Power system state estimation solution using modified models of PSO algorithm: Comparative study

•A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable. The objective of all power system state estimat...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 92; pp. 508 - 523
Main Authors Tungadio, Diambomba H., Jordaan, Jacobus A., Siti, Mukwanga W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2016
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2016.06.052

Cover

Abstract •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable. The objective of all power system state estimation (PSSE) is to determine, by statistical projections, the best estimate of state variables represented by the voltage magnitudes and voltage angles of all the buses. Due to the complexity and non-linearity of the power system (PS), it is necessary to use more advanced methods for its analysis and control in real-time environment. This research discusses the application and the comparison of hybrid models of one of the algorithm using artificial intelligence (AI) technique (particle swarm optimisation ‘PSO’) in minimising the raw measurement errors in order to estimate the optimal point of the PS when certain sensitive data are incomplete. The effectiveness of the hybrid models are demonstrated and compared with the original PSO, artificial bee swarm optimisation (ABSO) algorithm and genetic algorithm (GA) using IEEE 14, 30, 118 and 300 bus test systems. Newton-Raphson load flow solution is taken as benchmark. Two different objective function formulations assessed by PSWV (Particle swarm without velocity equation), EPSOWP (Enhanced particle swarm optimiser incorporating a weighted particle), PSO-RF (PSO with repulsion factor) and CLPSO (Comprehensive learning PSO). The first formulation is the Weighted Least Square (WLS) and the second one is the Weighted Least Absolute Value (WLAV).
AbstractList •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a benchmark solution.•The PSO variants have shown a great accuracy when estimating the state variable. The objective of all power system state estimation (PSSE) is to determine, by statistical projections, the best estimate of state variables represented by the voltage magnitudes and voltage angles of all the buses. Due to the complexity and non-linearity of the power system (PS), it is necessary to use more advanced methods for its analysis and control in real-time environment. This research discusses the application and the comparison of hybrid models of one of the algorithm using artificial intelligence (AI) technique (particle swarm optimisation ‘PSO’) in minimising the raw measurement errors in order to estimate the optimal point of the PS when certain sensitive data are incomplete. The effectiveness of the hybrid models are demonstrated and compared with the original PSO, artificial bee swarm optimisation (ABSO) algorithm and genetic algorithm (GA) using IEEE 14, 30, 118 and 300 bus test systems. Newton-Raphson load flow solution is taken as benchmark. Two different objective function formulations assessed by PSWV (Particle swarm without velocity equation), EPSOWP (Enhanced particle swarm optimiser incorporating a weighted particle), PSO-RF (PSO with repulsion factor) and CLPSO (Comprehensive learning PSO). The first formulation is the Weighted Least Square (WLS) and the second one is the Weighted Least Absolute Value (WLAV).
Author Jordaan, Jacobus A.
Tungadio, Diambomba H.
Siti, Mukwanga W.
Author_xml – sequence: 1
  givenname: Diambomba H.
  surname: Tungadio
  fullname: Tungadio, Diambomba H.
  email: tutudiambomba@yahoo.fr
– sequence: 2
  givenname: Jacobus A.
  surname: Jordaan
  fullname: Jordaan, Jacobus A.
  email: JordaanJA@tut.ac.za
– sequence: 3
  givenname: Mukwanga W.
  surname: Siti
  fullname: Siti, Mukwanga W.
  email: sitim@tut.ac.za
BookMark eNqNkF1LwzAUhoNMcJv-h_gDWvPRZq03IsMvGGyggncxS09mRtuMJJ3s39ttXohXgxfO4cD7wHlGaNC6FhC6piSlhIqbddqACp2HBtqYsv6Ukj45O0NDWkx4klH2MUBDwgRPGMvoBRqFsCaECF6KIfpcuG_wOOxChAaHqCJgCNE2KlrX4uDq7rB0wbYr3LjKGgvVfoE6YGfw4nWOVb1y3sav5hZPXbNRvi9voad11e4SnRtVB7j6nWP0_vjwNn1OZvOnl-n9LNFclDHRhOVLxdlyootK8EJQQzNuhKa8gKLkVc6ENrnShvNJQRhRJtNlnpGsWtJcKz5G5ZGrvQvBg5Eb33_hd5ISuVcl1_KPKrlXJUmfnPXdu39dbeNBQPTK1icRpkdCbwW2FrwM2kKrobIedJSVsydQfgD_OJKT
CitedBy_id crossref_primary_10_1016_j_epsr_2023_109126
crossref_primary_10_1016_j_measurement_2023_113175
crossref_primary_10_1080_19942060_2017_1343751
crossref_primary_10_1016_j_measurement_2023_112565
crossref_primary_10_1080_17445302_2017_1347231
crossref_primary_10_1002_2050_7038_12708
crossref_primary_10_18178_ijfcc_2017_6_3_501
crossref_primary_10_1016_j_est_2021_103290
crossref_primary_10_1155_2020_8873995
crossref_primary_10_1016_j_prime_2023_100224
crossref_primary_10_2298_SJEE2401113C
crossref_primary_10_1016_j_oceaneng_2018_08_059
crossref_primary_10_1007_s10489_022_03685_z
crossref_primary_10_1007_s00521_023_09097_5
crossref_primary_10_1016_j_measurement_2022_110906
crossref_primary_10_3389_fenrg_2023_1204072
crossref_primary_10_3390_en13226054
crossref_primary_10_1049_gtd2_12037
crossref_primary_10_1016_j_egyr_2023_09_075
crossref_primary_10_3390_en14175363
crossref_primary_10_1016_j_asoc_2019_01_004
crossref_primary_10_1142_S0217984917400577
crossref_primary_10_1016_j_est_2023_108307
crossref_primary_10_1109_ACCESS_2018_2806370
Cites_doi 10.1049/cp:20040056
10.1109/TD-ASIA.2009.5356917
10.1109/MWSCAS.2006.382127
10.1109/TPWRS.2006.889132
10.1016/j.energy.2014.05.070
10.1016/j.eij.2011.02.004
10.1109/CEC.2001.934374
10.1016/j.epsr.2009.05.004
10.1049/ip-gtd:19960050
10.1016/j.eswa.2010.12.025
10.1109/SoCPaR.2009.24
10.1109/ICPST.2006.321730
10.1109/TDC.2002.1177567
10.1109/AFRCON.2013.6757730
10.1016/j.swevo.2011.11.005
10.1016/j.renene.2009.03.005
10.1109/ICSMC.2006.385000
10.1109/5.824004
10.1016/j.neucom.2012.10.049
10.1109/TPWRS.2002.807051
10.1109/ISET-India.2011.6145359
10.1109/ICPST.2004.1460111
10.1109/FUZZY.1996.552306
10.1109/ICPST.2000.897171
10.1109/PESGM.2012.6344688
10.1016/j.phpro.2012.03.357
10.1109/TPWRS.2004.831275
10.1049/ip-gtd:19971168
10.1007/s11047-007-9050-z
10.1109/59.486098
10.1007/s10462-009-9127-4
10.1109/ICIEA.2008.4582960
10.1109/TEVC.2006.880326
10.1109/AFRCON.1996.562959
10.1016/j.neucom.2013.07.005
10.1109/PTC.2003.1304121
10.1109/ICCA.2007.4376403
10.1109/CCECE.1996.548259
10.1109/ICICISYS.2009.5358106
10.1109/NAPS.2008.5307380
10.1109/TPWRS.2012.2187804
10.1016/j.solener.2014.05.016
10.1016/j.ijepes.2013.03.035
10.1109/ECTICON.2009.5136953
10.1109/PTC.2003.1304768
10.1109/59.630475
10.1109/TEVC.2010.2059031
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2016.06.052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
EndPage 523
ExternalDocumentID 10_1016_j_measurement_2016_06_052
S026322411630344X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c369t-c025ba32b7c8d63861f143f6c138e893d526cf5acf3378020af4c95404db15ca3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Oct 01 05:53:50 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Feb 23 02:33:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PSSE
CLPSO
WLAV
PS
ABSO
PSWV
AI
GA
EPSOWP
PSO-RF
PSO
WLS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c369t-c025ba32b7c8d63861f143f6c138e893d526cf5acf3378020af4c95404db15ca3
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_measurement_2016_06_052
crossref_citationtrail_10_1016_j_measurement_2016_06_052
elsevier_sciencedirect_doi_10_1016_j_measurement_2016_06_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: IEEE Transmission and Distribution Conference and Exhibition, Asia Pacific, 6–10 Oct. 2002, pp. 745–750.
AlRashidi, El-Hawary (b0190) 2009; 13
Baran, Wu (b0310) 1989; 4
Tungadio, Numbi, Siti, Jimoh (b0105) 2015; 148
El-Sharbiny (b0230) 2011; 12
Askarzadeh (b0250) 2014; 72
Askarzaden (b0360) 2014; 72
Dag, Alvarado (b0015) 1997; 12
Abur, Exposito (b0335) 2004
Mantisas, Singh, Pal, Strbac (b0150) 2012; 27
Maleki, Askarzadeh (b0320) 2014; 107
Naka, Genji, Yura, Fukuyama (b0265) 2001
Mallik, Ghoshal, Acharjee, Thakur (b0300) 2013; 52
Aryza, Abdallah, Khalidin, Lubis, Jie (b0240) 2012; 25
N.H. Abbasy, Neural network aided design for metering system of power system state estimation, in: Canadian Conference on Electrical and Computer Engineering, Calgary, Alta, vol. 2, 26–29 May 1996, pp. 741–744.
Li, Wang, Hsu, Chang, Chou, Chang (b0255) 2014; 124
Garcia, Monticelli, Abreu (b0010) 1979; 3
O. Ivanov, M. Gravilas, Improved WLS estimator in large systems using genetic algorithms, in: 4th edition of the Interdisciplinary in Engineering International Conference, Petru Maior, University of Tirgu Mures, Romania, 2009, pp. 82–85.
M.B.C. Filho, J.C.S. DE Souza, E.B.M. Meza, Application of genetic algorithms for planning metering systems in state estimation, in: 15th PSCC, Liege, Belgium, 22–26 August 2005.
Reeves (b0050) 1993
Karaboga, Akay (b0180) 2009; 31
Souza, Leite da Silva, Alves da Silva (b0120) 1997; 144
A. Zaraki, M.F. Bin Othman, Implementing particle swarm optimisation to solve economic load dispatch problem, in: International Conference of Soft Computing and Pattern Recognition, 2009, SOCPAR ’09, Malacca, 4–7 Dec. 2009, pp. 60–65.
Mousa, El-Shorbagy, Abd-El-Wahed (b0245) 2012; 3
A. Jain, R. Balasubramanian, S.C. Tripathy, B.N. Singh, Y. Kawazoe, Power system topological observability analysis using artificial neural networks, in: IEEE Power Engineering Society General Meeting, vol. 1, 12–16 June 2005, pp. 497–502.
B. Yang, Y. Chen, Z. Zhao, Survey on applications of particle swarm optimisation in electric power systems, in: 2007 International Conference on Control and Automation, Guangzhou, China, May 30–June 1, 2007, pp. 418–486.
Andrija, Rade (b0160) 2003; 18
Selvi, Ramara, Kumar (b0065) 2005
Zhu (b0045) 2009
Niknam, Firouzi (b0290) 2009; 34
F. Shabani, N.R. Prasad, H.A. Smolleck, State estimation with aid of fuzzy logic, in: IEEE International Conference Fuzzy Systems, 1996, pp. 947–953.
Y. Gao, Z. Hu, X. He, D. Liu, Optimal placement of PMUs in power systems based on improved PSO algorithm, in: 3rd IEEE Conference on Industrial electronics and applications, 2008, ICIEA 2008, Singapore, 3–5 June 2008, pp. 2464–2469.
A.H. Mantawy, M.S. Al-Ghamdi, A new reactive power optimisation algorithm, in: Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 4, 2003, pp. 6.
Tsai, Pan, Liao, Chu (b0060) 2009; 5
N.H. Abbasy, W. EL-Hassawy, Power system state estimation: ANN application to bad data detection and identification, in: IEEE AFRICON, Stellenbosch, SA, vol. 2, 24–27 September 1996, pp. 611–615.
H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: IEEE Systems, Man and Cybernetics, Taipei, 8–11 Oct. 2006, pp. 1855–1860.
R.C. Eberhart, S. Yuhui, Particle swarm optimisation: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, Seoul, vol. 1, 27–30 May 2001, pp. 81–86.
E.J. Contreras-Hernandez, J.R. Cedeno-Maldonado, A self-adaptive evolutionary programming approach for power system state estimation, in: 49th IEEE International Circuits and Systems, Midwest Symposium, 6–9 Aug. 2006, pp. 571–575.
J. Khwanram, P. Damrongkulkamjom, Multiple bad data identification in power system state estimation using particle swarm optimisation, in: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, vol. 1, Pattaya, Chonburi, Thailand, 6–9 May, 2009, pp. 2–5.
Fred, Wildes (b0325) 1970; 89
D. Xu, R. He, P. Wang, T. Xu, Comparison of several PMU placement algorithms for state estimation, in: Eighth IEE International Conference on Developments in Power System Protection, 5–8 April 2004, vol. 1, pp. 32–35.
Sundeep, Madhusudhanarao (b0145) 2011; 1
Abdelaziz, Mohammed, Mekhamer, Badr (b0215) 2009; 79
S. Gastoni, G.P. Granelli, M. Montagna, Multiple bad data processing by genetic algorithms, in: Power Tech Conference Proceedings, Italy, Bologna, 23–26 June 2003, pp. 1–6.
J. Hee-Myung, L. Hwa-Seok, P. June-Ho, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, 26–30 Oct. 2009, pp. 1–4.
V. Miranda, N. Fonseca, EPSO – evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: Transmission and distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, 6–10 Oct. 2002, pp. 745–750.
H.M. Jeong, H.S. Lee, J.H. Park, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE T & D, Asia, 2009, pp. 1–4.
Aruna Jeyanthy, Devaraj (b0035) 2010
D.H. Tungadio, B.P. Numbi, M.W. Siti, J.A. Jacobus, Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation, in: IEEE Africon, Pointe-Aux-Piments, Mauritius, 9–12 Sept. 2013, pp. 1–6.
Monticelli (b0020) 2002; 88
Park, Jeong, Shin, Lee (b0225) 2010; 25
A. Kumar, S. Chakrabarti, ANN-based hybrid state estimation and enhanced visualization of power systems, in: Innovative Smart Grid Technologies – India, 1–3 December 2011, pp. 1–6.
Angeline (b0270) May 1998
Vinod Kumar, Srivastava, Shah, Mathur (b0125) 1996; 143
S. Naka, T. Genji, T. Yura, Y. Fukuyama, N. Hayashi, Distribution state estimation considering nonlinear characteristics of practical equipment using particle swarm optimisation, in: International Conference on Power System Technology, 2000, Proceedings, PowerCon 2000, vol. 2, Perth, Wa, 2000, pp. 1083–1088.
T. Kerdchuen, W. Ongsakul, Optimal measurement placement for power system state estimation using hybrid genetic algorithm and simulated annealing, in: Power System Technology, PowerCon, Chongqing, 22–26 October 2006, pp. 1–5.
Zhigang, Liye (b0040) 2008
Mili, Cheniae, Vichare, Rousseeuw (b0340) 1996; 11
T.Q.D. Khoa, P.T.T. BinhINH, T.V. Khoa, Hopfield network and parallel genetic algorithm for solving state estimate in power systems, in: Power System Technology, PowerCon, Singapore, 21–24 November 2004, pp. 845–849.
Selvakumar, Thanushkodi (b0200) 2007; 22
M. Madhdavi, S. Jalilzadeh, Advanced particle swarm optimisation for parameter identification of three-phase DFIM, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009, vol. 3, Shanghai, 20–22 Nov. 2009, pp. 580–584.
Naka, Genji, Yura, Fukuyama (b0275) 2003; 18
O. Chilard, S. Grenard, O. Devaux, Comparison of the performances of distribution state estimation algorithms: classical newton approach and PSO approach, in: Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, 22–26 July 2012, pp. 1–7.
Sundeep, Madhusudhanarao (b0005) 2011; 1
S. Kamireddy, N.S. Noel, K.S. Anurag, Comparison of state estimation algorithms for extreme contingencies, in: Proceedings of the North American Power Symposium, 28–30, September 2008, Calvary, Canada, 2008, pp. 1–5.
Ahmadi, Beromi, Moradi (b0235) 2011; 38
H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: International Conference on Systems, Man, and Cybernetics, October 8–11, 2006, Taipei, Taiwan, IEEE, 2006, pp. 1855–1860.
Hossam-Eldin, Abdallah, EL-Nozahy (b0070) 31 January 2009
Banks, Vincent, Anyokoha (b0175) 2008; 7
Pandey, Singh (b0140) 2010
Das, Suganthan (b0185) 2011; 15
Thukaram, Seshadri (b0030) 2010; 11
Mantisas (10.1016/j.measurement.2016.06.052_b0150) 2012; 27
Das (10.1016/j.measurement.2016.06.052_b0185) 2011; 15
Pandey (10.1016/j.measurement.2016.06.052_b0140) 2010
10.1016/j.measurement.2016.06.052_b0170
Niknam (10.1016/j.measurement.2016.06.052_b0290) 2009; 34
10.1016/j.measurement.2016.06.052_b0090
Garcia (10.1016/j.measurement.2016.06.052_b0010) 1979; 3
Sundeep (10.1016/j.measurement.2016.06.052_b0145) 2011; 1
Baran (10.1016/j.measurement.2016.06.052_b0310) 1989; 4
10.1016/j.measurement.2016.06.052_b0130
Li (10.1016/j.measurement.2016.06.052_b0255) 2014; 124
10.1016/j.measurement.2016.06.052_b0295
Park (10.1016/j.measurement.2016.06.052_b0225) 2010; 25
10.1016/j.measurement.2016.06.052_b0095
10.1016/j.measurement.2016.06.052_b0285
Maleki (10.1016/j.measurement.2016.06.052_b0320) 2014; 107
10.1016/j.measurement.2016.06.052_b0165
Askarzadeh (10.1016/j.measurement.2016.06.052_b0250) 2014; 72
10.1016/j.measurement.2016.06.052_b0205
Aryza (10.1016/j.measurement.2016.06.052_b0240) 2012; 25
Naka (10.1016/j.measurement.2016.06.052_b0275) 2003; 18
10.1016/j.measurement.2016.06.052_b0280
10.1016/j.measurement.2016.06.052_b0080
10.1016/j.measurement.2016.06.052_b0085
Abdelaziz (10.1016/j.measurement.2016.06.052_b0215) 2009; 79
Monticelli (10.1016/j.measurement.2016.06.052_b0020) 2002; 88
Vinod Kumar (10.1016/j.measurement.2016.06.052_b0125) 1996; 143
10.1016/j.measurement.2016.06.052_b0155
Aruna Jeyanthy (10.1016/j.measurement.2016.06.052_b0035) 2010
Tsai (10.1016/j.measurement.2016.06.052_b0060) 2009; 5
Selvi (10.1016/j.measurement.2016.06.052_b0065) 2005
10.1016/j.measurement.2016.06.052_b0110
10.1016/j.measurement.2016.06.052_b0115
Selvakumar (10.1016/j.measurement.2016.06.052_b0200) 2007; 22
10.1016/j.measurement.2016.06.052_b0355
Souza (10.1016/j.measurement.2016.06.052_b0120) 1997; 144
10.1016/j.measurement.2016.06.052_b0315
Thukaram (10.1016/j.measurement.2016.06.052_b0030) 2010; 11
AlRashidi (10.1016/j.measurement.2016.06.052_b0190) 2009; 13
10.1016/j.measurement.2016.06.052_b0195
10.1016/j.measurement.2016.06.052_b0075
Mili (10.1016/j.measurement.2016.06.052_b0340) 1996; 11
10.1016/j.measurement.2016.06.052_b0350
10.1016/j.measurement.2016.06.052_b0100
Ahmadi (10.1016/j.measurement.2016.06.052_b0235) 2011; 38
Abur (10.1016/j.measurement.2016.06.052_b0335) 2004
10.1016/j.measurement.2016.06.052_b0220
10.1016/j.measurement.2016.06.052_b0025
10.1016/j.measurement.2016.06.052_b0345
Zhigang (10.1016/j.measurement.2016.06.052_b0040) 2008
10.1016/j.measurement.2016.06.052_b0305
El-Sharbiny (10.1016/j.measurement.2016.06.052_b0230) 2011; 12
Mousa (10.1016/j.measurement.2016.06.052_b0245) 2012; 3
Hossam-Eldin (10.1016/j.measurement.2016.06.052_b0070) 2009
Sundeep (10.1016/j.measurement.2016.06.052_b0005) 2011; 1
Karaboga (10.1016/j.measurement.2016.06.052_b0180) 2009; 31
Fred (10.1016/j.measurement.2016.06.052_b0325) 1970; 89
Askarzaden (10.1016/j.measurement.2016.06.052_b0360) 2014; 72
Banks (10.1016/j.measurement.2016.06.052_b0175) 2008; 7
10.1016/j.measurement.2016.06.052_b0260
Dag (10.1016/j.measurement.2016.06.052_b0015) 1997; 12
10.1016/j.measurement.2016.06.052_b0210
Zhu (10.1016/j.measurement.2016.06.052_b0045) 2009
10.1016/j.measurement.2016.06.052_b0055
10.1016/j.measurement.2016.06.052_b0330
10.1016/j.measurement.2016.06.052_b0135
Andrija (10.1016/j.measurement.2016.06.052_b0160) 2003; 18
Naka (10.1016/j.measurement.2016.06.052_b0265) 2001
Mallik (10.1016/j.measurement.2016.06.052_b0300) 2013; 52
Tungadio (10.1016/j.measurement.2016.06.052_b0105) 2015; 148
Reeves (10.1016/j.measurement.2016.06.052_b0050) 1993
Angeline (10.1016/j.measurement.2016.06.052_b0270) 1998
References_xml – reference: D. Xu, R. He, P. Wang, T. Xu, Comparison of several PMU placement algorithms for state estimation, in: Eighth IEE International Conference on Developments in Power System Protection, 5–8 April 2004, vol. 1, pp. 32–35.
– reference: F. Shabani, N.R. Prasad, H.A. Smolleck, State estimation with aid of fuzzy logic, in: IEEE International Conference Fuzzy Systems, 1996, pp. 947–953.
– reference: A. Jain, R. Balasubramanian, S.C. Tripathy, B.N. Singh, Y. Kawazoe, Power system topological observability analysis using artificial neural networks, in: IEEE Power Engineering Society General Meeting, vol. 1, 12–16 June 2005, pp. 497–502.
– reference: V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: IEEE Transmission and Distribution Conference and Exhibition, Asia Pacific, 6–10 Oct. 2002, pp. 745–750.
– reference: O. Chilard, S. Grenard, O. Devaux, Comparison of the performances of distribution state estimation algorithms: classical newton approach and PSO approach, in: Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, 22–26 July 2012, pp. 1–7.
– start-page: 19
  year: 2010
  end-page: 28
  ident: b0140
  article-title: Application of radial basis neural network for state estimation of power system networks
  publication-title: Int. J. Eng., Sci. Technol.
– reference: A. Kumar, S. Chakrabarti, ANN-based hybrid state estimation and enhanced visualization of power systems, in: Innovative Smart Grid Technologies – India, 1–3 December 2011, pp. 1–6.
– year: May 1998
  ident: b0270
  article-title: Using selection to improve particle swarm optimisation
  publication-title: Proceedings of IEEE International Conference on Evolutionary Computation (ICEC), Anchorage
– reference: A. Zaraki, M.F. Bin Othman, Implementing particle swarm optimisation to solve economic load dispatch problem, in: International Conference of Soft Computing and Pattern Recognition, 2009, SOCPAR ’09, Malacca, 4–7 Dec. 2009, pp. 60–65.
– start-page: 862
  year: 2008
  end-page: 866
  ident: b0040
  article-title: Power system reactive power optimisation based on direct neural dynamic programming
  publication-title: Third International Conference on Intelligent System and Knowledge Engineering, 2008, ISKE 2008
– reference: E.J. Contreras-Hernandez, J.R. Cedeno-Maldonado, A self-adaptive evolutionary programming approach for power system state estimation, in: 49th IEEE International Circuits and Systems, Midwest Symposium, 6–9 Aug. 2006, pp. 571–575.
– reference: N.H. Abbasy, W. EL-Hassawy, Power system state estimation: ANN application to bad data detection and identification, in: IEEE AFRICON, Stellenbosch, SA, vol. 2, 24–27 September 1996, pp. 611–615.
– volume: 88
  start-page: 262
  year: 2002
  end-page: 282
  ident: b0020
  article-title: Electric power system state estimation
  publication-title: Proc. IEEE
– reference: J. Khwanram, P. Damrongkulkamjom, Multiple bad data identification in power system state estimation using particle swarm optimisation, in: 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, vol. 1, Pattaya, Chonburi, Thailand, 6–9 May, 2009, pp. 2–5.
– volume: 144
  start-page: 445
  year: 1997
  end-page: 455
  ident: b0120
  article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks
  publication-title: IEE Proc. Gener., Transm. Distrib.
– reference: V. Miranda, N. Fonseca, EPSO – evolutionary particle swarm optimisation, a new algorithm with applications in power systems, in: Transmission and distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2, 6–10 Oct. 2002, pp. 745–750.
– reference: S. Gastoni, G.P. Granelli, M. Montagna, Multiple bad data processing by genetic algorithms, in: Power Tech Conference Proceedings, Italy, Bologna, 23–26 June 2003, pp. 1–6.
– start-page: 18
  year: 2010
  end-page: 23
  ident: b0035
  article-title: Hybrid particle swarm optimisation for multi-objective reactive power optimisation with voltage stability
  publication-title: Proc. of Int. Conf. on Control, Communication and Power Engineering 2010, ACEEE 2010
– reference: O. Ivanov, M. Gravilas, Improved WLS estimator in large systems using genetic algorithms, in: 4th edition of the Interdisciplinary in Engineering International Conference, Petru Maior, University of Tirgu Mures, Romania, 2009, pp. 82–85.
– reference: T.Q.D. Khoa, P.T.T. BinhINH, T.V. Khoa, Hopfield network and parallel genetic algorithm for solving state estimate in power systems, in: Power System Technology, PowerCon, Singapore, 21–24 November 2004, pp. 845–849.
– volume: 12
  start-page: 1306
  year: 1997
  end-page: 1314
  ident: b0015
  article-title: Toward improved uses of the conjugate gradient method for power system applications
  publication-title: IEEE Trans. Power Syst.
– reference: M.B.C. Filho, J.C.S. DE Souza, E.B.M. Meza, Application of genetic algorithms for planning metering systems in state estimation, in: 15th PSCC, Liege, Belgium, 22–26 August 2005.
– start-page: 307
  year: 31 January 2009
  end-page: 316
  ident: b0070
  article-title: A modified genetic algorithm based technique for solving the power system state estimation problem
  publication-title: International Conference on Electrical and Computer Engineering, Oslo, Norway
– reference: H.M. Jeong, H.S. Lee, J.H. Park, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE T & D, Asia, 2009, pp. 1–4.
– reference: B. Yang, Y. Chen, Z. Zhao, Survey on applications of particle swarm optimisation in electric power systems, in: 2007 International Conference on Control and Automation, Guangzhou, China, May 30–June 1, 2007, pp. 418–486.
– year: 2005
  ident: b0065
  article-title: Application of genetic algorithm for power system state estimation
  publication-title: IE(1) Journal-CP
– volume: 38
  start-page: 7263
  year: 2011
  end-page: 7269
  ident: b0235
  article-title: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy
  publication-title: Expert Syst. Appl.
– volume: 143
  start-page: 99
  year: 1996
  end-page: 105
  ident: b0125
  article-title: Topology processing and static state estimation using artificial neural networks
  publication-title: IEE Proc. Gener., Transm. Distrib.
– volume: 11
  year: 2010
  ident: b0030
  article-title: Linear programming approach for power system state estimation using upper bound optimisation techniques
  publication-title: Int. J. Emerg. Electr. Power Syst.
– volume: 27
  start-page: 1888
  year: 2012
  end-page: 1896
  ident: b0150
  article-title: Distribution system state estimation using an artificial neural network approach for pseudo measurement modelling
  publication-title: IEEE Trans. Power Syst.
– reference: Y. Gao, Z. Hu, X. He, D. Liu, Optimal placement of PMUs in power systems based on improved PSO algorithm, in: 3rd IEEE Conference on Industrial electronics and applications, 2008, ICIEA 2008, Singapore, 3–5 June 2008, pp. 2464–2469.
– volume: 79
  start-page: 1521
  year: 2009
  end-page: 1530
  ident: b0215
  article-title: Distribution systems reconfiguration using a modified particle swarm optimisation algorithm
  publication-title: Electric Power Syst. Res.
– reference: M. Madhdavi, S. Jalilzadeh, Advanced particle swarm optimisation for parameter identification of three-phase DFIM, in: IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, ICIS 2009, vol. 3, Shanghai, 20–22 Nov. 2009, pp. 580–584.
– reference: S. Naka, T. Genji, T. Yura, Y. Fukuyama, N. Hayashi, Distribution state estimation considering nonlinear characteristics of practical equipment using particle swarm optimisation, in: International Conference on Power System Technology, 2000, Proceedings, PowerCon 2000, vol. 2, Perth, Wa, 2000, pp. 1083–1088.
– volume: 3
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0245
  article-title: Local search hybrid swarm optimisation algorithm for multiobjective optimisation
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 216
  year: 1996
  end-page: 225
  ident: b0340
  article-title: Robustification of the least absolute value estimator by means of projection statistics
  publication-title: IEEE Trans. Power Syst.
– year: 1993
  ident: b0050
  article-title: Modern Heuristic Techniques for Combinatorial Problems
– reference: H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: International Conference on Systems, Man, and Cybernetics, October 8–11, 2006, Taipei, Taiwan, IEEE, 2006, pp. 1855–1860.
– volume: 7
  start-page: 109
  year: 2008
  end-page: 124
  ident: b0175
  article-title: A review of particle swarm optimisation. Part II: hybridisation, combinatorial, multicriteria and constrained optimisation, indicative applications
  publication-title: Nat. Comput.
– volume: 4
  year: 1989
  ident: b0310
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 13
  year: 2009
  ident: b0190
  article-title: A survey of particle swarm optimisation applications in electric power systems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 148
  start-page: 175
  year: 2015
  end-page: 180
  ident: b0105
  article-title: Particle swarm optimisation for power system state estimation
  publication-title: Neurocomputing
– reference: N.H. Abbasy, Neural network aided design for metering system of power system state estimation, in: Canadian Conference on Electrical and Computer Engineering, Calgary, Alta, vol. 2, 26–29 May 1996, pp. 741–744.
– volume: 52
  start-page: 254
  year: 2013
  end-page: 265
  ident: b0300
  article-title: Optimal static state estimation using improved particle swarm optimisation and gravitational search algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 72
  start-page: 484
  year: 2014
  end-page: 491
  ident: b0250
  article-title: Comparison of swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
– start-page: 815
  year: 2001
  end-page: 820
  ident: b0265
  article-title: Practical distribution state estimation using hybrid particle swarm optimisation
  publication-title: Society Winter Meeting, 2001, Proceedings of the IEEE Power Engineering, Columbus, Ohio, USA
– year: 2004
  ident: b0335
  article-title: Power System State Estimation: Theory and Implementation
– reference: T. Kerdchuen, W. Ongsakul, Optimal measurement placement for power system state estimation using hybrid genetic algorithm and simulated annealing, in: Power System Technology, PowerCon, Chongqing, 22–26 October 2006, pp. 1–5.
– volume: 22
  year: 2007
  ident: b0200
  article-title: A new particle swarm optimisation solution to nonconvex economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
– year: 2009
  ident: b0045
  article-title: Optimisation of Power System Operation
– volume: 124
  start-page: 218
  year: 2014
  end-page: 227
  ident: b0255
  article-title: Enhanced particle swarm optimizer incorporating a weighted particle
  publication-title: Neurocomputing
– reference: D.H. Tungadio, B.P. Numbi, M.W. Siti, J.A. Jacobus, Weighted least squares and iteratively reweighted least squares comparison using Particle Swarm Optimization algorithm in solving power system state estimation, in: IEEE Africon, Pointe-Aux-Piments, Mauritius, 9–12 Sept. 2013, pp. 1–6.
– reference: A.H. Mantawy, M.S. Al-Ghamdi, A new reactive power optimisation algorithm, in: Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 4, 2003, pp. 6.
– volume: 1
  start-page: 224
  year: 2011
  end-page: 235
  ident: b0005
  article-title: A modified Hopfield neural network method for equality constrained state estimation
  publication-title: Int. J. Adv. Eng. Technol.
– volume: 31
  start-page: 61
  year: 2009
  end-page: 85
  ident: b0180
  article-title: A survey: algorithms simulating bee swarm intelligence
  publication-title: Art. Intell. Rev.
– reference: H. Mori, Y. Yamada, An EPSO-based method for state estimation in radial distribution systems, in: IEEE Systems, Man and Cybernetics, Taipei, 8–11 Oct. 2006, pp. 1855–1860.
– volume: 89
  start-page: 120
  year: 1970
  end-page: 125
  ident: b0325
  article-title: Power system static-state estimation, Part I: exact model
  publication-title: IEEE Trans. Power Apparatus Syst.
– volume: 107
  start-page: 227
  year: 2014
  end-page: 235
  ident: b0320
  article-title: Artificial bee swarm optimisation for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept
  publication-title: Sol. Energy
– volume: 72
  start-page: 484
  year: 2014
  end-page: 491
  ident: b0360
  article-title: Comparison of particle swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
– reference: J. Hee-Myung, L. Hwa-Seok, P. June-Ho, Application of parallel particle swarm optimisation on power system state estimation, in: IEEE Transmission & Distribution Conference & Exposition: Asia and Pacific, Seoul, 26–30 Oct. 2009, pp. 1–4.
– volume: 25
  start-page: 2109
  year: 2012
  end-page: 2115
  ident: b0240
  article-title: A fast induction motor speed estimation based on hybrid particle swarm optimisation
  publication-title: Phys. Procedia
– reference: R.C. Eberhart, S. Yuhui, Particle swarm optimisation: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, Seoul, vol. 1, 27–30 May 2001, pp. 81–86.
– volume: 12
  start-page: 1
  year: 2011
  end-page: 8
  ident: b0230
  article-title: Particle swarm inspired optimisation algorithm without velocity equation
  publication-title: Egypt. Informatics J.
– volume: 18
  year: 2003
  ident: b0160
  article-title: Integrated fuzzy state estimation and load flow analysis in distribution networks
  publication-title: IEEE Trans. Power Delivery
– volume: 3
  start-page: 1798
  year: 1979
  end-page: 1806
  ident: b0010
  article-title: Fast decoupled state estimation and bad data processing
  publication-title: IEEE Trans. Power Syst.
– volume: 1
  start-page: 224
  year: 2011
  end-page: 235
  ident: b0145
  article-title: A modified Hopfield neural network method for equality constrained state estimation
  publication-title: Int. J. Adv. Eng. Technol.
– reference: S. Kamireddy, N.S. Noel, K.S. Anurag, Comparison of state estimation algorithms for extreme contingencies, in: Proceedings of the North American Power Symposium, 28–30, September 2008, Calvary, Canada, 2008, pp. 1–5.
– volume: 15
  year: 2011
  ident: b0185
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  year: 2003
  ident: b0275
  article-title: A hybrid particle swarm optimisation for distribution state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 5
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0060
  article-title: Enhanced artificial bee colony optimisation
  publication-title: Int. J. Innovative Comput., Inform. Control
– volume: 34
  start-page: 2309
  year: 2009
  end-page: 2316
  ident: b0290
  article-title: A practical algorithm for distribution state estimation including renewable energy sources
  publication-title: Renewable Energy
– volume: 25
  year: 2010
  ident: b0225
  article-title: An improved particle swarm optimisation for nonconvex economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
– ident: 10.1016/j.measurement.2016.06.052_b0090
  doi: 10.1049/cp:20040056
– ident: 10.1016/j.measurement.2016.06.052_b0315
  doi: 10.1109/TD-ASIA.2009.5356917
– ident: 10.1016/j.measurement.2016.06.052_b0170
  doi: 10.1109/MWSCAS.2006.382127
– volume: 22
  issue: 1
  year: 2007
  ident: 10.1016/j.measurement.2016.06.052_b0200
  article-title: A new particle swarm optimisation solution to nonconvex economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.889132
– year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0045
– volume: 72
  start-page: 484
  year: 2014
  ident: 10.1016/j.measurement.2016.06.052_b0360
  article-title: Comparison of particle swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.070
– volume: 12
  start-page: 1
  year: 2011
  ident: 10.1016/j.measurement.2016.06.052_b0230
  article-title: Particle swarm inspired optimisation algorithm without velocity equation
  publication-title: Egypt. Informatics J.
  doi: 10.1016/j.eij.2011.02.004
– ident: 10.1016/j.measurement.2016.06.052_b0075
– start-page: 19
  year: 2010
  ident: 10.1016/j.measurement.2016.06.052_b0140
  article-title: Application of radial basis neural network for state estimation of power system networks
  publication-title: Int. J. Eng., Sci. Technol.
– ident: 10.1016/j.measurement.2016.06.052_b0355
  doi: 10.1109/CEC.2001.934374
– volume: 79
  start-page: 1521
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0215
  article-title: Distribution systems reconfiguration using a modified particle swarm optimisation algorithm
  publication-title: Electric Power Syst. Res.
  doi: 10.1016/j.epsr.2009.05.004
– volume: 143
  start-page: 99
  issue: 1
  year: 1996
  ident: 10.1016/j.measurement.2016.06.052_b0125
  article-title: Topology processing and static state estimation using artificial neural networks
  publication-title: IEE Proc. Gener., Transm. Distrib.
  doi: 10.1049/ip-gtd:19960050
– volume: 38
  start-page: 7263
  year: 2011
  ident: 10.1016/j.measurement.2016.06.052_b0235
  article-title: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.025
– ident: 10.1016/j.measurement.2016.06.052_b0345
  doi: 10.1109/SoCPaR.2009.24
– ident: 10.1016/j.measurement.2016.06.052_b0100
  doi: 10.1109/ICPST.2006.321730
– ident: 10.1016/j.measurement.2016.06.052_b0195
  doi: 10.1109/TDC.2002.1177567
– ident: 10.1016/j.measurement.2016.06.052_b0330
  doi: 10.1109/AFRCON.2013.6757730
– volume: 1
  start-page: 224
  issue: 4
  year: 2011
  ident: 10.1016/j.measurement.2016.06.052_b0005
  article-title: A modified Hopfield neural network method for equality constrained state estimation
  publication-title: Int. J. Adv. Eng. Technol.
– start-page: 815
  year: 2001
  ident: 10.1016/j.measurement.2016.06.052_b0265
  article-title: Practical distribution state estimation using hybrid particle swarm optimisation
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.measurement.2016.06.052_b0245
  article-title: Local search hybrid swarm optimisation algorithm for multiobjective optimisation
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.11.005
– volume: 34
  start-page: 2309
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0290
  article-title: A practical algorithm for distribution state estimation including renewable energy sources
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.03.005
– ident: 10.1016/j.measurement.2016.06.052_b0305
  doi: 10.1109/ICSMC.2006.385000
– year: 1998
  ident: 10.1016/j.measurement.2016.06.052_b0270
  article-title: Using selection to improve particle swarm optimisation
– volume: 88
  start-page: 262
  year: 2002
  ident: 10.1016/j.measurement.2016.06.052_b0020
  article-title: Electric power system state estimation
  publication-title: Proc. IEEE
  doi: 10.1109/5.824004
– year: 2004
  ident: 10.1016/j.measurement.2016.06.052_b0335
– volume: 148
  start-page: 175
  year: 2015
  ident: 10.1016/j.measurement.2016.06.052_b0105
  article-title: Particle swarm optimisation for power system state estimation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.049
– volume: 18
  issue: 1
  year: 2003
  ident: 10.1016/j.measurement.2016.06.052_b0275
  article-title: A hybrid particle swarm optimisation for distribution state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.807051
– ident: 10.1016/j.measurement.2016.06.052_b0135
  doi: 10.1109/ISET-India.2011.6145359
– ident: 10.1016/j.measurement.2016.06.052_b0095
  doi: 10.1109/ICPST.2004.1460111
– ident: 10.1016/j.measurement.2016.06.052_b0155
  doi: 10.1109/FUZZY.1996.552306
– ident: 10.1016/j.measurement.2016.06.052_b0285
  doi: 10.1109/TD-ASIA.2009.5356917
– ident: 10.1016/j.measurement.2016.06.052_b0085
– ident: 10.1016/j.measurement.2016.06.052_b0260
  doi: 10.1109/ICPST.2000.897171
– ident: 10.1016/j.measurement.2016.06.052_b0295
  doi: 10.1109/PESGM.2012.6344688
– volume: 25
  start-page: 2109
  year: 2012
  ident: 10.1016/j.measurement.2016.06.052_b0240
  article-title: A fast induction motor speed estimation based on hybrid particle swarm optimisation
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.03.357
– ident: 10.1016/j.measurement.2016.06.052_b0130
– volume: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.measurement.2016.06.052_b0225
  article-title: An improved particle swarm optimisation for nonconvex economic dispatch problems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.831275
– volume: 144
  start-page: 445
  issue: 5
  year: 1997
  ident: 10.1016/j.measurement.2016.06.052_b0120
  article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks
  publication-title: IEE Proc. Gener., Transm. Distrib.
  doi: 10.1049/ip-gtd:19971168
– volume: 7
  start-page: 109
  year: 2008
  ident: 10.1016/j.measurement.2016.06.052_b0175
  article-title: A review of particle swarm optimisation. Part II: hybridisation, combinatorial, multicriteria and constrained optimisation, indicative applications
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-007-9050-z
– ident: 10.1016/j.measurement.2016.06.052_b0280
  doi: 10.1109/ICSMC.2006.385000
– volume: 11
  start-page: 216
  year: 1996
  ident: 10.1016/j.measurement.2016.06.052_b0340
  article-title: Robustification of the least absolute value estimator by means of projection statistics
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.486098
– start-page: 18
  year: 2010
  ident: 10.1016/j.measurement.2016.06.052_b0035
  article-title: Hybrid particle swarm optimisation for multi-objective reactive power optimisation with voltage stability
– volume: 72
  start-page: 484
  year: 2014
  ident: 10.1016/j.measurement.2016.06.052_b0250
  article-title: Comparison of swarm optimisation and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.070
– volume: 3
  start-page: 1798
  year: 1979
  ident: 10.1016/j.measurement.2016.06.052_b0010
  article-title: Fast decoupled state estimation and bad data processing
  publication-title: IEEE Trans. Power Syst.
– volume: 31
  start-page: 61
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0180
  article-title: A survey: algorithms simulating bee swarm intelligence
  publication-title: Art. Intell. Rev.
  doi: 10.1007/s10462-009-9127-4
– ident: 10.1016/j.measurement.2016.06.052_b0205
  doi: 10.1109/ICIEA.2008.4582960
– volume: 18
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2016.06.052_b0160
  article-title: Integrated fuzzy state estimation and load flow analysis in distribution networks
  publication-title: IEEE Trans. Power Delivery
– volume: 89
  start-page: 120
  year: 1970
  ident: 10.1016/j.measurement.2016.06.052_b0325
  article-title: Power system static-state estimation, Part I: exact model
  publication-title: IEEE Trans. Power Apparatus Syst.
– volume: 13
  issue: 4
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0190
  article-title: A survey of particle swarm optimisation applications in electric power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.880326
– ident: 10.1016/j.measurement.2016.06.052_b0115
  doi: 10.1109/AFRCON.1996.562959
– volume: 4
  issue: 1
  year: 1989
  ident: 10.1016/j.measurement.2016.06.052_b0310
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans. Power Deliv.
– year: 1993
  ident: 10.1016/j.measurement.2016.06.052_b0050
– volume: 124
  start-page: 218
  year: 2014
  ident: 10.1016/j.measurement.2016.06.052_b0255
  article-title: Enhanced particle swarm optimizer incorporating a weighted particle
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.07.005
– volume: 11
  year: 2010
  ident: 10.1016/j.measurement.2016.06.052_b0030
  article-title: Linear programming approach for power system state estimation using upper bound optimisation techniques
  publication-title: Int. J. Emerg. Electr. Power Syst.
– start-page: 307
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0070
  article-title: A modified genetic algorithm based technique for solving the power system state estimation problem
– ident: 10.1016/j.measurement.2016.06.052_b0080
  doi: 10.1109/PTC.2003.1304121
– ident: 10.1016/j.measurement.2016.06.052_b0055
  doi: 10.1109/ICCA.2007.4376403
– ident: 10.1016/j.measurement.2016.06.052_b0110
  doi: 10.1109/CCECE.1996.548259
– ident: 10.1016/j.measurement.2016.06.052_b0220
  doi: 10.1109/ICICISYS.2009.5358106
– ident: 10.1016/j.measurement.2016.06.052_b0025
  doi: 10.1109/NAPS.2008.5307380
– volume: 27
  start-page: 1888
  issue: 4
  year: 2012
  ident: 10.1016/j.measurement.2016.06.052_b0150
  article-title: Distribution system state estimation using an artificial neural network approach for pseudo measurement modelling
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2187804
– volume: 1
  start-page: 224
  issue: 4
  year: 2011
  ident: 10.1016/j.measurement.2016.06.052_b0145
  article-title: A modified Hopfield neural network method for equality constrained state estimation
  publication-title: Int. J. Adv. Eng. Technol.
– volume: 107
  start-page: 227
  year: 2014
  ident: 10.1016/j.measurement.2016.06.052_b0320
  article-title: Artificial bee swarm optimisation for optimum sizing of a stand-alone PV/WT/FC hybrid system considering LPSP concept
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.05.016
– ident: 10.1016/j.measurement.2016.06.052_b0165
  doi: 10.1109/TDC.2002.1177567
– volume: 52
  start-page: 254
  year: 2013
  ident: 10.1016/j.measurement.2016.06.052_b0300
  article-title: Optimal static state estimation using improved particle swarm optimisation and gravitational search algorithm
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.03.035
– year: 2005
  ident: 10.1016/j.measurement.2016.06.052_b0065
  article-title: Application of genetic algorithm for power system state estimation
  publication-title: IE(1) Journal-CP
– ident: 10.1016/j.measurement.2016.06.052_b0210
  doi: 10.1109/ECTICON.2009.5136953
– ident: 10.1016/j.measurement.2016.06.052_b0350
  doi: 10.1109/PTC.2003.1304768
– volume: 12
  start-page: 1306
  year: 1997
  ident: 10.1016/j.measurement.2016.06.052_b0015
  article-title: Toward improved uses of the conjugate gradient method for power system applications
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.630475
– volume: 5
  start-page: 1
  issue: 12
  year: 2009
  ident: 10.1016/j.measurement.2016.06.052_b0060
  article-title: Enhanced artificial bee colony optimisation
  publication-title: Int. J. Innovative Comput., Inform. Control
– start-page: 862
  year: 2008
  ident: 10.1016/j.measurement.2016.06.052_b0040
  article-title: Power system reactive power optimisation based on direct neural dynamic programming
– volume: 15
  issue: 1
  year: 2011
  ident: 10.1016/j.measurement.2016.06.052_b0185
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
SSID ssj0006396
Score 2.2660007
Snippet •A static power system state estimation solution using PSO variants is proposed.•The solution of Newton-Raphson power flow algorithm has been used as a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 508
SubjectTerms ABSO
CLPSO
EPSOWP
PSO
PSO-RF
PSSE
PSWV
WLAV
WLS
Title Power system state estimation solution using modified models of PSO algorithm: Comparative study
URI https://dx.doi.org/10.1016/j.measurement.2016.06.052
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KRdGDaFWsH2UFr2vb7Oaj4qUUS1WshVroLSb7USNtU9p49be7u0lMBUHBY0IGwmQy77G8eQNwyZli6USEWGGrhSn3GtjjlospsQQXksvQHLg99p3eiN6P7XEJOvksjJZVZr0_7emmW2d36lk264soqg8b2mpcAZBiFNq3bqwn2KmrtxhcfRQyD4XATnrOQrB-egsuCo3XrDiH0yovx1h52tbPGLWGO9092M0II2qn77QPJTGvwM6ajWAFNo2Mk60O4GWgl56h1J4ZmWEhpG000vlElNcZ0mr3CZrFPJKKgiKzDmeFYokGwycUTCfxMkpeZ9eoU3iDI2NEewij7u1zp4ezHQqYEaeVYKY4TRgQK3SZx9W_5jSlYkjSYU3iCcVVuG05TNoBk4S4nuKOgaSspWgc5WHTZgE5gvI8notjQIQJBXjSbTHOKaFu4AmbcNpgnArVbxtV8PKs-SwzGNd7LqZ-riR789cS7uuE-1pVZ1tVsL5CF6nLxl-CbvJP438rGV-hwe_hJ_8LP4VtfZXq-s6gnCzfxbniJ0lYMwVYg4323UOv_wlZ3eji
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH7UittBtCrWdQSvsenMZKl4kaJUbWuhLfQWk1lqpBttvPrbncliKggKXpM8CC9v3vdl-OZ7AJecKZZORGAobMUG5a5puBw7BiVYcCG5DOINt1bbbvTp48AaFKCenYXRssq09yc9Pe7W6ZVKms3KLAwrXVNbjSsAUoxC-9YNVmCVWtjRf2BXH7nOQ0GwnWy0EEM_vg4XuchrnG_EaZmXHXt5WvhnkFoCnvsd2E4ZI7pNXmoXCmJSgq0lH8ESrMU6TrbYg5eOnnqGEn9mFJ8WQtpHIzmgiLJCQ1ruPkTjKQ-l4qAonoezQFOJOt1n5I-G03kYvY6vUT03B0exE-0-9O_vevWGkQ5RMBixa5HBFKkJfIIDh7lcLTa7KhVFkjarElcossItbDNp-UwS4riKPPqSspricZQHVYv55ACKk-lEHAIiTCjEk06NcU4JdXxXWIRTk3EqVMM1y-BmWfNY6jCuB12MvExK9uYtJdzTCfe0rM7CZcBfobPEZuMvQTfZp_G-1Yyn4OD38KP_hZ_DRqPXanrNh_bTMWzqO4nI7wSK0fxdnCqyEgVncTF-Aspx6nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+system+state+estimation+solution+using+modified+models+of+PSO+algorithm%3A+Comparative+study&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Tungadio%2C+Diambomba+H.&rft.au=Jordaan%2C+Jacobus+A.&rft.au=Siti%2C+Mukwanga+W.&rft.date=2016-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=92&rft.spage=508&rft.epage=523&rft_id=info:doi/10.1016%2Fj.measurement.2016.06.052&rft.externalDocID=S026322411630344X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon