6. – reference: A.H. Mantawy, M.S. Al-Ghamdi, A new reactive power optimisation algorithm, in: Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 4, 2003, pp. 6. – volume: 1 start-page: 224 year: 2011 end-page: 235 ident: b0005 article-title: A modified Hopfield neural network method for equality constrained state estimation publication-title: Int. J. Adv. Eng. Technol. – volume: 31 start-page: 61 year: 2009 end-page: 85 ident: b0180 article-title: A survey: algorithms simulating bee swarm intelligence publication-title: Art. Intell. Rev. – reference: H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: IEEE Systems, Man and Cybernetics, Taipei, 8–11 Oct. 2006, pp. 1855–1860. – volume: 89 start-page: 120 year: 1970 end-page: 125 ident: b0325 article-title: Power system static-state estimation, Part I: exact model publication-title: IEEE Trans. Power Apparatus Syst. – volume: 107 start-page: 227 year: 2014 end-page: 235 ident: b0320 article-title: Artificial bee swarm optimisation for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept publication-title: Sol. Energy – volume: 72 start-page: 484 year: 2014 end-page: 491 ident: b0360 article-title: Comparison of particle swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy – reference: J. Hee-Myung, L. Hwa-Seok, P. June-Ho, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, 26–30 Oct. 2009, pp. 1–4. – volume: 25 start-page: 2109 year: 2012 end-page: 2115 ident: b0240 article-title: A fast induction motor speed estimation based on hybrid particle swarm optimisation publication-title: Phys. Procedia – reference: R.C. Eberhart, S. Yuhui, Particle swarm optimisation: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, Seoul, vol. 1, 27–30 May 2001, pp. 81–86. – volume: 12 start-page: 1 year: 2011 end-page: 8 ident: b0230 article-title: Particle swarm inspired optimisation algorithm without velocity equation publication-title: Egypt. Informatics J. – volume: 18 year: 2003 ident: b0160 article-title: Integrated fuzzy state estimation and load flow analysis in distribution networks publication-title: IEEE Trans. Power Delivery – volume: 3 start-page: 1798 year: 1979 end-page: 1806 ident: b0010 article-title: Fast decoupled state estimation and bad data processing publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 224 year: 2011 end-page: 235 ident: b0145 article-title: A modified Hopfield neural network method for equality constrained state estimation publication-title: Int. J. Adv. Eng. Technol. – reference: S. Kamireddy, N.S. Noel, K.S. Anurag, Comparison of state estimation algorithms for extreme contingencies, in: Proceedings of the North American Power Symposium, 28–30, September 2008, Calvary, Canada, 2008, pp. 1–5. – volume: 15 year: 2011 ident: b0185 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – volume: 18 year: 2003 ident: b0275 article-title: A hybrid particle swarm optimisation for distribution state estimation publication-title: IEEE Trans. Power Syst. – volume: 5 start-page: 1 year: 2009 end-page: 12 ident: b0060 article-title: Enhanced artificial bee colony optimisation publication-title: Int. J. Innovative Comput., Inform. Control – volume: 34 start-page: 2309 year: 2009 end-page: 2316 ident: b0290 article-title: A practical algorithm for distribution state estimation including renewable energy sources publication-title: Renewable Energy – volume: 25 year: 2010 ident: b0225 article-title: An improved particle swarm optimisation for nonconvex economic dispatch problems publication-title: IEEE Trans. Power Syst. – ident: 10.1016/j.measurement.2016.06.052_b0090 doi: 10.1049/cp:20040056 – ident: 10.1016/j.measurement.2016.06.052_b0315 doi: 10.1109/TD-ASIA.2009.5356917 – ident: 10.1016/j.measurement.2016.06.052_b0170 doi: 10.1109/MWSCAS.2006.382127 – volume: 22 issue: 1 year: 2007 ident: 10.1016/j.measurement.2016.06.052_b0200 article-title: A new particle swarm optimisation solution to nonconvex economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.889132 – year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0045 – volume: 72 start-page: 484 year: 2014 ident: 10.1016/j.measurement.2016.06.052_b0360 article-title: Comparison of particle swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy doi: 10.1016/j.energy.2014.05.070 – volume: 12 start-page: 1 year: 2011 ident: 10.1016/j.measurement.2016.06.052_b0230 article-title: Particle swarm inspired optimisation algorithm without velocity equation publication-title: Egypt. Informatics J. doi: 10.1016/j.eij.2011.02.004 – ident: 10.1016/j.measurement.2016.06.052_b0075 – start-page: 19 year: 2010 ident: 10.1016/j.measurement.2016.06.052_b0140 article-title: Application of radial basis neural network for state estimation of power system networks publication-title: Int. J. Eng., Sci. Technol. – ident: 10.1016/j.measurement.2016.06.052_b0355 doi: 10.1109/CEC.2001.934374 – volume: 79 start-page: 1521 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0215 article-title: Distribution systems reconfiguration using a modified particle swarm optimisation algorithm publication-title: Electric Power Syst. Res. doi: 10.1016/j.epsr.2009.05.004 – volume: 143 start-page: 99 issue: 1 year: 1996 ident: 10.1016/j.measurement.2016.06.052_b0125 article-title: Topology processing and static state estimation using artificial neural networks publication-title: IEE Proc. Gener., Transm. Distrib. doi: 10.1049/ip-gtd:19960050 – volume: 38 start-page: 7263 year: 2011 ident: 10.1016/j.measurement.2016.06.052_b0235 article-title: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.025 – ident: 10.1016/j.measurement.2016.06.052_b0345 doi: 10.1109/SoCPaR.2009.24 – ident: 10.1016/j.measurement.2016.06.052_b0100 doi: 10.1109/ICPST.2006.321730 – ident: 10.1016/j.measurement.2016.06.052_b0195 doi: 10.1109/TDC.2002.1177567 – ident: 10.1016/j.measurement.2016.06.052_b0330 doi: 10.1109/AFRCON.2013.6757730 – volume: 1 start-page: 224 issue: 4 year: 2011 ident: 10.1016/j.measurement.2016.06.052_b0005 article-title: A modified Hopfield neural network method for equality constrained state estimation publication-title: Int. J. Adv. Eng. Technol. – start-page: 815 year: 2001 ident: 10.1016/j.measurement.2016.06.052_b0265 article-title: Practical distribution state estimation using hybrid particle swarm optimisation – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.measurement.2016.06.052_b0245 article-title: Local search hybrid swarm optimisation algorithm for multiobjective optimisation publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.11.005 – volume: 34 start-page: 2309 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0290 article-title: A practical algorithm for distribution state estimation including renewable energy sources publication-title: Renewable Energy doi: 10.1016/j.renene.2009.03.005 – ident: 10.1016/j.measurement.2016.06.052_b0305 doi: 10.1109/ICSMC.2006.385000 – year: 1998 ident: 10.1016/j.measurement.2016.06.052_b0270 article-title: Using selection to improve particle swarm optimisation – volume: 88 start-page: 262 year: 2002 ident: 10.1016/j.measurement.2016.06.052_b0020 article-title: Electric power system state estimation publication-title: Proc. IEEE doi: 10.1109/5.824004 – year: 2004 ident: 10.1016/j.measurement.2016.06.052_b0335 – volume: 148 start-page: 175 year: 2015 ident: 10.1016/j.measurement.2016.06.052_b0105 article-title: Particle swarm optimisation for power system state estimation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.049 – volume: 18 issue: 1 year: 2003 ident: 10.1016/j.measurement.2016.06.052_b0275 article-title: A hybrid particle swarm optimisation for distribution state estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.807051 – ident: 10.1016/j.measurement.2016.06.052_b0135 doi: 10.1109/ISET-India.2011.6145359 – ident: 10.1016/j.measurement.2016.06.052_b0095 doi: 10.1109/ICPST.2004.1460111 – ident: 10.1016/j.measurement.2016.06.052_b0155 doi: 10.1109/FUZZY.1996.552306 – ident: 10.1016/j.measurement.2016.06.052_b0285 doi: 10.1109/TD-ASIA.2009.5356917 – ident: 10.1016/j.measurement.2016.06.052_b0085 – ident: 10.1016/j.measurement.2016.06.052_b0260 doi: 10.1109/ICPST.2000.897171 – ident: 10.1016/j.measurement.2016.06.052_b0295 doi: 10.1109/PESGM.2012.6344688 – volume: 25 start-page: 2109 year: 2012 ident: 10.1016/j.measurement.2016.06.052_b0240 article-title: A fast induction motor speed estimation based on hybrid particle swarm optimisation publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.03.357 – ident: 10.1016/j.measurement.2016.06.052_b0130 – volume: 25 issue: 1 year: 2010 ident: 10.1016/j.measurement.2016.06.052_b0225 article-title: An improved particle swarm optimisation for nonconvex economic dispatch problems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.831275 – volume: 144 start-page: 445 issue: 5 year: 1997 ident: 10.1016/j.measurement.2016.06.052_b0120 article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks publication-title: IEE Proc. Gener., Transm. Distrib. doi: 10.1049/ip-gtd:19971168 – volume: 7 start-page: 109 year: 2008 ident: 10.1016/j.measurement.2016.06.052_b0175 article-title: A review of particle swarm optimisation. Part II: hybridisation, combinatorial, multicriteria and constrained optimisation, indicative applications publication-title: Nat. Comput. doi: 10.1007/s11047-007-9050-z – ident: 10.1016/j.measurement.2016.06.052_b0280 doi: 10.1109/ICSMC.2006.385000 – volume: 11 start-page: 216 year: 1996 ident: 10.1016/j.measurement.2016.06.052_b0340 article-title: Robustification of the least absolute value estimator by means of projection statistics publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.486098 – start-page: 18 year: 2010 ident: 10.1016/j.measurement.2016.06.052_b0035 article-title: Hybrid particle swarm optimisation for multi-objective reactive power optimisation with voltage stability – volume: 72 start-page: 484 year: 2014 ident: 10.1016/j.measurement.2016.06.052_b0250 article-title: Comparison of swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy doi: 10.1016/j.energy.2014.05.070 – volume: 3 start-page: 1798 year: 1979 ident: 10.1016/j.measurement.2016.06.052_b0010 article-title: Fast decoupled state estimation and bad data processing publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 61 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0180 article-title: A survey: algorithms simulating bee swarm intelligence publication-title: Art. Intell. Rev. doi: 10.1007/s10462-009-9127-4 – ident: 10.1016/j.measurement.2016.06.052_b0205 doi: 10.1109/ICIEA.2008.4582960 – volume: 18 issue: 2 year: 2003 ident: 10.1016/j.measurement.2016.06.052_b0160 article-title: Integrated fuzzy state estimation and load flow analysis in distribution networks publication-title: IEEE Trans. Power Delivery – volume: 89 start-page: 120 year: 1970 ident: 10.1016/j.measurement.2016.06.052_b0325 article-title: Power system static-state estimation, Part I: exact model publication-title: IEEE Trans. Power Apparatus Syst. – volume: 13 issue: 4 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0190 article-title: A survey of particle swarm optimisation applications in electric power systems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.880326 – ident: 10.1016/j.measurement.2016.06.052_b0115 doi: 10.1109/AFRCON.1996.562959 – volume: 4 issue: 1 year: 1989 ident: 10.1016/j.measurement.2016.06.052_b0310 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans. Power Deliv. – year: 1993 ident: 10.1016/j.measurement.2016.06.052_b0050 – volume: 124 start-page: 218 year: 2014 ident: 10.1016/j.measurement.2016.06.052_b0255 article-title: Enhanced particle swarm optimizer incorporating a weighted particle publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.07.005 – volume: 11 year: 2010 ident: 10.1016/j.measurement.2016.06.052_b0030 article-title: Linear programming approach for power system state estimation using upper bound optimisation techniques publication-title: Int. J. Emerg. Electr. Power Syst. – start-page: 307 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0070 article-title: A modified genetic algorithm based technique for solving the power system state estimation problem – ident: 10.1016/j.measurement.2016.06.052_b0080 doi: 10.1109/PTC.2003.1304121 – ident: 10.1016/j.measurement.2016.06.052_b0055 doi: 10.1109/ICCA.2007.4376403 – ident: 10.1016/j.measurement.2016.06.052_b0110 doi: 10.1109/CCECE.1996.548259 – ident: 10.1016/j.measurement.2016.06.052_b0220 doi: 10.1109/ICICISYS.2009.5358106 – ident: 10.1016/j.measurement.2016.06.052_b0025 doi: 10.1109/NAPS.2008.5307380 – volume: 27 start-page: 1888 issue: 4 year: 2012 ident: 10.1016/j.measurement.2016.06.052_b0150 article-title: Distribution system state estimation using an artificial neural network approach for pseudo measurement modelling publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2012.2187804 – volume: 1 start-page: 224 issue: 4 year: 2011 ident: 10.1016/j.measurement.2016.06.052_b0145 article-title: A modified Hopfield neural network method for equality constrained state estimation publication-title: Int. J. Adv. Eng. Technol. – volume: 107 start-page: 227 year: 2014 ident: 10.1016/j.measurement.2016.06.052_b0320 article-title: Artificial bee swarm optimisation for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept publication-title: Sol. Energy doi: 10.1016/j.solener.2014.05.016 – ident: 10.1016/j.measurement.2016.06.052_b0165 doi: 10.1109/TDC.2002.1177567 – volume: 52 start-page: 254 year: 2013 ident: 10.1016/j.measurement.2016.06.052_b0300 article-title: Optimal static state estimation using improved particle swarm optimisation and gravitational search algorithm publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.03.035 – year: 2005 ident: 10.1016/j.measurement.2016.06.052_b0065 article-title: Application of genetic algorithm for power system state estimation publication-title: IE(1) Journal-CP – ident: 10.1016/j.measurement.2016.06.052_b0210 doi: 10.1109/ECTICON.2009.5136953 – ident: 10.1016/j.measurement.2016.06.052_b0350 doi: 10.1109/PTC.2003.1304768 – volume: 12 start-page: 1306 year: 1997 ident: 10.1016/j.measurement.2016.06.052_b0015 article-title: Toward improved uses of the conjugate gradient method for power system applications publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.630475 – volume: 5 start-page: 1 issue: 12 year: 2009 ident: 10.1016/j.measurement.2016.06.052_b0060 article-title: Enhanced artificial bee colony optimisation publication-title: Int. J. Innovative Comput., Inform. Control – start-page: 862 year: 2008 ident: 10.1016/j.measurement.2016.06.052_b0040 article-title: Power system reactive power optimisation based on direct neural dynamic programming – volume: 15 issue: 1 year: 2011 ident: 10.1016/j.measurement.2016.06.052_b0185 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 |
| SSID | ssj0006396 |
| Score | 2.2660007 |
| Snippet | •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 508 |
| SubjectTerms | ABSO CLPSO EPSOWP PSO PSO-RF PSSE PSWV WLAV WLS |
| Title | Power system state estimation solution using modified models of PSO algorithm: Comparative study |
| URI | https://dx.doi.org/10.1016/j.measurement.2016.06.052 |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KRdGDaFWsH2UFr2vb7Oaj4qUUS1WshVroLSb7USNtU9p49be7u0lMBUHBY0IGwmQy77G8eQNwyZli6USEWGGrhSn3GtjjlospsQQXksvQHLg99p3eiN6P7XEJOvksjJZVZr0_7emmW2d36lk264soqg8b2mpcAZBiFNq3bqwn2KmrtxhcfRQyD4XATnrOQrB-egsuCo3XrDiH0yovx1h52tbPGLWGO9092M0II2qn77QPJTGvwM6ajWAFNo2Mk60O4GWgl56h1J4ZmWEhpG000vlElNcZ0mr3CZrFPJKKgiKzDmeFYokGwycUTCfxMkpeZ9eoU3iDI2NEewij7u1zp4ezHQqYEaeVYKY4TRgQK3SZx9W_5jSlYkjSYU3iCcVVuG05TNoBk4S4nuKOgaSspWgc5WHTZgE5gvI8notjQIQJBXjSbTHOKaFu4AmbcNpgnArVbxtV8PKs-SwzGNd7LqZ-riR789cS7uuE-1pVZ1tVsL5CF6nLxl-CbvJP438rGV-hwe_hJ_8LP4VtfZXq-s6gnCzfxbniJ0lYMwVYg4323UOv_wlZ3eji |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UittBtCrWdQSvsenMZKl4kaJUbWuhLfQWk1lqpBttvPrbncliKggKXpM8CC9v3vdl-OZ7AJecKZZORGAobMUG5a5puBw7BiVYcCG5DOINt1bbbvTp48AaFKCenYXRssq09yc9Pe7W6ZVKms3KLAwrXVNbjSsAUoxC-9YNVmCVWtjRf2BXH7nOQ0GwnWy0EEM_vg4XuchrnG_EaZmXHXt5WvhnkFoCnvsd2E4ZI7pNXmoXCmJSgq0lH8ESrMU6TrbYg5eOnnqGEn9mFJ8WQtpHIzmgiLJCQ1ruPkTjKQ-l4qAonoezQFOJOt1n5I-G03kYvY6vUT03B0exE-0-9O_vevWGkQ5RMBixa5HBFKkJfIIDh7lcLTa7KhVFkjarElcossItbDNp-UwS4riKPPqSspricZQHVYv55ACKk-lEHAIiTCjEk06NcU4JdXxXWIRTk3EqVMM1y-BmWfNY6jCuB12MvExK9uYtJdzTCfe0rM7CZcBfobPEZuMvQTfZp_G-1Yyn4OD38KP_hZ_DRqPXanrNh_bTMWzqO4nI7wSK0fxdnCqyEgVncTF-Aspx6nc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+system+state+estimation+solution+using+modified+models+of+PSO+algorithm%3A+Comparative+study&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Tungadio%2C+Diambomba+H.&rft.au=Jordaan%2C+Jacobus+A.&rft.au=Siti%2C+Mukwanga+W.&rft.date=2016-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=92&rft.spage=508&rft.epage=523&rft_id=info:doi/10.1016%2Fj.measurement.2016.06.052&rft.externalDocID=S026322411630344X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |